Résumé de Cours 9

Changement de bases

Soit \mathbb{K} un corps commutatif, e.g., $\mathbb{K} = \mathbb{C}, \mathbb{R}, \mathbb{Q}$ etc.

<u>1ère étape</u> Soit E un \mathbb{K} -espace vectoriel de dimension finie et soit $\mathcal{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, $\mathcal{B}' = \{\mathbf{e}'_1, \dots, \mathbf{e}'_n\}$ deux bases de E. Puisque \mathcal{B} est une base de E, pour tout $1 \leq j \leq n$, il existe un unique n-plet $(p_{1,j}, \dots, p_{n,j}) \in \mathbb{K}^n$ tel que

$$\mathbf{e}'_j = \sum_{i=1}^n p_{i,j} \mathbf{e}_i$$
 (attention aux indices!).

Alors, pour $\mathbf{x} = \sum_{i=1}^n x_i \mathbf{e}_i = \sum_{j=1}^n x_j' \mathbf{e}_j' \in E$, on a

$$\mathbf{x} = \sum_{j=1}^{n} x_{j}' \mathbf{e}_{j}' = \sum_{j=1}^{n} x_{j}' \left(\sum_{i=1}^{n} p_{i,j} \mathbf{e}_{i} \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} p_{i,j} x_{j}' \right) \mathbf{e}_{i} = \sum_{i=1}^{n} x_{i} \mathbf{e}_{i}.$$

Posons $X = \text{mat}_{\mathcal{B}}(\mathbf{x})$ et $X' = \text{mat}_{\mathcal{B}'}(\mathbf{x})$, on en conclut que

$$X = PX'$$
 \iff $\operatorname{mat}_{\mathcal{B}}(\mathbf{x}) = \operatorname{mat}_{\mathcal{B}',\mathcal{B}}(\operatorname{id}_E)\operatorname{mat}_{\mathcal{B}'}(\mathbf{x}).$

La matrice $P = (p_{i,j}) = \text{mat}_{\mathcal{B}',\mathcal{B}}(\text{id}_E)$ s'appelle la **matrice de passage de** \mathcal{B} à \mathcal{B}' . Notons que cette matrice est inversible avec son inverse $P^{-1} = \text{mat}_{\mathcal{B},\mathcal{B}'}(\text{id}_E)$.

<u>2ème étape</u> Soit E, F deux \mathbb{K} -espaces vectoriels de dimensions finies et $f: E \to F$ une application linéaire. Soit $\mathcal{B}, \mathcal{B}'$ des bases de E et soit $\mathcal{C}, \mathcal{C}'$ des bases de F. On pose $A = \operatorname{mat}_{\mathcal{B}, \mathcal{C}}(f)$ et $B = \operatorname{mat}_{\mathcal{B}', \mathcal{C}'}(f)$. Notons les matrices de passages de \mathcal{B} à \mathcal{B}' pr P et \mathcal{C} à \mathcal{C}' par Q.

Trouver le liens entre les matrices A et B ! Pour $\mathbf{x} \in E$, on a

$$\begin{aligned} \operatorname{mat}_{\mathcal{C}'}(f(\mathbf{x})) &= \operatorname{mat}_{\mathcal{C},\mathcal{C}'}(\operatorname{id}_F) \operatorname{mat}_{\mathcal{C}}(f(\mathbf{x})) = \operatorname{mat}_{\mathcal{C}',\mathcal{C}}(\operatorname{id}_F)^{-1} \operatorname{mat}_{\mathcal{C}}(f(\mathbf{x})) \\ &= \operatorname{mat}_{\mathcal{C}',\mathcal{C}}(\operatorname{id}_F)^{-1} \operatorname{mat}_{\mathcal{B},\mathcal{C}}(f) \operatorname{mat}_{\mathcal{B}}(\mathbf{x}) \\ &= \operatorname{mat}_{\mathcal{C}',\mathcal{C}}(\operatorname{id}_F)^{-1} \operatorname{mat}_{\mathcal{B},\mathcal{C}}(f) \operatorname{mat}_{\mathcal{B}',\mathcal{B}}(\operatorname{id}_E) \operatorname{mat}_{\mathcal{B}'}(\mathbf{x}) \\ &= \operatorname{mat}_{\mathcal{B}',\mathcal{C}'}(f) \operatorname{mat}_{\mathcal{B}'}(\mathbf{x}), \end{aligned}$$

on en déduit que

$$\operatorname{mat}_{\mathcal{B}',\mathcal{C}'}(f) = \operatorname{mat}_{\mathcal{C}',\mathcal{C}}(\operatorname{id}_F)^{-1}\operatorname{mat}_{\mathcal{B},\mathcal{C}}(f)\operatorname{mat}_{\mathcal{B}',\mathcal{B}}(\operatorname{id}_E) \iff B = Q^{-1}AP.$$

Remarque Alors, on a Soit $\mathbf{x} \in E$. Posons $X = \operatorname{mat}_{\mathcal{B}}(\mathbf{x}), X' = \operatorname{mat}_{\mathcal{B}'}(\mathbf{x})$ et $Y = \operatorname{mat}_{\mathcal{C}}(f(\mathbf{x})), Y' = \operatorname{mat}_{\mathcal{C}'}(f(\mathbf{x}))$.

$$Y = AX$$
, $Y' = BX'$, $X = PX'$, $Y = QY'$,

ce qui implique que

$$Y = AX = APX'$$
$$= QY' = QBX',$$

d'où AP = QB, i.e., $B = Q^{-1}AP$.

Application Soit E, F deux \mathbb{K} -espaces vectoriels de dimensions finies et soit $f: E \to F$ une application linéaire. Soit \mathcal{B} et \mathcal{C} des bases de E et F, respectivement. Posons $A = \operatorname{mat}_{\mathcal{B},\mathcal{C}}(f)$. Alors, on a le rang de l'application linéaire $f = \operatorname{le}$ rang de la matrice A.

Pivot de Gauss (encore)

Définissons les matrices carrées $P_{i,j}^{(m)}$ $(1 \le i < j \le m), D_i(t)$ $(1 \le i \le m)$ et $E_{i,j}(t)$ $(1 \le i \ne j \le m)$ de taille m par

$$\begin{split} P_{i,j}^{(m)} &= I_m - (E_{i,i} + E_{j,j}) + E_{i,j} + E_{j,i}, \\ D_i^{(m)}(s) &= (I_m - E_{i,i}) + sE_{i,i}, \\ E_{i,j}^{(m)}(t) &= I_m + tE_{i,j}, \end{split}$$

où $E_{k,l} \in M_m(\mathbb{K})$ est la matrice dont la p-ème ligne et la q-ème colonne est $\delta_{k,p}\delta_{l,q}$. On peut vérifier les formules suivantes:

$$(P_{i,j}^{(m)})^2 = I_m, \qquad D_i^{(m)}(s_1)D_i^{(m)}(s_2) = D_i^{(m)}(s_1s_2), \qquad E_{i,j}^{(m)}(t_1)E_{i,j}^{(m)}(t_2) = E_{i,j}^{(m)}(t_1+t_2).$$

En particulier, on en dénduit que les matrices $P_{i,j}^{(m)}, D_i^{(m)}(s)$ $(s \in \mathbb{K}^*), E_{i,j}^{(m)}(t)$ $(t \in \mathbb{K})$ sont inversibles.

À l'aide de ces matrices, par calcul direct, on a

- 1. la permutation de la i-ème ligne et la j-ème ligne
 - = la multiplication de $P_{i,j}^{(m)}$ à gauche,
- 2. la multiplication par un scalaire s non null sur la i-ème ligne
 - = la multiplication de $D_i^{(m)}(s)$ à gauche,
- 3. l'addition de $t\times ({\rm la}$ j-ème ligne) sur la $i\text{-}{\rm \grave{e}me}$ ligne
 - = la multiplication de $E_{i,j}^{(m)}(t)$ à gauche.

Conclusion Le pivot de Gauss sur **lignes**

= Multiplications des matrices
$$P_{i,j}^{(m)}, D_i^{(m)}(s) \ (s \in \mathbb{K}^*), E_{i,j}^{(m)}(t) \ (t \in \mathbb{K})$$
 à gauche

Ici, une question naturelle se pose :

que se passe-t-il lorsque l'on multiplie ces matrices à droite ?

En effet, sur une matrice de taille (m, n), par calcul direct, on a

- (C1) la multiplication de $P_{i,j}^{(n)}$ à droite = la permutation de la i-ème colonne avec la j-ème colonne $(1 \le i < j \le m)$,
- (C2) la multiplication de $D_i^{(n)}(s)$ à droite = la multiplication par la constante s sur la i-ème colonne $(1 \le i \le m)$,
- (C3) la multiplication de $E_{i,j}^{(n)}(t)$ à droite = l'addition de $t \times$ (la i-ème colonne) sur la j-ème colonne ($1 \le i \ne j \le m$).

Conclusion

Le pivot de Gauss sur **colonnes** = Multiplications des matrices
$$P_{i,j}^{(m)}, D_i^{(m)}(s)$$
 $(s \in \mathbb{K}^*), E_{i,j}^{(m)}(t)$ $(t \in \mathbb{K})$ à droite