
Résumé de Cours 8

Pivot de Gauss Soit K un corps commutatif, par exemple, K = C,R,Q etc..

Soit m,n ∈ N∗ et soit A = (ai,j) ∈Mm,n(K). Pour

1. résoudre un système d’équations linéaires Ax = b où

x =

x1...
xn

 avec x1, · · · , xn inconnus et b =

 b1
...
bm

 avec les scalaires b1, · · · , bm ∈ K, ou

2. m = n et calculer l’inverse de la matrice A,

on applique 3 type d’opérations sur lignes aux matricesa1,1 · · · a1,n b1
...

...
...

am,1 · · · am,n bm

 ∈Mm,n+1(K) pour 1. et
(
A Im

)
∈Mm,2m(K) pour 2.,

définies suivantes :

(L1) permuter la i-ème ligne et la j-ème ligne (1 ≤ i 6= j ≤ m),

(L2) multiplier par une costante non null s ∈ K∗ sur la i-ème ligne (1 ≤ i ≤ m),

(L3) ajouter t× (la j-ème ligne) avec t ∈ K sur la i-ème ligne (1 ≤ i 6= j ≤ m).

Cette méthode s’appelle le pivot de Gauss sur lignes.

Interprétation matricielle

Définissons les matrices carrées P
(m)
i,j (1 ≤ i < j ≤ m), Di(t) (1 ≤ i ≤ m) et Ei,j(t) (1 ≤ i 6= j ≤ m) de

taille m par

P
(m)
i,j = Im − (Ei,i + Ej,j) + Ei,j + Ej,i,

D
(m)
i (s) = (Im − Ei,i) + sEi,i,

E
(m)
i,j (t) = Im + tEi,j ,

où Ek,l ∈ Mm(K) est la matrice dont la p-ème ligne et la q-ème colonne est δk,pδl,q. On peut vérifier les
formules suivantes :

(P
(m)
i,j )2 = Im, D

(m)
i (s1)D

(m)
i (s2) = D

(m)
i (s1s2), E

(m)
i,j (t1)E

(m)
i,j (t2) = E

(m)
i,j (t1 + t2).

En particulier, on en dénduit que les matrices P
(m)
i,j , D

(m)
i (s) (s ∈ K∗), E(m)

i,j (t) (t ∈ K) sont inversibles.

À l’aide de ces matrices, par calcul direct, on a

1. l’opération (L1) = la multiplication de P
(m)
i,j à gauche,

2. l’opération (L2) = la multiplication de D
(m)
i (s) à gauche,

3. l’opération (L3) = la multiplication de E
(m)
i,j (t) à gauche.

Ici, une question naturelle se pose :

que se passe-t-il lorsque l’on multiplie ces matrices à droite ?
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En effet, sur une matrice de taille (m,n), par calcul direct, on a

(C1) la multiplication de P
(n)
i,j à droite = la permutation de la i-ème colonne avec la j-ème colonne

(1 ≤ i < j ≤ m),

(C2) la multiplication de D
(n)
i (s) à droite = la multiplication par la constante s sur la i-ème colonne

(1 ≤ i ≤ m),

(C3) la multiplication de E
(n)
i,j (t) à droite = l’addition de t× (la i-ème colonne) sur la j-ème colonne

(1 ≤ i 6= j ≤ m).

C’est-à-dire, multiplications de ces matrices à droite nous donne le pivot de Gauss sur colonnes.

Notons l’ensemble des matrices carrées inversibles de taille m ∈ N∗ par GLm(K).

Le rang d’une matrice

Soit A une matrice de taille (m,n) avec m,n ∈ N∗. Avec le pivot de Gauss sur lignes ((L1), (L2) et
(L3)) et sur colonnes ((C1), (C2) et (C3)), on peut encore transformer la matrice A à la matrice(

Ir 0r,n−r
0m−r,r 0m−r,n−r

)
.

Le nombre r(= la taille de la matrice unité dans les matrices ci-dessus) s’appelle le rang de la matrice A
et notée par rangA ou rgA. Cette notion est bien-définie, i.e., on a le théorème suivant :

Théorème Soit m,n ∈ N∗. Soit A = (ai,j) ∈ Mm,n(K) une matrice. Il existe matrices P ∈ GLm(K),
Q ∈ GLn(K) et un unique r ∈ N avec r ≤ min{m,n} tels que

PAQ =

(
Ir 0r,n−r

0m−r,r 0m−r,n−r

)
.

Remarque Le rang d’une matrice a une interprétation naturelle en terme d’application linéaire, alors
que le théorème ci-dessus devient évident. �

Bilan pratique

Voici un bilan pour les calculs :

Matrice à calculer Type de pivot de Gauss
Résoudre le système Ax = b (A|b) sur lignes

Calculer A−1 (A|I) sur lignes
Calculer rgA A sur lignes et colonnes

Attention Pour les deux premiers cas, on pourra aussi utiliser le pivot de Gauss sur colonnes, mais
c’est déconseillé pour minimiser les erreurs. �
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Application linéaire Soit K un corps commutatif, par exemple, K = C,R,Q etc..

Soit E,F deux K-espaces vectoriels. Une application f : E → F est dite linéaire lorsque elle satisfait

1. f(x+ y) = f(x) + f(y) ∀x, y ∈ E,

2. f(λx) = λf(x) ∀x ∈ E et ∀λ ∈ K.

Ces conditions est équivalent à

1’. f(x+ λy) = f(x) + λf(y) ∀x, y ∈ E et ∀λ ∈ K.

Comment décrire une application linéaire ?

Lemme Supposons que dimKE <∞. Soit {e1, · · · , en} une base de E et soit {f1, · · · , fn} une famille
de vecteurs de F . Alors, il existe une unique application linéaire f : E → F telle que

f(ei) = fi pour tout 1 ≤ i ≤ n.

Injectivité et surjectivité

Soit E,F deux K-espaces vectoriels.

Lemme Soit f : E → F une application linéaire et soit F ′ un sous-espace vectoriel de F . Alors,
f−1(F ′) est un sous-espace vectoriel de E. �

En particulier, Ker f := {x ∈ E|f(x) = 0} est un sous-espace vectoriel de E, appelé le noyau de f .
Voici un critère pratique pour l’injectivité d’une application linéaire :

Lemme Une application linéaire f : E → F est injective si et seulement si Ker f = {0}. �

Pour la surjectivité, il n’y a rien de nouveau...

Le sous-espace vectoriel Im f := {f(x)|x ∈ E} de F s’appelle l’image de f et la dimension de Im f
s’appelle le rang de f et noté par rang f ou rg f . La formule suivante est importante :

Théorème (La formule du rang) Soit f : E → F une application linéaire. Supposons que dim E <∞.
Alors, on a

dim Ker f + rg f = dim E.

Pour la bijectivité, la situation est un peu particuleère :

Lemme Soit f : E → F une application linéaire. Supposons que les dimensions de deux espaces
vectoriels E et F soient finies.

1. Si f est bijective, alors dim E = dim F .

2. Supposons que dim E = dim F . Alors, f est bijective ⇔ f est injective ⇔ f est surjective. �

Citons un lemme pratique :

Lemme Soit f : E → F une application linéaire bijective. Alors, sa réciproque f−1 est aussi linéaire. �
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Opérations sur applications linéaires (non-traitées en cours)

Notons par L(E,F ) l’ensemble des applications linéaires de E dans F . En particulier, on note L(E,E)
par L(E). L’ensemble L(E,F ) muni de

1. (structure interne) (f + g)(x) := f(x) + g(x) ∀ f, g ∈ L(E,F ) et ∀x ∈ E,

2. (structure externe) (λf)(x) := λ(f(x)) ∀ f ∈ L(E,F ), λ ∈ K, et x ∈ E,

est un K-espace vectoriel.

Soit G un K-espace vectoriel.

Lemme Soit f1, f2, f ∈ L(E,F ) et g1, g2, g ∈ L(F,G). Alors,

1. la composée g ◦ f , définie par (g ◦ f)(x) = g(f(x)) (x ∈ E), est une application linéaire de E dans
G,

2. g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2,

3. (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f .

En particulier, on a

Lemme (L(E),+, ◦) est un anneau unitaire non-commutatif. �
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