Résumé de Cours 8

Pivot de Gauss| Soit K un corps commutatif, par exemple, K = C,R, Q etc..

Soit m,n € N* et soit A = (a; ;) € My, ,(K). Pour

1. résoudre un systéme d’équations linéaires Ax = b ou
1 bl

x=1 : avec x1,--- , I, inconnus et b = : avec les scalaires by, -+ ,b,, € K, ou

Ty, bm
2. m =n et calculer 1’inverse de la matrice A,

on applique 3 type d’opérations sur lignes aux matrices

a1 - Qi b
€ My, n+1(K) pour 1. et (A Im)EMm’gm(K) pour 2.,

Umi  Gmn bm
définies suivantes :
(L1) permuter la i-eéme ligne et la j-eme ligne (1 < i # j < m),
(L2) multiplier par une costante non null s € K* sur la i-eme ligne (1 < i < m),
(L3) ajouter tx (la j-eéme ligne) avec ¢t € K sur la i-eme ligne (1 <i# j < m).

Cette méthode s’appelle le pivot de Gauss sur lignes.

‘ Interprétation matricielle ‘

Définissons les matrices carrées Pi(’;-n) 1<i<j<m),D;t)1<i<m)et E;;(t) (1<i#j<m)de
taille m par
Pz(f]n) = Im - (Ez,z + Ej,j) + Ei’j + Ejﬁi,
Dfm)(s) = (I — Ei) + sEq,

ot Ey; € M,,(K) est la matrice dont la p-éme ligne et la g-eme colonne est 6y ,d; . On peut vérifier les
formules suivantes :

(P2 =Ly, D{™(s1)D™(s2) = D™ (s182), B (0) B () = B (1 + t).

i, ,J
En particulier, on en dénduit que les matrices Pi(g%), D™ (s) (s € K*), EZ(T) (t) (t € K) sont inversibles.

A Taide de ces matrices, par calcul direct, on a

1. opération (L1) = la multiplication de Pi(’T) a gauche,
2. Vopération (L2) = la multiplication de ng)(s) a gauche,
3. Vopération (L3) = la multiplication de El(zn)(t) a gauche.

Ici, une question naturelle se pose :

que se passe-t-il lorsque 1l’on multiplie ces matrices a droite 7



En effet, sur une matrice de taille (m,n), par calcul direct, on a

(C1) la multiplication de Pi(,?) a droite = la permutation de la i-eme colonne avec la j-eme colonne
(1<i<j<m),

(C2) la multiplication de Dgn)(s) adroite = la multiplication par la constante s sur la i-eme colonne
(1<i<m),

(C3) la multiplication de EZ(Z) (t) & droite = laddition de tx (la i-eme colonne) sur la j-éme colonne

(A <i#j<m).

C’est-a-dire, multiplications de ces matrices a droite nous donne le pivot de Gauss sur colonnes.

Notons I’ensemble des matrices carrées inversibles de taille m € N* par GL,,(K).

‘Le rang d’une matrice‘

Soit A une matrice de taille (m,n) avec m,n € N*. Avec le pivot de Gauss sur lignes ((L1), (L2) et
(L3)) et sur colonnes ((C1), (C2) et (C3)), on peut encore transformer la matrice A & la matrice

I, Or,n—r >
Om—r,r Om—r,n—r '
Le nombre r(= la taille de la matrice unité dans les matrices ci-dessus) s’appelle le rang de la matrice A
et notée par rang A ou rg A. Cette notion est bien-définie, i.e., on a le théoréme suivant :

Théoréme Soit m,n € N*. Soit A = (a; ;) € My, »(K) une matrice. Il existe matrices P € GL,,(K),
Q € GL,(K) et un unique r € N avec r < min{m, n} tels que

PAQ = (0 b Onner )

m—r,r Omfr,nf'r

Remarque Le rang d’une matrice a une interprétation naturelle en terme d’application linéaire, alors
que le théoreme ci-dessus devient évident. O

Bilan pratique

Voici un bilan pour les calculs :

Matrice a calculer | Type de pivot de Gauss
Résoudre le systeme Ax =b (A|b) sur lignes
Calculer A~! (AlI) sur lignes
Calculer rg A A sur lignes et colonnes

Attention Pour les deux premiers cas, on pourra aussi utiliser le pivot de Gauss sur colonnes, mais
c’est déconseillé pour minimiser les erreurs. O



‘ Application linéaire‘ Soit K un corps commutatif, par exemple, K = C,R, Q etc..

Soit F, F' deux K-espaces vectoriels. Une application f : E — F est dite linéaire lorsque elle satisfait
L flx+y)=f(@)+ fy) Va,y € E,
2. f(Ax) = Af(z) Vere EetVAekK.

Ces conditions est équivalent a

U fle+Ay) = f(x) + Af(y) Va,y € Eet VA eK.

Comment décrire une application linéaire ?

Lemme Supposons que dimg E < co. Soit {e;, - ,e,} une base de F et soit {f1,--,f,} une famille
de vecteurs de F. Alors, il existe une unique application linéaire f : E — F telle que
fle) =1 pour tout 1 <37 < n.

Injectivité et surjectivité‘

Soit E, F' deux K-espaces vectoriels.

Lemme Soit f: E — F une application linéaire et soit F’ un sous-espace vectoriel de F. Alors,
f7L(F’) est un sous-espace vectoriel de E. O

En particulier, Ker f := {z € E|f(x) = 0} est un sous-espace vectoriel de E, appelé le noyau de f.
Voici un critere pratique pour I'injectivité d’une application linéaire :

Lemme Une application linéaire f : E — F est injective si et seulement si Ker f = {0}. O

Pour la surjectivité, il n’y a rien de nouveau...

Le sous-espace vectoriel Im f := {f(z)|x € E} de F s’appelle 'image de f et la dimension de Im f
s’appelle le rang de f et noté par rang f ou rg f. La formule suivante est importante :

Théoréme (La formule du rang)  Soit f : F — F une application linéaire. Supposons que dim F < co.

Alors, on a
dim Ker f +rg f = dim F.

Pour la bijectivité, la situation est un peu particuleere :

Lemme Soit f : E — F une application linéaire. Supposons que les dimensions de deux espaces
vectoriels E et F' soient finies.

1. Si f est bijective, alors dim £ = dim F'.

2. Supposons que dim E = dim F. Alors, f est bijective < f est injective < f est surjective. O

Citons un lemme pratique :

Lemme Soit f: E — F une application linéaire bijective. Alors, sa réciproque f~! est aussi linéaire. O



‘ Opérations sur applications linéaires ‘ (non-traitées en cours)

Notons par L£(E, F') 'ensemble des applications linéaires de E dans F'. En particulier, on note L(E, E)
par L(F). L’ensemble £(E, F) muni de

1. (structure interne) (f+ g)(x):= f(z) + g(x) Vf,ge L(E,F)etVz €E,
2. (structure externe) (A\f)(x):= A(f(x)) VieL(E,F), €K, etx€E,

est un K-espace vectoriel.
Soit G un K-espace vectoriel.

Lemme Soit f1, fao, f € L(E,F) et g1,92,9 € L(F,G). Alors,

1. la composée g o f, définie par (go f)(z) = g(f(x)) (x € E), est une application linéaire de E dans
G,

2. go(fi+ fo)=gofi+gofo
3. (g1+g2)of=giof+gaof.

En particulier, on a

Lemme (£(E),+,0) est un anneau unitaire non-commutatif. O



