Contrôle continu final - lundi 11 juin 2012

Durée: 2 heures

Les documents, calculatrices et téléphones portables sont interdits.

Une grande importance sera accordée à la précision de la rédaction.

L'énoncé comporte deux pages.

Il n'est pas nécessaire de traiter l'intégralité du sujet pour obtenir la note maximale.

Question de cours.

Soit u une application linéaire d'un espace vectoriel E vers un espace vectoriel F.

- 1. Rappeler la définition du noyau $\ker u$ de u.
- 2. Montrer que u est injective si et seulement si $\ker u = \{0_E\}$.

Exercice 1.

- 1. Montrer que le polynôme $P = X^4 15X^2 10X + 24$ est divisible par $X^2 + 2X 3$ dans $\mathbb{R}[X]$.
- 2. Donner la décomposition de P en produit de facteurs de degré 1 dans $\mathbb{R}[X]$.
- 3. Soient p, q et r trois nombres réels et α , β et γ les trois racines complexes du polynôme $Q = X^3 + pX^2 + qX + r$.
 - (a) On pose $S_1 = \alpha + \beta + \gamma$ et $S_2 = \alpha\beta + \alpha\gamma + \beta\gamma$. Calculer S_1 et S_2 en fonction de p, q, r. [On pourra reconnaître et développer $(X - \alpha)(X - \beta)(X - \gamma)$.]
 - (b) On pose enfin : $T = \alpha^2 + \beta^2 + \gamma^2$. Calculer T en fonction de p, q et r.

Exercice 2.

Soit E et F deux espaces vectoriels sur \mathbb{R} respectivement de dimension 3 et 4. Soit $\mathcal{B} = (e_1, e_2, e_3)$ une base de E et $\mathcal{B}' = (f_1, f_2, f_3, f_4)$ une base de F.

Soit $u: E \to F$ l'application linéaire définie par

$$u(e_1) = f_1 - 2f_2 + f_3$$

$$u(e_2) = f_2 - 2f_3 + f_4$$

$$u(e_3) = -f_1 + f_2 + f_3 - f_4$$

- 1. Donner la matrice de u dans les bases \mathcal{B} et \mathcal{B}' .
- 2. Déterminer une base de $\ker u$.
- 3. En déduire le rang de u.
- 4. Donner une base de $\operatorname{Im} u$.
- 5. Soit $G = \text{Vect}(f_1, f_4)$ le sous-espace vectoriel de F engendré par f_1 et f_4 . Montrer que G est un supplémentaire de Im u dans F.

Exercice 3.

Exercice 3. Soit $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire de matrice $A = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 1 & 2 \\ 1 & 0 & -1 \end{pmatrix}$ dans la base canonique.

- 1. Montrer que dim $\ker \varphi = 1$ et donner une base $\mathcal{B} = (a)$ de $\ker \varphi$.
- 2. Montrer que $a \in \operatorname{Im} \varphi$ et déterminer un vecteur $b \in \mathbb{R}^3$ tel que $\varphi(b) = a$.
- 3. Montrer que l'ensemble $E = \{v \in \mathbb{R}^3, \ \varphi(v) = v\}$ est un sous-espace vectoriel de \mathbb{R}^3 .
- 4. Donner un vecteur c non nul de E.
- 5. Montrer que (a, b, c) est une base de \mathbb{R}^3 .
- 6. Donner la matrice de φ dans la base (a, b, c).

Exercice 4.

Dire si les assertions suivantes sont vraies ou fausses. Justifier brièvement la réponse par une courte preuve ou un contre-exemple.

1. Pour tout entier $n \geq 2$ et pour toutes matrices carrées A et B de $\mathcal{M}_n(\mathbb{R})$, on a l'identité

$$(A - B)(A + B) = A^2 - B^2$$
.

- 2. Soit A une matrice carrée inversible. Alors $(A^2)^{-1} = (A^{-1})^2$.
- 3. La matrice $\begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix}$ est inversible dans $\mathcal{M}_2(\mathbb{R})$.
- 4. L'application $u: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $u(x,y) = (\sqrt{x^2 + y^2}, 0)$ est linéaire.
- 5. Le sous-ensemble E de \mathbb{R}^3 défini par $E=\{(x,y,z)\in\mathbb{R}^3,\ 2x+3y+5z=1\}$ est un sous-espace vectoriel.
- 6. Il existe une matrice A à 4 lignes et 3 colonnes dont le rang est 4.
- 7. Il existe une matrice A à 4 lignes et 3 colonnes dont le rang est 2.