Partiel : durée 1h30 14 mars 2018

Tous les documents sont interdits, l'usage des calculatrices et des téléphones portables sont interdits.

Exercice 1.

Soit $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4

Soit
$$E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4, x_1 + x_2 + x_3 + x_4 = 0\}$$
 et $F = Vect(u_1, u_2)$ où $u_1 = (1, -1, 1, 1)$ et $u_2 = (1, 1, -1, 1)$

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^4 .
- 2. Donner une base de E et une base de F.
- 3. A-t-on $E \oplus F = \mathbb{R}^4$?

Correction exercice1

1. Première solution

Soit
$$x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$$

$$x \in E \Leftrightarrow \begin{cases} x = (x_1, x_2, x_3, x_4) \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases} \Leftrightarrow \begin{cases} x = (x_1, x_2, x_3, x_4) \\ x_1 = -x_2 - x_3 - x_4 \end{cases} \Leftrightarrow \begin{cases} x = (-x_2 - x_3 - x_4, x_2, x_3, x_4) \\ x_1 = -x_2 - x_3 - x_4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = x_2(-1, 1, 0, 0) + x_3(-1, 0, 1, 0) + x_4(-1, 0, 0, 1) \\ x_1 = -x_2 - x_3 - x_4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = x_2(-e_1 + e_2) + x_3(-e_1 + e_3) + x_4(-e_1 + e_4) \\ x_1 = -x_2 - x_3 - x_4 \end{cases}$$
Co with more transition $E = V$ and $C = V$ and

Ce qui montre que $E = Vect(-e_1 + e_2, -e_1 + e_3, -e_1 + e_4)$ et par conséquent E est un sous-espace vectoriel de \mathbb{R}^4 .

Deuxième solution

$$0 + 0 + 0 + 0 = 0 \Rightarrow 0_{\mathbb{R}^4} \in E$$

Soient $x = (x_1, x_2, x_3, x_4) \in E$, $x_1 + x_2 + x_3 + x_4 = 0$ et $y = (y_1, y_2, y_3, y_4) \in E$, $y_1 + y_2 + y_3 + y_4 = 0$. Soient λ et μ deux réels

$$\lambda x + \mu y = (\lambda x_1 + \mu y_1, \lambda x_2 + \mu y_2, \lambda x_3 + \mu y_3, \lambda x_4 + \mu y_4)$$
$$(\lambda x_1 + \mu y_1) + (\lambda x_2 + \mu y_2) + (\lambda x_3 + \mu y_3) + (\lambda x_4 + \mu y_4)$$
$$= \lambda (x_1 + x_2 + x_3 + x_4) + \mu (y_1 + y_2 + y_3 + y_4) = 0$$

Donc $\lambda x + \mu y \in E$, ce qui montre que E est un sous-espace vectoriel de \mathbb{R}^4 .

2. $(-e_1 + e_2, -e_1 + e_3, -e_1 + e_4)$ est une famille génératrice de E, pour tout α, β, γ réels $\alpha(-e_1 + e_2) + \beta(-e_1 + e_3) + \gamma(-e_1 + e_4) = 0_{\mathbb{R}^4} \Rightarrow (-\alpha - \beta - \gamma, \alpha, \beta, \gamma) = (0,0,0,0)$ $\Rightarrow \begin{cases} -\alpha - \beta - \gamma = 0 \\ \alpha = 0 \\ \beta = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \\ \gamma = 0 \end{cases}$

Donc cette famille est libre, il s'agit donc d'une base de *E*.

 (u_0, u_1) est une famille libre car u_0 et u_1 ne sont pas proportionnels, et cette famille engendre F, il s'agit d'une base de F.

3. $\dim(E) = 3$ et $\dim(F) = 2$ donc $\dim(E) + \dim(F) = 5 \neq 4$ donc on n'a pas $E \oplus F = \mathbb{R}^4$.

Exercice 2.

Soient P_0 , P_1 , P_2 , et P_3 quatre polynômes de $\mathbb{R}_3[X]$ définis par $P_0(X) = 1$, $P_1(X) = X - 1$, $P_2(X) = (X - 1)^2$ et $P_3(X) = (X - 1)^3$

Soit $E = \{P \in \mathbb{R}_3[X], P(1) = 0 \text{ et } P'(1) = 0\}$. on admettra que E est un sous-espace vectoriel de $\mathbb{R}_3[X]$ et que $\mathcal{B} = (P_0, P_1, P_2, P_3)$ est une famille libre de $\mathbb{R}_3[X]$.

- 1. Montrer que $\mathcal{B} = (P_0, P_1, P_2, P_3)$ est une base de $\mathbb{R}_3[X]$.
- 2. Montrer que (P_2, P_3) est une base de E.
- 3. On pose $F = Vect(P_0, P_1)$, en donner une base.
- 4. A-t-on $E \oplus F = \mathbb{R}_3[X]$?

Correction exercice2

- 1. $\dim(\mathbb{R}_3[X]) = 4$, une famille libre à 4 vecteurs dans un espace de dimension 4 est une base.
- 2. $P_2(1) = 0$, $P'_2 = 2(X 1)$ donc $P'_2(1) = 0$ et $d^{\circ}P_2 \le 3$ donc $P_2 \in E$ $P_3(1) = 0$, $P'_3 = 3(X 1)^2$ donc $P'_3(1) = 0$ et $d^{\circ}P_3 \le 3$ donc $P_3 \in E$ P_2 et P_3 sont deux vecteurs non proportionnels de E. C'est une famille libre de E.

D'autre part
$$P \in E \Leftrightarrow \exists a, b \in \mathbb{R}, P = (X-1)^2(aX+b) = aX(X-1)^2 + b(X-1)^2$$

 $(X(X-1)^2,(X-1)^2)$ est une famille génératrice de E, ces deux vecteurs ne sont pas proportionnels, ils forment une famille libre de E donc dim(E)=2

 (P_2, P_3) est une famille libre à deux vecteurs dans un espace de dimension 2, c'est une base de E.

- 3. (P_0, P_1) est libre en tant que sous-famille d'une famille libre, elle engendre F, c'est une base de F.
- 4. (P_0, P_1) est une base de F et (P_2, P_3) est une base de E donc $E \oplus F = \mathbb{R}_3[X]$.

Exercice 3.

1. Sans faire de calculs, calculer le développement limité à l'ordre 3, en 0 de la fonction f définie par :

$$f(x) = (\sin(x) + x)^{15}x^3 + 1 + 2x^3$$

2. Calculer le développement limité à l'ordre 3, en 0 de la fonction g définie par :

$$g(x) = e^x \cos(2x)$$

- 3.
- a. Calculer le développement limité à l'ordre 4 de $x \ln(1+x)$ en 0.
- b. En déduire le développement limité à l'ordre 2 de *h* au voisinage de 0.

$$h(x) = \frac{1 - \cos(x)}{x \ln(1 + x)}$$

Correction exercice3

1.
$$(\sin(x) + x)^{15} \underset{x \to 0}{\longrightarrow} 0$$
 donc $(\sin(x) + x)^{15} = o(1)$ alors

$$f(x) = o(1)x^3 + 1 + 2x^3 = 1 + 2x^3 + o(x^3)$$

2.

$$g(x) = e^x \cos(2x) = \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)\right) \left(1 - 2x^2 + o(x^3)\right)$$
$$= 1 + x + \left(\frac{1}{2} - 2\right)x^2 + \left(\frac{1}{6} - 2\right)x^3 + o(x^3) = 1 + x - \frac{3}{2}x^2 - \frac{11}{6}x^3 + o(x^3)$$

3.

a.
$$x \ln(1+x) = x \left(x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)\right) = x^2 - \frac{x^3}{2} + \frac{x^4}{3} + o(x^4)$$

b.

$$h(x) = \frac{1 - \left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)\right)}{x^2 - \frac{x^3}{2} + \frac{x^4}{3} + o(x^4)} = \frac{\frac{x^2}{2} - \frac{x^4}{24} + o(x^4)}{x^2 - \frac{x^3}{2} + \frac{x^4}{3} + o(x^4)} = \frac{\frac{1}{2} - \frac{x^2}{24} + o(x^2)}{1 - \frac{x}{2} + \frac{x^2}{3} + o(x^2)}$$

$\frac{1}{2}$ $-\frac{x^2}{24} + o(x^2)$	$1 - \frac{x}{2} + \frac{x^2}{3} + o(x^2)$
$\frac{1}{2} - \frac{x}{4} + \frac{x^2}{6} + o(x^2)$	$\frac{1}{2} + \frac{x}{4} - \frac{x^2}{12}$
$\frac{x}{4} - \frac{5}{24}x^2 + o(x^2)$	
$\frac{x}{4} - \frac{1}{8}x^2 + o(x^2)$	

$-\frac{x^2}{12} + o(x^2)$	
$-\frac{x^2}{12} + o(x^2)$	
$o(x^2)$	

Donc
$$h(x) = \frac{1}{2} + \frac{x}{4} - \frac{x^2}{12} + o(x^2)$$

Exercice 4.

Calculer, sans préjuger qu'elle existe la limite suivante :

$$\lim_{x\to 0} \frac{\cos(x) - \sqrt{1-x^2}}{x^4}$$

Correction exercice4

$$(1+X)^{\frac{1}{2}} = 1 + \frac{X}{2} - \frac{X^2}{8} + o(X^2)$$

On pose $X = -x^2$

$$\frac{\sqrt{1-x^2} = 1 - \frac{x^2}{2} - \frac{x^4}{8} + o(x^4)}{\frac{\cos(x) - \sqrt{1-x^2}}{x^4}} = \frac{1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4) - \left(1 - \frac{x^2}{2} - \frac{x^4}{8} + o(x^4)\right)}{x^4} = \frac{\frac{x^4}{6} + o(x^4)}{x^4} = \frac{1}{6} + o(1) \xrightarrow[x \to 0]{} \frac{1}{6}$$

Exercice 5.

On pose $u_0=1$ et $v_0=0$, puis pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n+v_n$ et $v_{n+1}=u_n+2v_n$.

Soient
$$J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 et $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

- 1. Montrer que pour tout k > 0, $J^k = 2^{k-1}J$
- 2. Calculer A^n en fonction de n, pour cela, comme A = I + J, on pourra appliquer la formule du binôme de Newton.
- 3. En déduire u_n et v_n en fonction de n.

Correction exercice5

1. Par récurrence, $J^1 = 2^{1-1}J$ est vrai.

Il faut montrer que l'égalité au rang n entraine celle au rang n + 1.

$$J^{n+1} = J^n J = 2^{n-1} J J = 2^{n-1} J^2$$

Et

$$J^{2} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 2J$$
$$J^{n+1} = 2^{n-1}2J = 2^{n}J$$

Ce qui achève la récurrence.

2. IJ = JI donc on peut appliquer la formule du binôme de Newton.

$$A^{n} = (I+J)^{n} = \sum_{k=0}^{n} \binom{n}{k} J^{k} I^{n-k} = \sum_{k=0}^{n} \binom{n}{k} J^{k} = \binom{n}{0} J^{0} + \sum_{k=1}^{n} \binom{n}{k} J^{k} = I + \sum_{k=1}^{n} \binom{n}{k} 2^{k-1} J$$

$$= I + \frac{1}{2} J \sum_{k=1}^{n} \binom{n}{k} 2^{k} = I + \frac{1}{2} J \left(\sum_{k=0}^{n} \binom{n}{k} 2^{k} 1^{n-k} - 1 \right) = I + \frac{1}{2} J ((2+1)^{n} - 1)$$

$$= I + \frac{1}{2} J (3^{n} - 1) = \binom{1}{0} \binom{1}{1} + \frac{1}{2} (3^{n} - 1) \binom{1}{1} \binom{1}{1} = \binom{\frac{1}{2} (3^{n} + 1)}{\frac{1}{2} (3^{n} - 1)} \binom{\frac{1}{2} (3^{n} - 1)}{\frac{1}{2} (3^{n} + 1)}$$

3.

$$\begin{cases} u_{n+1} = 2u_n + v_n \\ v_{n+1} = u_n + 2v_{n+1} \end{cases} \Leftrightarrow \begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

Par une récurrence quasi immédiate on a :

$$\binom{u_n}{v_n} = A^n \binom{u_0}{v_0} = \begin{pmatrix} \frac{1}{2}(3^n + 1) & \frac{1}{2}(3^n - 1) \\ \frac{1}{2}(3^n - 1) & \frac{1}{2}(3^n + 1) \end{pmatrix} \binom{1}{0} = \begin{pmatrix} \frac{1}{2}(3^n + 1) \\ \frac{1}{2}(3^n - 1) \end{pmatrix}$$

Par conséquent pour tout $n \in \mathbb{N}$:

$$\begin{cases} u_n = \frac{1}{2}(3^n + 1) \\ v_n = \frac{1}{2}(3^n - 1) \end{cases}$$

Exercice 6.

Soient
$$A = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & -2 & 5 & -5 \end{pmatrix} \in \mathcal{M}_{3,4}(\mathbb{R}), X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{R}), O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$

Résoudre le système AX = 0.

Correction exercice6

$$AX = 0 \Leftrightarrow \begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & -2 & 5 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow L_2 \begin{cases} x_1 + 2x_2 + x_3 + 3x_4 = 0 \\ x_1 + x_2 + 2x_3 + x_4 = 0 \\ x_1 - 2x_2 + 5x_3 - 5x_4 = 0 \end{cases}$$

$$\Leftrightarrow L_2 - L_1 \begin{cases} x_1 + 2x_2 + x_3 + 3x_4 = 0 \\ -x_2 + x_3 - 2x_4 = 0 \\ -4x_2 + 4x_3 - 8x_4 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 = -2x_2 - x_3 - 3x_4 \\ x_2 = x_3 - 2x_4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 = -2(x_3 - 2x_4) - x_3 - 3x_4 \\ x_2 = x_3 - 2x_4 \end{cases} \Leftrightarrow \begin{cases} x_1 = -3x_3 + x_4 \\ x_2 = x_3 - 2x_4 \end{cases}$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -3x_3 + x_4 \\ x_3 - 2x_4 \\ x_3 \\ x_4 \end{pmatrix} = x_3 \begin{pmatrix} -3 \\ 1 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -3\\1\\1\\0 \end{pmatrix}$$
 et $\begin{pmatrix} 1\\-2\\0\\1 \end{pmatrix}$ ne sont pas proportionnels ils forment une famille libre de $\mathcal{M}_{4,1}(\mathbb{R})$, comme cette

famille engendre l'espace vectoriel des vecteurs colonnes vérifiant AX = 0, c'est une base de cet espace vectoriel.