Examen final session 2 du 22 juin 2018-durée 1h

Attention à la rédaction, pas de téléphone portable ni de calculatrice, on ne sort que une heure après le début de l'examen.

Exercice 1.

On rappelle que la dérivée de la fonction $x \to \arctan(x)$ est $x \to \frac{1}{1+x^2}$.

Soit f la fonction définie sur]-1,1[par : $f(t) = \arctan\left(\frac{2t}{1-t^2}\right)$

- 1. Calculer f'(t) et f(0).
- 2. En déduire une expression plus simple de f(t).

Exercice 2.

1. Décomposer en éléments simples sur ℝ la fraction :

$$g(x) = \frac{1}{x(x^2+1)}$$

2. Soit f la fonction définie sur \mathbb{R}^{+*} par :

$$f(x) = \frac{1}{x^3} \ln(1 + x^2)$$

Montrer que

$$\int f(x)dx = -\frac{1}{2x^2} \ln(x^2 + 1) + \int g(x)dx$$

3. Déterminer une primitive de la fonction f sur \mathbb{R}^{+*}

Exercice 3.

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1. Déterminer un vecteur v_1 tel que $ker(u) = Vect(v_1)$.
- 2. Soient $v_2 = (1, -1, 0)$ et $v_3 = (-1, 0, -1)$. Exprimer $u(v_2)$ et $u(v_3)$ en fonction de v_2 et v_3 .
- 3. Montrer que $\mathcal{B}' = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- 4. Déterminer la matrice M de u dans la base \mathcal{B}' .