Correction Math II algèbre Juin 2009

Exercice 1.

Soit $\mathbb{R}_2[X] = \{a_0 + a_1X + a_2X^2, a_i \in \mathbb{R}\}$ l'espace des polynômes réels de degré au plus 2 et soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$? On considère l'application

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$

 $P \mapsto (X+1)P'$

- a) Montrer que f est linéaire.
- b) Montrer que la matrice A de f par rapport aux bases \mathcal{B} et \mathcal{B} est :

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

- c) Montrer que $\mathcal{B}' = (1, X + 1, (X + 1)^2)$ est une base de $\mathbb{R}_2[X]$.
- d) Trouver la matrice B de f par rapport aux bases \mathcal{B}' et \mathcal{B}' .
- e) Calculer A^2 , A^3 et B^k pour tout $k \in \mathbb{N}$.
- f) Déterminer le rang de f.
- g) Trouver une base de l'image de f.
- h) Trouver une base du noyau de f.

Exercice 2.

Soit E un espace vectoriel. Soit f un endomorphisme de E tel que : $f^2 = id$.

On pose $E_1 = \ker(f - id)$ et $E_2 = \ker(f + id)$.

- a) Soit $x_1 \in E_1$ et $x_2 \in E_2$. Calculer $f(x_1)$ et $f(x_2)$. b) Pour tout $x \in E$ écrire $x = \frac{f(x) + x}{2} \frac{f(x) x}{2}$. Montrer que $E_1 \oplus E_2 = E$.
- c) On suppose E de dimension finie et $f \neq \pm id$. Soit $(v_1, v_2, ..., v_n)$ une base de E.

telle que $E_1 = Vect(v_1, v_2, ..., v_r)$ et $E_2 = Vect(v_{r+1}, ..., v_n)$.

Ecrire la matrice de f dans la base $(v_1, v_2, ..., v_n)$.

Exercice 3.

- a) Montrer que le polynôme $A = X^3 19X + 30$ est divisible par X 2 dans $\mathbb{R}[X]$.
- b) Donner la décomposition de A en produit de facteurs de degré 1 dans $\mathbb{R}[X]$.
- c) Soient p et q deux nombres réels et α , β et γ les trois racines complexes du polynôme $P = X^3 + pX + q$. Pour $k \in \mathbb{N}$, on pose :

$$S_k = \alpha^k + \beta^k + \gamma^k$$

Calculer S_0 , S_1 et S_2 en fonction de p et q.

Indication: utiliser les relations entre les racines et les coefficients.

d) Supposons avoir montré que pour tout $k \geq 3$,

$$S_k = -pS_{k-2} - qS_{k-3} \tag{1}$$

En déduire de (1) les expressions de S_3 , S_4 et S_5 en fonction de p et q.

e) Déduire des questions précédentes les solutions réelles du système d'équations :

$$\begin{cases} x + y + z = 0 \\ x^3 + y^3 + z^3 = -90 \\ x^5 + y^5 + z^5 = -2850 \end{cases}$$