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Feuille d’exercices n° 4

ANNEAUX ET CORPS

1 Généralités
1.1

Soit A un anneau. Il contient un neutre pour ’addition, 0, et un neutre pour le produit, 1. Montrer que
si 0 =1, alors A = {0}.

1.2 Eléments non nuls, diviseurs de zéro, etc.

Dans un anneau A commutatif unitaire, on considere les parties suivantes :
1. les éléments qui ne sont pas diviseurs de zéro;
2. les éléments non nuls;
3. les éléments inversibles.

Quelle relation y a-t-il entre ces différentes parties 7 Donner un exemple ou elles sont toutes distinctes.

Comment appelle-t-on un anneau ou elles sont toutes égales ?

1.3

Pour quels entiers n est-ce que Z/nZ est un corps ?

1.4

Lesquels de ces sous-ensembles donnés de C sont des anneaux ? Lesquels sont des corps?

1. | 107"Z;
neN
2. {"|me€Z,neN, (m,n)=1pfn} (pest un nombre premier fixé);

3. Z|V/=1] = Z + Zv—=1;
4. QV-1]=Q+Qv-1.

2 Vols de canards

2.1 Etude algébrique

Soit A =Z[v2] = {z +yV2, (z,y) € Z*}. Pour (z,y) € Z?, on note N (z + yv/2) = 2% — 2y°.
1. Vérifier que N(z2') = N(2)N(z') pour tout (z,2') € A2.
2. Soit z € A. Montrer que z est inversible si et seulement si N(z) = +1.

3. Montrer que les éléments inversibles de A sont, au signe pres, les puissances de 1 4 v/2.



2.2

Les canards volent en groupes triangulaires constitués d’un chef suivi de deux sous-chefs, trois sous-
sous-chefs, etc. Un vol de canards subit un violent coup de vent et se divise en deux groupes de méme
taille. Par chance, ces deux groupes peuvent a nouveau former deux vols de canards. Combien peut-il y

avoir de canards? [Multiplier par 4 aprés avoir chassé les dénominateurs.]

2.3

Quels sont les nombres qui sont & la fois triangulaires et carrés ? Résoudre n(n +1)/2 = m?.

3 Idéaux
3.1

Soit I un idéal d’un anneau commutatif A. On note par (a) = a - A l'idéal principal engendré par a.

Montrer que :
1. I = A si et seulement si I contient une unité;
2. (a) = A ssi a est inversible;

3. Supposons A integre. Montrer que les conditions suivantes sont équivalentes :
(@) Ona (o) = (b):
(b) 11 existe un élément inversible u € A tel que a = ub.
4. Un anneau A est un corps ssi (0) est le seul idéal propre de A.
3.2
1. Rappeler quels sont les idéaux de Z.
2. Déterminer les idéaux de Z/127Z et de Z/487.
3.3 Idempotents et nilpotents
1. Résoudre dans Z/35Z, puis dans Z/487Z, I’équation 2% = x. Etablir un lien avec le théoréme chinois.
2. Déterminer les éléments nilpotents (ceux dont une puissance est nulle) de Z/48Z.
3.4 Sommes, intersection et produits d’idéaux

1. Soient I, J deux idéaux d’un anneau A. Montrer que
IndJ, I+J={z+ylzecl,yecJ}

sont des idéaux de A.
2. Montrer que I + J est le plus petit idéal de A contenant I et J.
3. Soit n,m € Z, I = (n) =nZ, J = (m) = mZ. Trouver INJ et [ + J.

4. Montrer que
I-J=A{x1y1+xoya+...xpyn|nEN, €1, yp € Jpour 1 <k<n}

est un idéal. Il s’appelle produit des idéaux I et .J.



3.5

Dans un anneau A, on appelle radical d’'un idéal I et on note v/I 'ensemble des éléments a € A tels

qu’il existe n € N* tel que o™ € I.
1. Montrer que /T est un idéal de A.
2. Vérifier que I C VT et que \/\ﬁ =T
3. Soient I et J des idéaux de A. Montrer que ’on a VINT =VINVJI=VI-J.
4. Dans Z, déterminer NITYA

4 Corps

4.1

Donner quatre exemples de corps autres que Q, R et C.

4.2 Morphisme

Montrer que tout morphisme de corps est injectif.

4.3

Soit K un corps, on note ¢ : Z — K ’application définie par : ¢(0) = 0 et, pour n € N, p(n+1) = ¢(n)+1
et p(—n) = —¢p(n). Vérifier que ¢ est un morphisme et que son noyau est de la forme pZ, ou p est un

nombre premier ou zéro. En déduire qu’'un corps fini contient Z/pZ pour p premier convenable.

4.4

Construire un corps de cardinal 4 (resp. 9) : donner ses tables d’addition et de multiplication.

4.5

Soit p un nombre premier, soit n = p — 1 et soit G = (Z/pZ)*. On veut montrer que G est cyclique.

1. Quels sont les ordres possibles des éléments de G 7
2. Soit d un diviseur de n. Montrer qu’il y a au plus ¢(d) éléments d’ordre d dans G.

3. En déduire que G contient des éléments d’ordre n : combien y en a-t-il 7

5 Polynomes
5.1

Rappeler le théoreme de division euclidienne dans K[X] (ou K est un corps).

5.2

1. Soit A un anneau quelconque. Alors 'anneau de polynomes A[X] n’est pas un corps.
Montrer que pour un anneau integre A, les polynoémes unitaires linéaires de A[X] sont irréductibles.

Décrire tous les polynémes irréductibles de C[X] et de R[X].

- W N

Démontrer que pour tout corps K, ’anneau de polynémes K[X] a une infinité de polynores

unitaires irréductibles.



5.3 Anneau principal

1. Montrer que 'idéal (X,n) ou n € Z, n > 1 de Panneau Z[X] n’est pas principal.

2. Soit A un anneau inteégre. Montrer que A[X] est principal ssi A est un corps.

5.4

Soient m et n deux entiers supérieurs ou égaux a 2. Calculer le reste de la division euclidienne de

(X —2)"+ (X —1)" =1 par (X —1)(X — 2) dans Z[X].

5.5
Soient a et b deux entiers naturels non nuls.

1. Soient g et r le quotient et le reste de la division de a par b. Effectuer la division de X* — 1 par
X? — 1. En déduire que le reste est X" — 1.

2. En déduire que le PGCD de X% —1 et X® — 1 est X9 — 1, ot d est le PGCD de a et b.

5.6

Vrai ou faux ?

1. Tout polynoéme de degré 3 sur R est réductible.

2. Tout polynéme de degré 3 sur Q est réductible.

5.7

Ecrire sous forme de produits de polynomes irréductibles les polynomes suivants :
1. X2+bX +ceC[X],oub,ceC;

X2 +bX +c€R[X], ot b,c € R;

X% 41 € C[X] puis dans R[X] et dans Q[X];

X3 — X —30et X3+ X + 30 dans Q[X] et dans Z[X];

X207 1 21 X49 +49X2! + 70 dans Q[X];

S wtk N

X4 — X dans Z[X].

5.8

Montrer que f est irréductible dans Q|z] :
1. f=X*—8X3+12X%2—6X +2;
2. f=X°5—12X3 436X —12;
3. f=X— X3 42X +1;
4. f =XP~ 14 ... 4 X 41, ol1 p est premier.



5.9

Polynémes positifs

Un polynome réel P € R[X] est dit positif si P(a) > 0 pour tout a réel. On veut montrer que tout

polyndme positif est la somme de deux carrés.

1.

5.10

Rappeler quels sont les polynomes irréductibles de R[X]. En déduire quun polynéme positif est
le produit de puissances paires de polynomes de degré 1 et de polynomes de degré 2 sans racine

réelle.

. Démontrer que la propriété est vraie pour les polynomes de degré 2 sans racine réelle.

En s’inspirant du fait que le produit des modules est le module du produit, montrer que le produit

de la somme de deux carrés est une somme de deux carrés.

. Prouver la propriété.

Polynémes sur un corps fini

. Si K est un corps, montrer qu'un polynoéme P de degré 2 ou 3 dans K[X] est irréductible si et

seulement si il n’a pas de zéro dans K.
Trouver tous les polynémes irréductibles de degré 2, 3 & coefficients dans Z/27Z.

En utilisant la partie précédente, montrer que les polyndémes
5X%+8X%+3X+15 et  X°+2X°+3X%2-6X -5

sont irréductibles dans Z[X].

. Décrire tous les polynomes irréductibles de degré 4 et 5 sur Z/27Z.

6 Polynomes cyclotomiques

Pour n € N*, on considere le polynoéme

6.1

o, (X)= [ (X —eap®™m).

0<k<n, kAn=1

Définition et propriétés standards

Soit » € N*. On note u, est ’ensemble des racines primitives n-iemes de 'unité dans C. Le n-ieme

polynome cyclotomique est le polynome

.(x)= [ (X -0

CEPn

. Calculer ®,, pour 1 <n <8.

. Rappeler pourquoi deg ®,, = || = ¢(n), I'indicatrice d’Euler.

Démontrer que 'on a :

X" —1=]]®aX).
d|n

Quelle relation retrouve-t-on en comparant les degrés de ces polyndomes ?

A priori, on a : ®, € C[X]. Montrer par récurrence que 'on a en fait : ®,, € Z[X].

Montrer que pour n = p premier, ®,, est irréductible. [Considérer P = X? —1 et poser X =Y +1;
appliquer le critére d’Fisenstein.]

REMARQUE : On peut montrer que ®,, est irréductible pour tout n > 1.



