Algèbre Mathematiques Discretes

Contrôle Continu 1bis - Corrigé

Exercise 1. (1,5+1,5 points)

- 1. On suppose $g \circ f$ injective. Soient $x_1 \neq x_2 \in X$ et $f(x_1) = f(x_2)$, alors $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = g \circ f(x_2)$, contrairement à l'hypothèse d'injectivité de $g \circ f$, Absurde, donc $f(x_1) \neq f(x_2)$ et f est injective.
- 2. Soit $X = \{a\}$, $Y = \{b, c\}$ $Z = \{c\}$. On prende pour $f : X \longrightarrow Y$ l'application f(a) = b, et pour $g : Y \longrightarrow Z$ l'application g(b) = g(c) = c, alors $g \circ f$ est injective, et g n'est pas injective.

Exercice 2. (2+4 points)

- 1. On regroupe les éléments de $\{1, 2, ..., 2n\}$ en n tiroirs $\{1, 2\}, \{3, 4\}, ..., \{2n 1, 2n\}$, on distribue les n + 1 éléments distincts dans les n tiroirs, d'après le principe de tiroirs il y a au moins un tiroir avec deux elements, donc, il y a au moins 2 éléments consécutifs parmi les (n + 1) éléments.
- 2. Les tiroirs sont les 7 sommes possibles : 0, -1, 1, -2, 2, -3, 3 car il y a 8 lignes sur laquelles on effectue la sommation : 3 horizontales, 3 verticales, 2 diagonales. On distribue ces 8 sommes dans le 7 tiroirs, il y a d'après le principe de tiroirs, au moins un tiroir qui contiet la sommation de deux lignes différentes.

Exercice 3. (3+3 points)

- 1. (a) $3x^2 + 2 = y^2$. Pour chaque entier $n \in \mathbb{Z}$ on a que $n^2 = 0, 1$ [3]. Soit $(x_0, y_0) \in \mathbb{Z}^3$ une solution de l'équation. En regardant l'équation modulo 3 on obtient $2 = y_0^2$ [3]. Absurde, donc l'équation n'admet de solution dans \mathbb{Z} .
 - (b) $x^3 + y^3 + z^3 = 5$. Soit x_0, y_0, z_0 une solution dans \mathbb{Z} . Pour tout $n \in \mathbb{Z}$, on a que $n^3 = 0, 1, -1$ [9] donc modulo 9 le côté gauche de l'équation peut être 0, 1, -1, 2, -2, 3, -3 le côté droit est egal a 5. Absurde. Donc l'équation n'admet pas de solution dans \mathbb{Z} .
- 2. Soit p un nombre premier. Par le petit théorème de Fermat on a que $n^p \equiv n \pmod{p}$ pour tout $n \in \mathbb{Z}$. Il s'en suit que $n^2 \equiv n \pmod{2}$, $n^3 \equiv n \pmod{3}$ et $n^5 \equiv n \pmod{5}$. D'autre part $n^5 n = (n^3 n)(n^2 + 1) = (n^2 n)(n + 1)(n^2 + 1)$, donc 2, 3 et 5 divisent $n^5 n$ pour tout $n \in \mathbb{Z}$. Donc d'après le théorème d'Euclide, $30 = 2 \cdot 3 \cdot 5$ divise $n^5 n$ pour tout $n \in \mathbb{Z}$.

Exercice 4. (3,5+1,5 points) Soit $n \in \mathbb{N}^*$.

- 1. On pose $S = \binom{n}{0} + \binom{n}{2} + \binom{n}{4} \cdots + \binom{n}{n}$ et $T = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} \cdots + \binom{n}{n-1}$. Alors $S + T = \sum_{0}^{n} \binom{n}{k} = (1+1)^{n} = 2^{n}$, d'après la formutle du binôme de Newton. Aussi $S T = \sum_{0}^{n} (-1)^{k} \binom{n}{k} = (1-1)^{n} = 0$ toujours d'après la formule du binôme de Newton. Donc S = T et $2S = 2^{n}$, et la valeur de la somme est 2^{n-1} .
- 2. Pour n impair l'égalité devient :

$$\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots + \binom{n}{n} = \binom{n}{2} + \binom{n}{4} + \binom{n}{6} + \cdots + \binom{n}{n-1}$$

et la somme associée est encore égale à 2^{n-1} .