Suites convergentes et suites de Cauchy dans R
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1 Suites

Intuitivement, une suite numérique est la donnée pour tout n € N d’un réel, noté u,,.

Définition 1.1. Une suite est une application de N vers R :
u:N—=R n—u(n) souvent noté u,.

La suite sera notée u ou bien (u,)nen. U, s’ appelle le terme général de la suite. On dit
qu’une suite (u,)nen converge vers le réel L (ou tend vers le réel L) si

Ve > 03N € NVn > N onaque |u, — L| < e.
Ce réel s’appelle alors la limite de la suite (uy,)nen et on note

lim w, = L.
n—oo

Une suite qui ne converge pas s’appelle suite divergente.

On remarque la propriété suivante de la notion de limite : si elle existe, alors elle
est unique : en fait, si L; et Ly sont deux limites d’une méme suite (u,,),ecn, ON montre
que L; = Lo. Pour ce faire, il suffit de démontrer que quelque soit ¢ > 0, on a que
|L; — Ls| < €. En fait, soient

Ny e Ntelquen > Ny = |u, — Li| < §

NgGNtelquenZNzilun—Lgl<§.

Alors, pour tout n > max{ Ny, No} on a que

|L1 — L2| = |L1 — Up + Uy — L2|

<e+e
2 2

— €.

Exemple 1.2. Soif (u,,)nen la suite définie par u,, = %pour toutn > 1. Alors lim,,_ oo U, =
0. En fait, soit ¢ > 0. Comme R est Archimédien, il existe N € N tel que Ne > 1. Or,
pour tout n > N on a que ne > 1 et donc 0 < % < €. C’estadire, % -0 <e

Définition 1.3. Soif (uy,)nen une suite. Nous dirons que
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(Un ) nen est majorée s’il existe M tel que u,, < M pour tout n € N;
(Un )nen est minorée s’il existe m tel que u,, > m pour tout n € N;

(Un )nen est bornée si elle est a la fois minorée et majorée.
Proposition 1.4. Toute suite convergente est bornée.

Démonstration. On pose L = lim,,_,, u,. Soit N € N tel que |u, — L| < 1 pour tout
n > N. On pose

r =max{l,|uy — L|,|us — LI, ..., |luy_1 — L|}.

Alors |u,, — L| < rpourtoutn € N. C’estadire L —r < wu, < L+ O
Proposition 1.5. Soient (a,)nen et (by)nen deux suites telles que lim,, . a, = L et
lim,,_,~ b, = M. Soit c € R. Alors

(1) lim, o (a, +b,) = L+ M;

(2) lim, o (ca,) = cL;

(3) lim, o0 (ayb ) LM,

(4) limn_m(ai) 7 sia, # 0 pour toutn € Net L # 0.

n

Démonstration. Pour (1), soit ¢ > 0 et soient

N, eNtelquen > Ny = |a, — L| <

eI

Ny, e Ntelquen > Ny = |b, — M| <

N

Alors, pour tout n > max{ N, N2} on a que

lan, + b, — (L+ M)| <l|a, — L| + |b, — M|

<e+e
2 2

= €.

Pour (2), si ¢ = 0 alors le résultat est immédiat. Pour ¢ # 0, soient ¢ > 0 et N € N tels
que |a, — L] < ¢ pour tout n > N. Alors pour tout n > N on a que |ca,, — cL| =

le|la, — L| < e.
Pour (3), soit € > 0 et soient

Ny eNtelquen > Ny = |a, — L| < /e
Ny € Ntelque n > Ny = |b, — M| < /e
Alors, pour tout n > max{ Ny, N} on a que
|(a, — L)(b, — M)| <€
et donc que

lim (a, — L)(b, — M) = 0.

n—oo

Or,
anb, — LM = (a,, — L)(b, — M) + L(b, — M) + M(a, — L).



De plus,
lim (a,, — L) = lim (b, — M) = 0.

n—oo n—oo

En utilisant (1) et (2), on en déduit que

lim (a,b, — LM) = 0.

n—oo

Pour (4), soit N; € N tel que |a,| > \2£| pour tout n > N;. Etant donné e > 0 il existe
Ny > N tel que

|L|%e
n— Ll < ——
jan — | < 15
pour tout n > N,. Alors pour tout n > N, on a
1 1 an—L< 2| < 2 \L\Qe
—_—— — | = a’TL — —_—
a, L anL |L|? |L|2 2

]

Proposition 1.6. Soit (u,),en une suite qui converge vers L et soit A € R. Supposons
que pour tout ng € N il existe n > nyg tel que u,, > \. Alors L > ).

Démonstration. On raisonne par 1’absurde et on suppose que A > L. Alors il existe
N € N tel que

A—L
n—L| < ——
an — L < 25
pour tout n > N. Soitn > N tel que u,, > \. On obtient ainsi
A— L
O<A—L<u,—L<|u,—L|< 5
une contradiction. O

Proposition 1.7. Soient (a,)nen et (bn)nen deux suites qui converge respectivement vers
L et M. Supposons qu’a partir d’un certain rang N on ait a,, > b,,. Alors L > M.

Démonstration. On applique la proposition précédente a la suite (¢, ),y définie par ¢, =
a, — by, qui converge vers L. — M avec A\ = 0. [

Theorem 1.8 (Théoreme des Gendarmes). Soient (a,)nen, (bn)nen, (Cn)nen trois suites.
On suppose qu’il existe N € N tel que a,, < b, < ¢, pour tout n > N. On suppose aussi
que les suites (ap, )nen et (¢ )nen converge vers une méme limite L. Alors lim,, o, b, = L.

Démonstration. Soit € > 0 et soient
Ny eNtelquen > Ny = |a, — L| < ¢

Ny e Ntelquen > Ny = |c, — L| <e.
Alors, pour tout n > max{N, N1, No} on a que

—e<a,—L<b,—L<c¢,—L<e

et donc lim,, ., b, = L.



2 Suites Extraites

Définition 2.1. Soit (u,,)nen une suite. On appelle suite extraite ou sous-suite de (U, )nen
toute suite (U, )ken Ol (Nk)ken €St une suite strictement croissante d’entiers positifs.

Proposition 2.2. Toute suite extraite d’une suite convergente converge vers la méme li-
mite.

Démonstration. Soit (u,),cn une suite qui converge vers L € R. Soiente > 0et N € N
tels que |u,, — L| < € pour tout n > N. Donc pour tout £k > N, comme n; > k > N, on
aque |u,, —L| <e. O

Proposition 2.3. Si une suite (u,),en ne converge pas vers L, alors il existe € > 0 et une
suite extraite (U, )ren tel que |u,, — L| > € pour tout k > 1.

Démonstration. Comme la suite (u,),en ne converge pas vers L, il existe € > 0 tel que
pour tout N € N, il existe n > N tel que |u,, — L| > €. On construit une suite extraite par
récurrence : Il existe ny € N tel que |u,,, —L| > €. Ayanttrouvé ng < ny < ng < --- < ng
tel que |u,, — L| > e pour tout 0 < i < k, il existe nyy > ny, tel que |up,,,, — L[ > €. [

Theorem 2.4. Soit M € R et soit (u,)nen une suite croissante et majorée par M. Alors

il existe L < m tel que lim,,_,, u,, = L.

Démonstration. On pose A = {u,, : n € N}. Alors A est une partie de R majorée par M.
On pose L = sup A et on montre que lim,, ,, u,, = L. Soit ¢ > 0. Alors il existe N tel
que L — € < uy. Comme la suite (u,),en est croissante, on a que L — € < u,, pour tout
n > N. Ainsi, pour tout n > N on a

L—e<u,<L<L+e.

Définition 2.5. Deux suites (a,,)nen, (bn)nen Seront dites adjacentes si
(Gn)nen est croissante;

(bn)nen est décroissante ;

lim,, oo (b, — a,) = 0.

Proposition 2.6. Soient (a,)nen, (b )nen deux suites adjacentes. Alors a,, < b,, pour tout
n € N.

Démonstration. Supposons au contraire qu’il existe ny € N tel que a,,, > b,,,. Alors pour
tout n > ny on a que a,, — b, > a,, — by, et donc par la Proposition 1.6 on a

lim (a,, — by) > any — by, >0,

n—o0

une contradiction. O
Proposition 2.7. Deux suites adjacentes de R converge vers une méme limite.

Démonstration. Soient (a,)nen, (bn)nen deux suites adjacentes. Alors pour tout n € N on
aay < a, <b, <by. Comme (a,),cn est une suite croissante et majorée, elle converge
vers un certain L € R. De méme, comme (b, ),y est une suite décroissante et minorée,
elle converge vers un certain M € R. Or, lim,, (b, — a,) = M — L et par hypothese
lim,, o0 (b, — a,) = 0. Donc, L = M.

[



Theorem 2.8 (Bolzano-Weierstrass). De toute suite bornée on peut extraire une sous suite
convergente.

Démonstration. Soit (u,),en une suite minorée par m et majorée par M. Nous allons
construire par récurrence deux suites adjacentes (my)ren et (M )gen ainsi qu’une sous-
suite (un, )ren de la suite (u,)nen telles que my < w,, < M pour tout k& € N. Par la
proposition précédente on a que les suites (1 )ren et (M )ren convergent vers la méme
limite L, et par le Théoreme des Gendarmes on aura que la sous-suite (u,, )xen converge
aussi vers L.

On pose mg = m, My = M, etly = w Alors soit [my, o], soit [ly, M| contient
une infinité de terme de la suite (u,),en. Si I'intervalle [mq, [y], contient une infinité de
terme de la suite (u,),en, alors on pose m; = mq et M; = ly. Autrement on pose alors
mq = l() et M1 = M().

Supposons avoir construit une suite d’intervalles emboités

[m, M) C [my—1, Mi] C -+ C [ma, My C [mo, My

tels que chaque intervalle contienne une infinité de terme de la suite (u,),en. On pose
alors [; = X - Alors un des deux intervalles [m;, 1], [I;, M;] contient une infinité de
terme de la suite (u, ),en. Silintervalle [m;, ;] contient une infinité de terme de la suite
(tn)nen, alors on pose m; 1 = m; et M;y; = [;. Autrement on pose m; 1 = [; et
M; 1 = M;. On construit ainsi par récurrence une famille d’intervalles emboités tels que
chacun de ces intervalles contient une infinité de termes de la suite (u,,),cn. Ainsi la suite
(my)ken est bien croissante et la suite (M} )gen est décroissante. De plus pour tout k£ € N
on a que

My, —my,

2

On en déduit que la suite (M — my)ren converge vers 0 et donc les suites (my)ren et
(M} )ken sont adjacentes. Pour tout £ € N on choisit un terme w,, € [my, M| en sorte
que ng > ng—1. On a ainsi construit deux suites adjacentes (1my)gen et (My)ren €t une
sous suite (y, )ren avec my < Uy, < Mj. O

Mjy1 — My =

3  Suites de Cauchy

Définition 3.1. Une suite (u,,)nen Sera dite de Cauchy si pour tout € > 0 il existe N € N
tel que |u,, — u,,| < € pour tout m,n > N.

Proposition 3.2. Toute suite convergente est de Cauchy.

Démonstration. Soit (u,)nen une suite de R qui converge vers L € R. Soit € > 0 et
N € Ntel que |u, — L| < § pour tout n > N. Alors, pour m,n > N on a
€

2

|un—um|§|un—L|+|um—L|<§+ = €.

Proposition 3.3. Toute suite de Cauchy est bornée.

Démonstration. Soit (u,,)nen une suite de Cauchy et soit N € N tel que |u,, — uy| < 1
pour tout n > N. Ainsi, pour tout n > N on a |u,| < 1 + |ux|. On en déduit que la suite
(tn)nen est bornée par max{|ugl, |u1, ..., [un_1|, Jux| + 1} O
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Theorem 3.4 (Complétude de R). Toute suite de Cauchy converge.

Démonstration. Soit (u,,)nen une suite de Cauchy. Pour tout n € N on pose A,, = {uy, :
k > n}. Alors on a
AOQAlggAnQAnJrlQ .

De plus, chaque A,, est une partie bornée de R. On pose «,, = inf A, et 5, = sup 4,,.
Alors (o, )nen est une suite croissante et ([3,),en une suite décroissante. Soit € > 0 et
N € N tel que u,, < u,, + € pour tout m,n > N. On a donc que Sy < u,, + € pour
tout m > N. Or, Sy — € est in minorant de Ay et donc Sy — € < ay. On en déduit que
fn — ay < € et comme (5,)nen est décroissante et (o, ),en est croissante on en déduit
que B, — a, < e pour tout n > N. Ainsi lim,, (5, — @) = 0. Les suites (v, )nen et
(Bn)nen sont donc adjacentes. Soit L € R leur limite commune. Comme «,, < u,, < (5,
pour tout n € N, le Théoreme des Gendarmes implique que lim,, o, u, = L. 0

4 Valeurs d’adhérence d’une suite

Définition 4.1. Soit (u,)ney une suite de R et L € R = R U {Fo0}. On dit que L est
une valeur d’adhérence (uy,)nen $'il existe une suite extraite (sous-suite) de (uy)nen qui
converge vers L.

Proposition 4.2. Soit (u,),en une suite de R. Alors L € R est une valeur d’adhérence si
et seulement si pour tout € > 0 il existe une infinité d’indices n tel que |u,, — L| < €.

Démonstration. Soit (u,, )ken une suite extraite de la suite (u,),en qui converge vers L.
Alors pour tout € > 0 il existe NV € N tel que |u,, — L| < € pour tout £ > N. On a donc
que |u, — L| < e pour tout n € {n; : k > N}. Inversement, on suppose que pour tout
k > 1 il existe une partie infinie A, C N tel que |u,, — L| < % pour tout n € Ay. On peut
donc trouver n; < ny < ng < --- tel que |u,, — L| < + pour tout k& > 1. On a donc que
la sous-suite (uy, )ren converge vers L. O

Exercice 4.3. Montrer que +0o est une valeur d’adhérence d’une suite (u,)nen Si et
seulement si pour tout M € R il existe une infinité d’indices n tel que u,, > M.

Définition 4.4. Soit (u,,),en une suite de R. On pose

limsup u,, = lim sup uy.
n—00 n—=00 k>n

et
liminf u,, = lim inf u.

n— 00 n—oo k>n

Soit (uy,)nen une suite de R bornée. Alors il existe m, M € R tel que
m<u, <M

pour tout n € N. Pour n € N on pose A, = {ux, € N : k > n}, v, = supA4, et
w, = inf A,,. On a donc que
m<w, <uv, <M.



De plus la suite (vy,)nen est décroissante et la suite (wy,)nen est croissante. On a donc
que la suite (vy,)nen converge dans R vers limsup,,_, . u,. De méme, la suite (wy,)nen
converge dans R vers liminf,_, . u,, et on a que

—00 < liminf u, < limsupu, < +o00.
n—o0 n—00
D’autre part, si la suite (u,,)nen n’est pas majorée, alors limsup,, .. u, = +00 et si la
suite (uy,)nen n’est pas minorée, alors liminf,,_, ., u, = —o0.

Theorem 4.5. Soit (u,,),en une suite de R. Alors la suite (u,,)nen converge dans R si et
seulement si liminf,,_, . u,, = limsup,,_, . Un.

Démonstration. On pose m = liminf,, . u,, M = limsup,,_,. u,, 4, = {ux € N :
k > n}, v, = sup 4, et w, = inf A,,. Alors on a que la suite (w, ),y converge vers m
et la suite (v, ),en converge vers M. Sim = M, comme w,, < u, < v, pourtoutn € N,
d’apres le Théoréme de Gendarmes on a que la suite (u,),en converge vers m = M.
Inversement, si la suite (u,),en converge vers un réel L, alors pour tout € > 0 il existe
N € N tel que

L—e<u,<L+e¢

pour tout n > N. Il s’ensuit que
L—e<w,<wv,<L+c¢

pour tout n > N. On a donc que |w,, — L| < eet|v, — L| < e pour tout n > N. On en
déduit que lim,, o wy, = lim,, o v, = L etdonc liminf,_, u, = limsup,,_, . u, = L.

]

Theorem 4.6. Soit (u,)nen une suite de R. On pose L = limsup,,_, ., u,. Alors L est la
plus grande valeur d’adhérence dans R de la suite (u,,)pen.

Démonstration. Commengons par montrer que pour toute valeur d’adhérence [ de la suite
(Up)pewonaque !l < L.Sil = —ooousi L = +oo alors il n’y a rien 2 montrer.
Autrement, soit ¢ > 0. Comme précédemment, pour n € N on pose v,, = sup{uy : k >
n}. Alors in existe N tel que v,, < L + € pour tout n > N et donc uy < L + € pour tout
k > N. Soit (uy, )ken une sous-suite de la suite (u,,) qui converge vers [. Comme nj > k
pour tout £ € N, on a que u,, < L + € pour tout k > N etdonc [ < L + e. Comme €
est arbitraire, on a que [ < L. Il reste a montrer que L est une valeur d’adhérence de la
suite (U, )pen. Or, pour chaque € > 0, il y a seulement un nombre fini d’indices n tel que
u, > L + €. Mais, il y a une infinité d’indices n tel que u,, > L — €. On en déduit qu’il
y a une infinité d’indices n tel que u,, appartient a I'intervalle |L — ¢, L. + €[. C’est a dire,
il y a une infinité d’indices n tel que |u,, — L| < e. D’apres la Proposition 4.2 on a que L
est une valeur d’adhérence de la suite (uy,)nen- O

Exercice 4.7. Montrer que liminf,, .. u,, est la plus petite valeur d’adhérence le suite
(un)nEN'

Exercice 4.8. Soit (u,,)nen une suite de R. Montrer que

limsupu, =sup{zx € R: VN € N, In > N tel que u,>x}
n—oo
et que
liminfu, =inf{z € R: VN € N, 3n > N tel que u,<x}.

n—oo



Exercice 4.9. Soient (x,,)nen et (Yn)nen de suites de R. Montrer que

lim sup(x,, + y,) < limsup z,, + limsup y,
n—00 n—00 n—00
et que
liminf(z, + y,) > liminf x,, + lim inf y,,

n—oo n—oo n—o0
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