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1 Suites
Intuitivement, une suite numérique est la donnée pour tout n ∈ N d’un réel, noté un.

Définition 1.1. Une suite est une application de N vers R :

u : N→ R n 7→ u(n) souvent noté un.

La suite sera notée u ou bien (un)n∈N. un s’appelle le terme général de la suite. On dit
qu’une suite (un)n∈N converge vers le réel L (ou tend vers le réel L) si

∀ε > 0 ∃N ∈ N ∀n ≥ N on a que |un − L| < ε.

Ce réel s’appelle alors la limite de la suite (un)n∈N et on note

lim
n→∞

un = L.

Une suite qui ne converge pas s’appelle suite divergente.

On remarque la propriété suivante de la notion de limite : si elle existe, alors elle
est unique : en fait, si L1 et L2 sont deux limites d’une même suite (un)n∈N, on montre
que L1 = L2. Pour ce faire, il suffit de démontrer que quelque soit ε > 0, on a que
|L1 − L2| < ε. En fait, soient

N1 ∈ N tel que n ≥ N1 ⇒ |un − L1| < ε
2

N2 ∈ N tel que n ≥ N2 ⇒ |un − L2| < ε
2
.

Alors, pour tout n ≥ max{N1, N2} on a que

|L1 − L2| = |L1 − un + un − L2|
≤ |L1 − un|+ |un − L2|

<
ε

2
+
ε

2
= ε.

Exemple 1.2. Soit (un)n∈N la suite définie par un = 1
n

pour tout n ≥ 1. Alors limn→∞ un =
0. En fait, soit ε > 0. Comme R est Archimédien, il existe N ∈ N tel que Nε > 1. Or,
pour tout n ≥ N on a que nε > 1 et donc 0 < 1

n
< ε. C’est à dire, | 1

n
− 0| < ε.

Définition 1.3. Soit (un)n∈N une suite. Nous dirons que
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(un)n∈N est majorée s’il existe M tel que un ≤M pour tout n ∈ N;
(un)n∈N est minorée s’il existe m tel que un ≥ m pour tout n ∈ N;
(un)n∈N est bornée si elle est à la fois minorée et majorée.

Proposition 1.4. Toute suite convergente est bornée.

Démonstration. On pose L = limn→∞ un. Soit N ∈ N tel que |un − L| < 1 pour tout
n ≥ N. On pose

r = max{1, |u1 − L|, |u2 − L|, . . . , |uN−1 − L|}.

Alors |un − L| ≤ r pour tout n ∈ N. C’est à dire L− r ≤ un ≤ L+ r.

Proposition 1.5. Soient (an)n∈N et (bn)n∈N deux suites telles que limn→∞ an = L et
limn→∞ bn =M. Soit c ∈ R. Alors

(1) limn→∞(an + bn) = L+M ;

(2) limn→∞(can) = cL;

(3) limn→∞(anbn) = LM ;

(4) limn→∞(
1
an
) = 1

L
si an 6= 0 pour tout n ∈ N et L 6= 0.

Démonstration. Pour (1), soit ε > 0 et soient

N1 ∈ N tel que n ≥ N1 ⇒ |an − L| < ε
2

N2 ∈ N tel que n ≥ N2 ⇒ |bn −M | < ε
2
.

Alors, pour tout n ≥ max{N1, N2} on a que

|an + bn − (L+M)| ≤ |an − L|+ |bn −M |

<
ε

2
+
ε

2
= ε.

Pour (2), si c = 0 alors le résultat est immédiat. Pour c 6= 0, soient ε > 0 et N ∈ N tels
que |an − L| < ε

|c| pour tout n ≥ N. Alors pour tout n ≥ N on a que |can − cL| =
|c||an − L| < ε.

Pour (3), soit ε > 0 et soient

N1 ∈ N tel que n ≥ N1 ⇒ |an − L| <
√
ε

N2 ∈ N tel que n ≥ N2 ⇒ |bn −M | <
√
ε.

Alors, pour tout n ≥ max{N1, N2} on a que

|(an − L)(bn −M)| < ε

et donc que
lim
n→∞

(an − L)(bn −M) = 0.

Or,
anbn − LM = (an − L)(bn −M) + L(bn −M) +M(an − L).
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De plus,
lim
n→∞

(an − L) = lim
n→∞

(bn −M) = 0.

En utilisant (1) et (2), on en déduit que

lim
n→∞

(anbn − LM) = 0.

Pour (4), soit N1 ∈ N tel que |an| > |L|
2

pour tout n ≥ N1. Étant donné ε > 0 il existe
N2 > N1 tel que

|an − L| <
|L|2ε
2

pour tout n ≥ N2. Alors pour tout n ≥ N2 on a∣∣∣∣ 1an − 1

L

∣∣∣∣ = ∣∣∣∣an − LanL

∣∣∣∣ < 2

|L|2
|an − L| <

2

|L|2
|L|2ε
2

= ε.

Proposition 1.6. Soit (un)n∈N une suite qui converge vers L et soit λ ∈ R. Supposons
que pour tout n0 ∈ N il existe n ≥ n0 tel que un ≥ λ. Alors L ≥ λ.

Démonstration. On raisonne par l’absurde et on suppose que λ > L. Alors il existe
N ∈ N tel que

|an − L| <
λ− L
2

pour tout n ≥ N. Soit n ≥ N tel que un ≥ λ. On obtient ainsi

0 < λ− L ≤ un − L ≤ |un − L| <
λ− L
2

une contradiction.

Proposition 1.7. Soient (an)n∈N et (bn)n∈N deux suites qui converge respectivement vers
L et M. Supposons qu’à partir d’un certain rang N on ait an ≥ bn. Alors L ≥M.

Démonstration. On applique la proposition précédente à la suite (cn)n∈N définie par cn =
an − bn qui converge vers L−M avec λ = 0.

Theorem 1.8 (Théorème des Gendarmes). Soient (an)n∈N, (bn)n∈N, (cn)n∈N trois suites.
On suppose qu’il existe N ∈ N tel que an ≤ bn ≤ cn pour tout n ≥ N. On suppose aussi
que les suites (an)n∈N et (cn)n∈N converge vers une même limite L. Alors limn→∞ bn = L.

Démonstration. Soit ε > 0 et soient

N1 ∈ N tel que n ≥ N1 ⇒ |an − L| < ε

N2 ∈ N tel que n ≥ N2 ⇒ |cn − L| < ε.

Alors, pour tout n ≥ max{N,N1, N2} on a que

−ε < an − L < bn − L < cn − L < ε

et donc limn→∞ bn = L.
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2 Suites Extraites
Définition 2.1. Soit (un)n∈N une suite. On appelle suite extraite ou sous-suite de (un)n∈N
toute suite (unk

)k∈N où (nk)k∈N est une suite strictement croissante d’entiers positifs.

Proposition 2.2. Toute suite extraite d’une suite convergente converge vers la même li-
mite.

Démonstration. Soit (un)n∈N une suite qui converge vers L ∈ R. Soient ε > 0 et N ∈ N
tels que |un − L| < ε pour tout n ≥ N. Donc pour tout k ≥ N, comme nk ≥ k ≥ N, on
a que |unk

− L| < ε.

Proposition 2.3. Si une suite (un)n∈N ne converge pas vers L, alors il existe ε > 0 et une
suite extraite (unk

)k∈N tel que |unk
− L| ≥ ε pour tout k ≥ 1.

Démonstration. Comme la suite (un)n∈N ne converge pas vers L, il existe ε > 0 tel que
pour tout N ∈ N, il existe n ≥ N tel que |un−L| ≥ ε. On construit une suite extraite par
récurrence : Il existe n0 ∈ N tel que |un0−L| ≥ ε.Ayant trouvé n0 < n1 < n2 < · · · < nk
tel que |uni

−L| ≥ ε pour tout 0 ≤ i ≤ k, il existe nk+1 > nk tel que |unk+1
−L| ≥ ε.

Theorem 2.4. Soit M ∈ R et soit (un)n∈N une suite croissante et majorée par M. Alors
il existe L ≤ m tel que limn→∞ un = L.

Démonstration. On pose A = {un : n ∈ N}. Alors A est une partie de R majorée par M.
On pose L = supA et on montre que limn→∞ un = L. Soit ε > 0. Alors il existe N tel
que L − ε < uN . Comme la suite (un)n∈N est croissante, on a que L − ε < un pour tout
n ≥ N. Ainsi, pour tout n ≥ N on a

L− ε < un < L < L+ ε.

Définition 2.5. Deux suites (an)n∈N, (bn)n∈N seront dites adjacentes si

(an)n∈N est croissante ;

(bn)n∈N est décroissante ;

limn→∞(bn − an) = 0.

Proposition 2.6. Soient (an)n∈N, (bn)n∈N deux suites adjacentes. Alors an ≤ bn pour tout
n ∈ N.

Démonstration. Supposons au contraire qu’il existe n0 ∈ N tel que an0 > bn0 . Alors pour
tout n ≥ n0 on a que an − bn ≥ an0 − bn0 et donc par la Proposition 1.6 on a

lim
n→∞

(an − bn) ≥ an0 − bn0 > 0,

une contradiction.

Proposition 2.7. Deux suites adjacentes de R converge vers une même limite.

Démonstration. Soient (an)n∈N, (bn)n∈N deux suites adjacentes. Alors pour tout n ∈ N on
a a0 ≤ an ≤ bn ≤ b0. Comme (an)n∈N est une suite croissante et majorée, elle converge
vers un certain L ∈ R. De même, comme (bn)n∈N est une suite décroissante et minorée,
elle converge vers un certain M ∈ R. Or, limn→∞(bn − an) = M − L et par hypothèse
limn→∞(bn − an) = 0. Donc, L =M.
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Theorem 2.8 (Bolzano-Weierstrass). De toute suite bornée on peut extraire une sous suite
convergente.

Démonstration. Soit (un)n∈N une suite minorée par m et majorée par M. Nous allons
construire par récurrence deux suites adjacentes (mk)k∈N et (Mk)k∈N ainsi qu’une sous-
suite (unk

)k∈N de la suite (un)n∈N telles que mk ≤ unk
≤ Mk pour tout k ∈ N. Par la

proposition précédente on a que les suites (mk)k∈N et (Mk)k∈N convergent vers la même
limite L, et par le Théorème des Gendarmes on aura que la sous-suite (unk

)k∈N converge
aussi vers L.

On pose m0 = m, M0 = M, et l0 = M0+m0

2
. Alors soit [m0, l0], soit [l0,M0] contient

une infinité de terme de la suite (un)n∈N. Si l’intervalle [m0, l0], contient une infinité de
terme de la suite (un)n∈N, alors on pose m1 = m0 et M1 = l0. Autrement on pose alors
m1 = l0 et M1 =M0.

Supposons avoir construit une suite d’intervalles emboîtés

[mi,Mi] ⊂ [mi−1,Mi−1] ⊂ · · · ⊂ [m1,M1] ⊂ [m0,M0]

tels que chaque intervalle contienne une infinité de terme de la suite (un)n∈N. On pose
alors li = Mi+mi

2
. Alors un des deux intervalles [mi, li], [li,Mi] contient une infinité de

terme de la suite (un)n∈N. Si l’intervalle [mi, li] contient une infinité de terme de la suite
(un)n∈N, alors on pose mi+1 = mi et Mi+1 = li. Autrement on pose mi+1 = li et
Mi+1 = Mi. On construit ainsi par récurrence une famille d’intervalles emboîtés tels que
chacun de ces intervalles contient une infinité de termes de la suite (un)n∈N. Ainsi la suite
(mk)k∈N est bien croissante et la suite (Mk)k∈N est décroissante. De plus pour tout k ∈ N
on a que

Mk+1 −mk+1 =
Mk −mk

2
.

On en déduit que la suite (Mk − mk)k∈N converge vers 0 et donc les suites (mk)k∈N et
(Mk)k∈N sont adjacentes. Pour tout k ∈ N on choisit un terme unk

∈ [mk,Mk] en sorte
que nk > nk−1. On a ainsi construit deux suites adjacentes (mk)k∈N et (Mk)k∈N et une
sous suite (unk

)k∈N avec mk ≤ unk
≤Mk.

3 Suites de Cauchy
Définition 3.1. Une suite (un)n∈N sera dite de Cauchy si pour tout ε > 0 il existe N ∈ N
tel que |un − um| < ε pour tout m,n ≥ N.

Proposition 3.2. Toute suite convergente est de Cauchy.

Démonstration. Soit (un)n∈N une suite de R qui converge vers L ∈ R. Soit ε > 0 et
N ∈ N tel que |un − L| < ε

2
pour tout n ≥ N. Alors, pour m,n ≥ N on a

|un − um| ≤ |un − L|+ |um − L| <
ε

2
+
ε

2
= ε.

Proposition 3.3. Toute suite de Cauchy est bornée.

Démonstration. Soit (un)n∈N une suite de Cauchy et soit N ∈ N tel que |un − uN | < 1
pour tout n ≥ N. Ainsi, pour tout n ≥ N on a |un| < 1 + |uN |. On en déduit que la suite
(un)n∈N est bornée par max{|u0|, |u1|, . . . , |uN−1|, |uN |+ 1}.
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Theorem 3.4 (Complétude de R). Toute suite de Cauchy converge.

Démonstration. Soit (un)n∈N une suite de Cauchy. Pour tout n ∈ N on pose An = {uk :
k ≥ n}. Alors on a

A0 ⊇ A1 ⊇ · · · ⊇ An ⊇ An+1 ⊇ · · · .

De plus, chaque An est une partie bornée de R. On pose αn = inf An et βn = supAn.
Alors (αn)n∈N est une suite croissante et (βn)n∈N une suite décroissante. Soit ε > 0 et
N ∈ N tel que un < um + ε pour tout m,n ≥ N. On a donc que βN ≤ um + ε pour
tout m ≥ N. Or, βN − ε est in minorant de AN et donc βN − ε ≤ αN . On en déduit que
βN − αN ≤ ε et comme (βn)n∈N est décroissante et (αn)n∈N est croissante on en déduit
que βn − αn ≤ ε pour tout n ≥ N. Ainsi limn→∞(βn − αn) = 0. Les suites (αn)n∈N et
(βn)n∈N sont donc adjacentes. Soit L ∈ R leur limite commune. Comme αn ≤ un ≤ βn
pour tout n ∈ N, le Théorème des Gendarmes implique que limn→∞ un = L.

4 Valeurs d’adhérence d’une suite
Définition 4.1. Soit (un)n∈N une suite de R et L ∈ R = R ∪ {±∞}. On dit que L est
une valeur d’adhérence (un)n∈N s’il existe une suite extraite (sous-suite) de (un)n∈N qui
converge vers L.

Proposition 4.2. Soit (un)n∈N une suite de R. Alors L ∈ R est une valeur d’adhérence si
et seulement si pour tout ε > 0 il existe une infinité d’indices n tel que |un − L| < ε.

Démonstration. Soit (unk
)k∈N une suite extraite de la suite (un)n∈N qui converge vers L.

Alors pour tout ε > 0 il existe N ∈ N tel que |unk
− L| < ε pour tout k ≥ N. On a donc

que |un − L| < ε pour tout n ∈ {nk : k ≥ N}. Inversement, on suppose que pour tout
k ≥ 1 il existe une partie infinie Ak ⊆ N tel que |un − L| < 1

k
pour tout n ∈ Ak. On peut

donc trouver n1 < n2 < n3 < · · · tel que |unk
− L| < 1

k
pour tout k ≥ 1. On a donc que

la sous-suite (unk
)k∈N converge vers L.

Exercice 4.3. Montrer que +∞ est une valeur d’adhérence d’une suite (un)n∈N si et
seulement si pour tout M ∈ R il existe une infinité d’indices n tel que un ≥M.

Définition 4.4. Soit (un)n∈N une suite de R. On pose

lim sup
n→∞

un = lim
n→∞

sup
k≥n

uk.

et
lim inf
n→∞

un = lim
n→∞

inf
k≥n

uk.

Soit (un)n∈N une suite de R bornée. Alors il existe m,M ∈ R tel que

m ≤ un ≤M

pour tout n ∈ N. Pour n ∈ N on pose An = {uk ∈ N : k ≥ n}, vn = supAn et
wn = inf An. On a donc que

m ≤ wn ≤ vn ≤M.
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De plus la suite (vn)n∈N est décroissante et la suite (wn)n∈N est croissante. On a donc
que la suite (vn)n∈N converge dans R vers lim supn→∞ un. De même, la suite (wn)n∈N
converge dans R vers lim infn→∞ un et on a que

−∞ < lim inf
n→∞

un ≤ lim sup
n→∞

un < +∞.

D’autre part, si la suite (un)n∈N n’est pas majorée, alors lim supn→∞ un = +∞ et si la
suite (un)n∈N n’est pas minorée, alors lim infn→∞ un = −∞.

Theorem 4.5. Soit (un)n∈N une suite de R. Alors la suite (un)n∈N converge dans R si et
seulement si lim infn→∞ un = lim supn→∞ un.

Démonstration. On pose m = lim infn→∞ un, M = lim supn→∞ un, An = {uk ∈ N :
k ≥ n}, vn = supAn et wn = inf An. Alors on a que la suite (wn)n∈N converge vers m
et la suite (vn)n∈N converge vers M. Si m = M, comme wn ≤ un ≤ vn pour tout n ∈ N,
d’après le Théorème de Gendarmes on a que la suite (un)n∈N converge vers m = M.
Inversement, si la suite (un)n∈N converge vers un réel L, alors pour tout ε > 0 il existe
N ∈ N tel que

L− ε < un < L+ ε

pour tout n ≥ N. Il s’ensuit que

L− ε ≤ wn ≤ vn ≤ L+ ε

pour tout n ≥ N. On a donc que |wn − L| ≤ ε et |vn − L| ≤ ε pour tout n ≥ N. On en
déduit que limn→∞wn = limn→∞ vn = L et donc lim infn→∞ un = lim supn→∞ un = L.

Theorem 4.6. Soit (un)n∈N une suite de R. On pose L = lim supn→∞ un. Alors L est la
plus grande valeur d’adhérence dans R de la suite (un)n∈N.

Démonstration. Commençons par montrer que pour toute valeur d’adhérence l de la suite
(un)n∈N on a que l ≤ L. Si l = −∞ ou si L = +∞ alors il n’y a rien à montrer.
Autrement, soit ε > 0. Comme précédemment, pour n ∈ N on pose vn = sup{uk : k ≥
n}. Alors in existe N tel que vn < L + ε pour tout n ≥ N et donc uk < L + ε pour tout
k ≥ N. Soit (unk

)k∈N une sous-suite de la suite (un) qui converge vers l. Comme nk ≥ k
pour tout k ∈ N, on a que unk

< L + ε pour tout k ≥ N et donc l ≤ L + ε. Comme ε
est arbitraire, on a que l ≤ L. Il reste à montrer que L est une valeur d’adhérence de la
suite (un)n∈N. Or, pour chaque ε > 0, il y a seulement un nombre fini d’indices n tel que
un > L + ε. Mais, il y a une infinité d’indices n tel que un > L − ε. On en déduit qu’il
y a une infinité d’indices n tel que un appartient à l’intervalle ]L− ε, L+ ε[. C’est à dire,
il y a une infinité d’indices n tel que |un − L| < ε. D’après la Proposition 4.2 on a que L
est une valeur d’adhérence de la suite (un)n∈N.

Exercice 4.7. Montrer que lim infn→∞ un est la plus petite valeur d’adhérence le suite
(un)n∈N.

Exercice 4.8. Soit (un)n∈N une suite de R. Montrer que

lim sup
n→∞

un = sup{x ∈ R : ∀N ∈ N, ∃n ≥ N tel que un>x}

et que
lim inf
n→∞

un = inf{x ∈ R : ∀N ∈ N, ∃n ≥ N tel que un<x}.
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Exercice 4.9. Soient (xn)n∈N et (yn)n∈N de suites de R. Montrer que

lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn

et que
lim inf
n→∞

(xn + yn) ≥ lim inf
n→∞

xn + lim inf
n→∞

yn
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