oA W b=

Topologie des espaces métriques

Espaces métriques
Fonctions continues
Compacité
Connexité

Complétude



§1.1 Topologie — Espaces métriques

Définition
Une distance sur un ensemble X est une fonction d : X x X —/R™
vérifiant /
1. (séparation) Vx,y € X, d(x,y) =0ssi x =y X _é\
2. (symétrie) Vx,y € X, d(x,y) = d(y, x)
3. (inégalité triangulaire) Vx,y,z € X, d(x,z) < d(x,y) + d(y, z)

(X, d) est un espace métrique

Définition
Une norme sur un espace vectoriel X (sur C ou R) est une fonction
| -] : X — R vérifiant

1. (séparation) Vx € X, ||x|]| =0ssi x =0

2. (homogénéité) Vx € X, VA, |[Ax]| = |A] [|x]|

3. (inégalité triangulaire) Vx,y € X, [|[x + y|| < |Ix|| + |l¥|

(X, || - ||) est un espace normé



Résultat. Soit (X, d) espace métrique,

vx,y,z€ X, |d(x,z) —d(y,z)| < d(x,y)

Théoreme
Soit (X, || - ||) espace normé alors d(x,y) = ||x — y|| est une distance
sur X
Exemples
1. R" avec la norme euclidienne ||x|| = /x? + - -+ + x2

2. La distance discrete sur tout ensemble X

d(x.y) = {O Six =1y

1 sinon

Définition
Deux distances d; et d» sur X sont Lipschitz-équivalentes s'il existe
m, M > 0 tels que

Vx,y € X, mdi(x,y) < do(x,y) < Mdi(x,y)



Définition
Soit (X, d) espace métrique. Pour x € X et r > 0, on pose

_ B(x,r)={y € X :d(x,y) < r} (boule ouverte)
’E = Br(x,r)={y e X:d(x,y) <r} (boule fermée)

Une partie A de X est bornée si il existe M > 0 tel que Va,a’ € A,
d(a,a’) < M, c'est équivalent a demander que A est contenue dans une
boule. Pour A C X, une partie bornée, on définit son diamétre par

diam(A) = sup{d(a,a’) : a,a’ € A}

Proposition

Soit (X, dx) et (Y, dy) espaces métriques. Alors on peut définir les deux
distances suivantes sur X X Y

di((x1, y1), (x2, ¥2)) = dx(x1, %) + dv(y1,2)
dOO((Xlayl)v (X27y2)) — max{dX(X17X2)v dY(Y17)/2)}

La distance d, est la distance produit
Résultat. Ces deux distances sont Lipschitz-équivalentes &— EXo.



o)1
Définition @ 3 ' f

Une partie A d'un espace métrique (X, d) est un ouvert si, pour tout
a € A, il existe r > 0 tel que B(a,r) C A. Le complémentaire d'un ouvert

est un fermé.

Résultat. Une boule ouverte est un ouvert et une boule fermée est un
fermé.

Théoreme
Si dy et d, sont Lipschitz-équivalentes sur X alors les ouverts de (X, dy)

sont exactement les ouverts de (X, d>).

Théoreme
La famille des ouverts de (X, d) vérifie les propriétés suivantes :

1. T nion (arbitraire) d’ r n ouver 4
oute union (arbitraire) d'ouverts est un ouvert (‘\FL: M

2. Toute intersection finie d’ouverts est un ouvert cX

/
(Un énoncé équivalent en découle pour les fermés) u /ﬁ, j«’/{ M/

4

AL



Définition
La topologie d'un espace métrique (X, d) est I'ensemble des ouverts de
X. Si A est une partie de X, la topologie induite est celle donnée par la

restriction de d a A x A. owme e A ~ U a A U Ottt

Si (X, dx) et (Y,dy) sont des espaces métriques, la topologie rodmt de X
X X Y est celle donnée par la distance d, (max. entre dx et dy)

Définition e M’bﬁ" bl j ek ;

Une base de la topologie de (X, d) est un ensemble B de parties de X
telles que : tout élément de B est ouvert et tout ouvert (non vide) de X
est union (arbitraire) d'éléments de B

Résultat. Les boules ouvertes forment une base de la topologie de (X, d)

Towth de 3« Y2eU, 3R, owwe Lovhird o
Définition W B c v

Un espace métrique est séparable s'il admet une base de topologie au

plus dénombrable
4(5\,5 U: U Bx

Pec 17



Définition
Soit (x,) une suite d'éléments d'un espace métrique (X, d). On dit (x,)

converge vers £ € X si ’Z aﬂ/
Ve > 0,dN > 0 tel que Vn > N, d(x,,¢) < ¢ 0<ﬂ-i7l

Résultat. La limite, si elle existe, est unique — Exp. /VAZ>0/
Définition L2
Une suite extraite d'un suite (x,) d'éléments de X est une suite de la 4z0
forme (x¢(,)) ol f : N — N est strictement croissante (et donc Vn,

F(n) 2 m) U)> ) > 46) = ()32

Théoreme
Toute suite de réels admet une sous-suite monotone.

Définition

Soit (x,) une suite d'éléments d'un espace métrique (X, d). On dit que
x € X est valeur d’adhérence de (x,) si, pour tout € > 0 et tout N > 0,
dn > N avec x, € B(x,¢€). C'est équivalent a dire qu'il existe une

sous-suite extraite de (x,) qui converge vers x. @
¢ i



T

Théoreme
Une partie A de I'espace métrique X est ouverte ssi pour toute suite (x,)

d'éléments de X qui converge vers un élément de A, AN > 0 tel que
Yn>N,onax,c A

N

Théoreme
Une partie A de I'espace métrique X est fermée ssi pour toute suite (x,)
convergente d’'éléments de A, la limite est dans A 0

| «h ) 4
Définition

Soit A une partig¢ de I'espace métrique X. L'intérieur de A, noté A°, est
le plus grand ofivert contenu dans A. L'adhérence de A, noté A, est le

plus petit ferghé contenant A. A est dense dans X si A = X. La frontiere
de A, noté 0A, est A=A\ A°

Résultat. Ona A° C AC A: A° = A ssi A est ouvert: A = A ssi A est
fermé. /I\

Ty, 2
Théoreme Ohrtr % g @QK ééﬁ

On a x € A ssi VU ouvert contenant x, U N A # ) ssi il existe une suite
d’'éléments de A convergeant vers x



Boules ouvertes, boules fermées

Soit (X, d) un espace métrique. Soient x € X et r un réel strictement
positif. On note B(x, r) (resp. Br(x, r)) la boule ouverte (resp. fermée)
de centre x et de rayon r.

1. Montrer que la boule fermée Br(x, r) est un fermé de X.
2. Montrer que I'adhérence de B(x, r) est incluse dans Br(x, r) et que
I'intérieur de Br(x, r) contient B(x, r).

3. On suppose dans cette question que X est un espace vectoriel
normé, muni d’'une norme || ||. Montrer que les inclusions
précédentes sont en fait des égalités.

4. Donner un exemple d'un espace métrique (X, d) pour lequel les
résultats de la question 3. sont faux.



Définition
Pour p € [1,4o00[, on définit la norme || - ||, sur R" par

n 1/p
IxXllp = (Z Xi\”)

=1

et la norme || - ||

x|l = max{|x;| : 1 < i < n}

Résultat. L'inégalité triangulaire pour ces normes est I'inégalité de

Minkowski h
3cy| Faell
Théoréme / gt 5 [ /éD //“If

Soient p,q € [1, +oo] Les normes || - ||, et || - ||q soht e’qu1va/entes sur

R", c’est-a-dire il existe m, M > 0 tels que ( Cla
; S l//

Vx € RY, m[x|[p < llxllq < Mix][,

et donc les distances correspondantes sont Lipschitz-équivalentes

Oy Wpdoand sV G wicn



Normes sur £2 N A‘ div'. oo

On note [/

/?(R) = {X N> R: iojx(n)2 < oo}

n=0

et pour x € £(R), on pose

o 1/2
Ixll2 = (ZX(H)2> et |[x[loc = sup[x(n)].

n=0 neN

1. Montrer que || - ||> et || - ||so sont des normes sur £?(R).
2. Montrer que, pour tout x € £2(R), ||x||ce < ||x]|2.

3. Les normes || - || et || - ||2 sont-elles équivalentes?
(Indication. considérer la suite (xx)ken d’éléments de ¢%(R) définie par :
xk(n) =1si n< k et xk(n) =0 sinon.)




Normes sur C([0; 1], R)

On note E =C([0;1],R) et A= {f € E: f(0) = 0}. On rappelle la définition
des normes || - ||oc €t || - ||1 sur E :

1
VFEE [l = sup [FCOI IFls= [ 1F(0]
0

x€[0;1]

1. Montrer que A est une partie fermée de (E, || - ||o0)-

2. Soit f € E. On définit pour tout n > 1,
fn: [0;1] — R,

‘ .
. (1/n)nx si0<x<1/n,
f(x) sinon.

2.1 Montrer que, pour tout n € N*, f, € A.
2.2 Montrer que, pour tout n € N*, on a

3
fo— Fll1 < —||f|lco-
I — Flls < = |If]

3. Montrer que A est dense dans (E, || - ||1)-

4. Déterminer |'intérieur de A pour || - ||oo puis pour || - ||1.



§1.2 Fonctions continues

Définition & b2
Une fonction f : X — Y est continue en@z X si Ve > 0, 30 > 0 tel que
Vx' € X, dx(x,x') <0 = dy(f(x),f(x)) <e

P ’

f est continue sur A C X si f est continue en x pour tout x € A

f est uniformément continue sur A C X si

Ve > 0,36 > 0,Vx,x" € A, dx(x,x") <d = dy(f(x),f(x)) <e

{
by
Remarque

Définition de continuité : 0 = 0x ¢
Définition de continuité uniforme : 0 = 0,

Rty TN

Définition
Soit K > 0. Une fonction f : X — Y es@lipschitzienne € X si
Vx,x" € X, dy(f(x), f(x")) < K dx(x,x")

Résultat. Lipschitzienne = uniformément continue == continue



Théoreme (Autre caractérisation de la continuité)
Soit f: X =Y.

» f est continue en x € X ssi pour tout suite (x,) suite d'éléments de
X de limite x, on a lim, f(x,) = f(x) (caractérisation séquentielle)

> f est continue sur X ssi pour tout ouvert U de Y, on a f~1(U)
ouvert de X (caractérisation topologique)
Remarque. vérifier pour U ddns une base d’ouverts de Y est suffisant

Résultat. La composée, la somme, la multiplication de fonctions
continues est continue

Résultat. Deux fonctions continues qui coincident sur un ensemble

dense sont égales AA’WM) X Oe'é) )("7\7/ g ?’/\ ‘3},4

(onYihms
Théoreme

Soit f : X — Y x Z (avec le distance d,)./On note f = (fy, fz). Alors f

est continue ssi fy et f; sont continues
XeX) X= @“fh a.£A

s A<l finy

)



< J(A\A-glan): gzl) whhm,n
Définition i;
Soient f : X =Y, AC X,jac€

quand x tend vers a ou la

Alet b € B. On dit que f tend vers b
de f en a est b, noté lim f(x) = b, si

X—ra
— MM}A %eA
Ve > 0,36 > 0,Vx € Al 0 < dx(x,a) <d = dy(f(x),b) <e¢
———

Résultat. On a lim f(x) = b ssi lim f(x,) = b pour tout suite (x,) de
X—ra n

limite a avec x, # a Vn %eh 2 o/
Résultat. f est continue en a ssi lim f(x) = f(a)

X—ra

Théoreme (Prolongement par continuité)

Soit AC X etf:A— Y. Soitc € A\ A tel qué lim f(x) existe. Dn
X—C
définit g : AU{c} — Y par

g(x)=f(x)sixe A et g(c)= lim f(x).

X—C

Alors, g est continue en c.



Définition
Soit (f,) une suite de fonctions de X vers Y et soit f : X — Y.
» (f,) converge simplement vers f si Vx € X, lim f,(x) = f(x), ie

Ve > 0,dN > 0 tel que Vn > N, dy(f,(x),f(x)) <e

» (f,) converge uniforméme t{7vers f si

Ve > 0,dN > 0 tel que Vx € X,Vn > N, dy(f,(x), f(x)) <€

Théoreme ’\[i'
Soit (f,) une suite de fonctions continues de X vers Y qui converge
uniformément vers f : X — Y. Alors, f est continue.

+héoreme
Soit f : X — Y une application linéaire entre deux evn (espaces

vectoriels normés) alors f est-continue ssi f est continue en O ssi f est
lipschitzienne ssi AM ¥ 0,Vx € X, [[f(x)|y < M|x| x.

Dans ce cas, le plus petit M qui convi
dénotée |||f ||

orme subordonnée de f,
-—



Théoreme
Soit f € L(X,Y) (= ensemble des applications linéaires continues), on a

> Vx e X, [[f(x)lly < (Il - [Ix]|x
> W,MMMMWW .
o Gy [T )
]l = sup + sup [[f(X)|ly # sup [[f(x)[ly
xeX ||XHX xeX xeX
x70 Ix]|x <1 Ix[[x=1

| = _/
> Soit g € L(Y,Z), on a ||g o=

Résultat. £(X, Y) avec la norme |||-||| est un evn

Définition
Un homéomorphisme entre deux espaces métriques f : X — Y est une
bijection telle que f et f~! sont continues. Dans ce cas, on dit que X et

Y sont homéomorphes.



Limite pour une distance particuliere

Soit d la distance usuelle sur R : V(x,y) € R?, d(x,y) = |[x — y|. On
considere la fonction f : R — R définie par :

B X si x € Q,
f(X)_{ l1-x sixeR\Q.

1. Montrer que I'application § : R> — R définie par
V(x,y) € R%  d(x,y) = [f(x) = f(y)

est une distance sur R.

V2

2. Déterminer, si elle existe, la limite de la suite () pour cette
n
n>1

distance.



Calcul de normes d'applications linéaires.

1. On consideére |'application linéaire ¢ : C([0; 1],R) — R définie par

o(u) = /O " u(x) dx.

Calculer la norme de ¢ pour C([0; 1], R) muni de la norme || - |[oo-

Méme question avec la norme || - ||1.

2. On consideére I'application linéaire v : R[X] — R définie par

p(P) = P(0).

Calculer la norme de 1) pour R[X] muni de la norme
IP[l = supxefoa |P(x)].



§1.3 Compacité

Définition
Soit (X, d) un espace métrique.
» Propriété de Borel-Lebesgue. Soit (U;);c; des ouverts de X tels que
(7 Uie; Ui = X (recouvrement d'ouverts), il existe Iy C / fini tel que

Uie, Ui = X.

» Propriété de Bolzano-Weierstrass. Tout suite d'éléments de X admet
une sous-suite convergente.

Théoreme

Ces deux propriétés sont équivalentes pour un espace métrique. Un
espace avec ces propriétés est un espace compact

= |
Résultat. Les compacts de R sont les fermés bornés < [ﬂ’]L)]

Résultat. Soit X un espace compact et (U;);e; un recouvrement
d'ouverts de X. Alors il existe r > 0 tel que Vx € X, di € | avec

Bl < U Lomme de Ca watt



Proposition A,é)( A'o{;}agV @4 de & Wmé

>

>
>
>

Ogt)) o dn b <, £,

Un sous-espace compact d’un espace métrigue est fermé
Une intersection arbitraire de compacts est compacte
Une union finie de compacts est compacte

Un fermé d'un espace compact est compact & {y».

Théoreme

1.

Borne atteinte. Soit X compact et f : X — R continue. Alors f est
bornée et elle atteint ses bornes. De plus, f est uniformément
continue (aussi vrai si on remplace R par Y métrique).

. Riesz. Soit E un evn. Alors, E est de dimension finie ssi Bf(0,1) est

compacte.

. Produit de compacts. Le produit de deux espaces compacts avec

la distance produit est un espace compact

Proposition
Soit n > 1, alors toutes les normes sur R" (resp. sur C") sont équivalentes



§1.4 Connexité

Définition

Soit (X, d) un espace métrique. On dit que X est connexe si, pour tout
ouvert Uet Vavec X =UUVetUNV =0, ona(U,V)=(X,0) ou
(0, X).

Proposition

» X est connexe ssi les seuls ouverts-fermés sont X et ()

» X est connexe ssi toute fonction continue f : X — {0,1} est
constante

» [’'image d’'un connexe par une fonction continue est connexe

» Soit A C X connexe et AC B C A alors B connexe
En particulier, I'adhérence d’un connexe est connexe

» [ e produit de deux espaces connexes est connexe



Théoreme (Connexité dans R)

Les connexes de R sont les intervalles. En conséquence, si f : R — R est
continue et si | est un intervalle, alors f(I) est un intervalle (théoréme
des valeurs intermédiaires)

Définition

Soit x € X espace métrique. La composante connexe C(x) de x est la
réunion des connexes de X contenant x. C'est le plus grand connexe
contenant x. En particulier, C(x) est fermé.

Résultat. On utilise : une union (arbitraire) de connexes d'intersection
non vide est connexe

Théoreme
Soient x,y € X. Alors C(x) = C(y) ou C(x) N C(y) = 0. En particulier,
X est I'union (disjointe) de composantes connexes.



Définition

Un chemin reliant x a y avec x,y € X espace métrique est une
application v : [0; 1] — X continue avec ¥(0) = x et (1) = y. (On peut
remplacer [0; 1] par un intervalle arbitraire [a; b])

On dit que X est connexe par arcs si, Vx,y € X, il existe un chemin
reliant x et y

Résultat. Connexe par arcs = connexe

Résultat. L'image d'un connexe par arcs par une fonction continue est
connexe par arcs

Application

Les espaces R et R? ne sont pas homéomorphes

Théoreme
L’adhérence de I'ensemble {(t,sin(1/t)) : t €]0;1]} est compact,
connexe mais pas connexe par arcs



§1.5 Complétude

Définition

Un suite (x,) d'un espace métrique X est une suite de Cauchy si Ve > 0,
AN tel que Vn,m > N, on a d(x,, xm) < €

On dit que X est complet si toute suite de Cauchy de X est convergente
Résultat. Suite convergente = suite de Cauchy

Résultat. Suite de Cauchy avec une sous-suite convergente est
convergente (méme limite)

Théoreme
» Tout fermé d’un espace complet est complet
Tout sous-espace complet est fermé

Tout espace métrique compact est complet

v vy

Tout evn de dimension finie sur R ou C est complet



Proposition

L’espace L(X,Y) avec X, Y evn et Y complet, munit de la norme
subordonnée |||-||| est complet

Théoreme (Riesz-Fischer)
Soit p € [1; +00]. Alors (¢P(N), || - ||,) est un evn complet avec

1(un)lp = {(Zn \un]p)l/p G p < oo

sup, |up| si p = +400

et (P(N) = {suites réelles (u,) avec ||(un)||, < +o0}.

Théoréeme

Soit X un espace métrique, il existe un unique (& isométrie prés)
complété Y de X vérifiant X C Y, dx restriction de dy a X, Y complet
et X dense dans Y .



Théoreme (Prolongement des fonctions unif. continues)

Soient X et Y deux espaces métriques avec X complet. Soient S C X,
une partie dense de X, et f : S — Y une application uniformément

continue. Alors, il existe un unique prolongement de f par continuité de
X vers Y.

Rappel Les applications linéaires continues sont uniformément continues.

Théoreme (Point fixe des applications contractantes)

Soit X un espace métrique. Une application f : X — X est contractante
s'il existe 0 < a < 1 tel que

Vx,y € X, d(f(x),f(y)) <ad(x,y).

Supposons que X est complet et f : X — X est contractante, alors elle
admet un unique point fixe x, € X avec f(x,) = x.. De plus, pour tout
xo € X, la suite (x,) avec x,11 = f(x,n) tend vers x, géométriquement,

c'est-a-dire
Vn >0, d(xnx) < a”d(xo,Xx).



Une version faible du théoreme de Picard.

Soit (X, d) un espace métrique compact et soit f : X — X une fonction
telle que d(f(x), f(y)) < d(x,y) pour tous x,y € X avec x # y.

1. Montrer que f admet au plus un point fixe.

2. Montrer qu'il existe z € X tel que d(z,f(z)) < d(x, f(x)) pour tout
x € X.

3. Montrer que z est I'unique point fixe de f.

4. Soit xp € X. On définit une suite (x,)n>0 par xp4+1 = f(x,) pour
tout n > 0.
Montrer que la suite (d(x,, z))n>0 converge vers £ > 0

5. Montrer que £ = 0 et donc que (x,) converge vers z.



