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§1.1 Topologie – Espaces métriques

Définition
Une distance sur un ensemble X est une fonction d : X → X ↑ R+

vérifiant

1. (séparation) ↓x , y ↔ X , d(x , y) = 0 ssi x = y

2. (symétrie) ↓x , y ↔ X , d(x , y) = d(y , x)

3. (inégalité triangulaire) ↓x , y , z ↔ X , d(x , z) ↗ d(x , y) + d(y , z)

(X , d) est un espace métrique

Définition
Une norme sur un espace vectoriel X (sur C ou R) est une fonction

↘ · ↘ : X ↑ R+
vérifiant

1. (séparation) ↓x ↔ X , ↘x↘ = 0 ssi x = 0

2. (homogénéité) ↓x ↔ X , ↓ω, ↘ωx↘ = |ω| ↘x↘
3. (inégalité triangulaire) ↓x , y ↔ X , ↘x + y↘ ↗ ↘x↘+ ↘y↘

(X , ↘ · ↘) est un espace normé



Résultat. Soit (X , d) espace métrique,

↓x , y , z ↔ X , |d(x , z)≃ d(y , z)| ↗ d(x , y)

Théorème
Soit (X , ↘ · ↘) espace normé alors d(x , y) = ↘x ≃ y↘ est une distance

sur X

Exemples

1. Rn
avec la norme euclidienne ↘x↘ =

√
x21 + · · ·+ x2n

2. La distance discrète sur tout ensemble X

d(x , y) =

{
0 si x = y

1 sinon

Définition
Deux distances d1 et d2 sur X sont Lipschitz-équivalentes s’il existe

m,M > 0 tels que

↓x , y ↔ X , md1(x , y) ↗ d2(x , y) ↗ M d1(x , y)



Définition
Soit (X , d) espace métrique. Pour x ↔ X et r ⇐ 0, on pose

B(x , r) = {y ↔ X : d(x , y) < r} (boule ouverte)

Bf (x , r) = {y ↔ X : d(x , y) ↗ r} (boule fermée)

Une partie A de X est bornée si il existe M ⇐ 0 tel que ↓a, a→ ↔ A,

d(a, a→) ↗ M, c’est équivalent à demander que A est contenue dans une

boule. Pour A ⇒ X , une partie bornée, on définit son diamètre par

diam(A) = sup{d(a, a→) : a, a→ ↔ A}

Proposition
Soit (X , dX ) et (Y , dY ) espaces métriques. Alors on peut définir les deux

distances suivantes sur X → Y

d1((x1, y1), (x2, y2)) = dX (x1, x2) + dY (y1, y2)

d↑((x1, y1), (x2, y2)) = max{dX (x1, x2), dY (y1, y2)}

La distance d↑ est la distance produit

Résultat. Ces deux distances sont Lipschitz-équivalentes

B
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Définition
Une partie A d’un espace métrique (X , d) est un ouvert si, pour tout

a ↔ A, il existe r > 0 tel que B(a, r) ⇒ A. Le complémentaire d’un ouvert

est un fermé.

Résultat. Une boule ouverte est un ouvert et une boule fermée est un

fermé.

Théorème
Si d1 et d2 sont Lipschitz-équivalentes sur X alors les ouverts de (X , d1)
sont exactement les ouverts de (X , d2).

Théorème
La famille des ouverts de (X , d) vérifie les propriétés suivantes :

1. Toute union (arbitraire) d’ouverts est un ouvert

2. Toute intersection finie d’ouverts est un ouvert

(Un énoncé équivalent en découle pour les fermés)
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Définition
La topologie d’un espace métrique (X , d) est l’ensemble des ouverts de

X . Si A est une partie de X , la topologie induite est celle donnée par la

restriction de d à A→ A.

Si (X , dX ) et (Y , dY ) sont des espaces métriques, la topologie produit de

X → Y est celle donnée par la distance d↑ (max. entre dX et dY )

Définition
Une base de la topologie de (X , d) est un ensemble B de parties de X

telles que : tout élément de B est ouvert et tout ouvert (non vide) de X

est union (arbitraire) d’éléments de B
Résultat. Les boules ouvertes forment une base de la topologie de (X , d)

Définition
Un espace métrique est séparable s’il admet une base de topologie au

plus dénombrable
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Définition
Soit (xn) une suite d’éléments d’un espace métrique (X , d). On dit (xn)

converge vers ε ↔ X si

↓ϑ > 0, ⇑N ⇐ 0 tel que ↓n ⇐ N, d(xn, ε) ↗ ϑ

Résultat. La limite, si elle existe, est unique

Définition
Une suite extraite d’un suite (xn) d’éléments de X est une suite de la

forme (xf (n)) où f : N ↑ N est strictement croissante (et donc ↓n,
f (n) ⇐ n).

Théorème
Toute suite de réels admet une sous-suite monotone.

Définition
Soit (xn) une suite d’éléments d’un espace métrique (X , d). On dit que

x ↔ X est valeur d’adhérence de (xn) si, pour tout ϑ > 0 et tout N ⇐ 0,

⇑n ⇐ N avec xn ↔ B(x , ϑ). C’est équivalent à dire qu’il existe une

sous-suite extraite de (xn) qui converge vers x .
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Théorème
Une partie A de l’espace métrique X est ouverte ssi pour toute suite (xn)

d’éléments de X qui converge vers un élément de A, ⇑N ⇐ 0 tel que

↓n ⇐ N, on a xn ↔ A

Théorème
Une partie A de l’espace métrique X est fermée ssi pour toute suite (xn)

convergente d’éléments de A, la limite est dans A

Définition
Soit A une partie de l’espace métrique X . L’intérieur de A, noté A

↓
, est

le plus grand ouvert contenu dans A. L’adhérence de A, noté Ā, est le

plus petit fermé contenant A. A est dense dans X si Ā = X . La frontière

de A, noté ϖA, est ϖA = Ā \ A↓

Résultat. On a A
↓ ⇒ A ⇒ Ā ; A

↓
= A ssi A est ouvert ; Ā = A ssi A est

fermé.

Théorème
On a x ↔ Ā ssi ↓U ouvert contenant x, U ⇓ A ⇔= ↖ ssi il existe une suite

d’éléments de A convergeant vers x

e
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Boules ouvertes, boules fermées

Soit (X , d) un espace métrique. Soient x ↔ X et r un réel strictement

positif. On note B(x , r) (resp. Bf (x , r)) la boule ouverte (resp. fermée)

de centre x et de rayon r.

1. Montrer que la boule fermée Bf (x , r) est un fermé de X .

2. Montrer que l’adhérence de B(x , r) est incluse dans Bf (x , r) et que
l’intérieur de Bf (x , r) contient B(x , r).

3. On suppose dans cette question que X est un espace vectoriel

normé, muni d’une norme ↘ ↘. Montrer que les inclusions

précédentes sont en fait des égalités.

4. Donner un exemple d’un espace métrique (X , d) pour lequel les
résultats de la question 3. sont faux.



Définition
Pour p ↔ [1,+↙[, on définit la norme ↘ · ↘p sur Rn

par

↘x↘p =

(
n∑

i=1

|xi |p
)1/p

et la norme ↘ · ↘↑

↘x↘↑ = max{|xi | : 1 ↗ i ↗ n}

Résultat. L’inégalité triangulaire pour ces normes est l’inégalité de

Minkowski

Théorème
Soient p, q ↔ [1,+↙]. Les normes ↘ · ↘p et ↘ · ↘q sont équivalentes sur

Rn
, c’est-à-dire il existe m,M > 0 tels que

↓x ↔ Rn,m ↘x↘p ↗ ↘x↘q ↗ M ↘x↘p

et donc les distances correspondantes sont Lipschitz-équivalentes



Normes sur ε2

On note

ε2(R) =
{
x : N ↑ R :

↑∑

n=0

x(n)
2 < ↙

}

et pour x ↔ ε2(R), on pose

↘x↘2 =
( ↑∑

n=0

x(n)
2

)1/2

et ↘x↘↑ = sup
n↔N

|x(n)|.

1. Montrer que ↘ · ↘2 et ↘ · ↘↑ sont des normes sur ε2(R).
2. Montrer que, pour tout x ↔ ε2(R), ↘x↘↑ ↗ ↘x↘2.
3. Les normes ↘ · ↘↑ et ↘ · ↘2 sont-elles équivalentes ?

(Indication. considérer la suite (xk)k→N d’éléments de ω2(R) définie par :

xk(n) = 1 si n → k et xk(n) = 0 sinon.)



Normes sur C([0; 1],R)

On note E = C([0; 1],R) et A = {f ↑ E : f (0) = 0}. On rappelle la définition

des normes ↓ · ↓↑ et ↓ · ↓1 sur E :

↔f ↑ E , ↓f ↓↑ = sup
x→[0;1]

↓f (x)↓, |f |1 =
∫ 1

0

|f (x)| dx .

1. Montrer que A est une partie fermée de (E , ↓ · ↓↑).

2. Soit f ↑ E . On définit pour tout n ↗ 1,

fn : [0; 1] ↘ R,

x ≃↘
{
f (1/n) nx si 0 → x → 1/n,

f (x) sinon.

2.1 Montrer que, pour tout n ↑ N↓
, fn ↑ A.

2.2 Montrer que, pour tout n ↑ N↓
, on a

↓fn ⇐ f ↓1 →
3

2n
↓f ↓↑.

3. Montrer que A est dense dans (E , ↓ · ↓1).
4. Déterminer l’intérieur de A pour ↓ · ↓↑ puis pour ↓ · ↓1.



§1.2 Fonctions continues

Définition
Une fonction f : X ↑ Y est continue en x ↔ X si ↓ϑ > 0, ⇑ϖ > 0 tel que

↓x → ↔ X , dX (x , x
→
) < ϖ =∝ dY (f (x), f (x

→
)) < ϑ

f est continue sur A ⇒ X si f est continue en x pour tout x ↔ A

f est uniformément continue sur A ⇒ X si

↓ϑ > 0, ⇑ϖ > 0, ↓x , x → ↔ A, dX (x , x
→
) < ϖ =∝ dY (f (x), f (x

→
)) < ϑ

Remarque
Définition de continuité : ϖ = ϖx,ω
Définition de continuité uniforme : ϖ = ϖω

Définition
Soit K > 0. Une fonction f : X ↑ Y est K -lipschitzienne ↔ X si

↓x , x → ↔ X , dY (f (x), f (x
→
)) ↗ K dX (x , x

→
)

Résultat. Lipschitzienne =∝ uniformément continue =∝ continue



Théorème (Autre caractérisation de la continuité)
Soit f : X ↑ Y .

↭ f est continue en x ↔ X ssi pour tout suite (xn) suite d’éléments de

X de limite x, on a limn f (xn) = f (x) (caractérisation séquentielle)

↭ f est continue sur X ssi pour tout ouvert U de Y , on a f
↗1

(U)

ouvert de X (caractérisation topologique)

Remarque. vérifier pour U dans une base d’ouverts de Y est su!sant

Résultat. La composée, la somme, la multiplication de fonctions

continues est continue

Résultat. Deux fonctions continues qui cöıncident sur un ensemble

dense sont égales

Théorème
Soit f : X ↑ Y → Z (avec le distance d↑). On note f = (fY , fZ ). Alors f
est continue ssi fY et fZ sont continues



Définition
Soient f : X ↑ Y , A ⇒ X , a ↔ Ā et b ↔ B . On dit que f tend vers b

quand x tend vers a ou la limite de f en a est b, noté lim
x↘a

f (x) = b, si

↓ϑ > 0, ⇑ϖ > 0, ↓x ↔ A, 0 < dX (x , a) < ϖ =∝ dY (f (x), b) < ϑ

Résultat. On a lim
x↘a

f (x) = b ssi lim
n

f (xn) = b pour tout suite (xn) de

limite a avec xn ⇔= a ↓n
Résultat. f est continue en a ssi lim

x↘a
f (x) = f (a)

Théorème (Prolongement par continuité)
Soit A ⇒ X et f : A ↑ Y . Soit c ↔ Ā \ A tel que lim

x↘c
f (x) existe. On

définit g : A ′ {c} ↑ Y par

g(x) = f (x) si x ↔ A et g(c) = lim
x↘c

f (x).

Alors, g est continue en c.



Définition
Soit (fn) une suite de fonctions de X vers Y et soit f : X ↑ Y .

↭ (fn) converge simplement vers f si ↓x ↔ X , lim
n

fn(x) = f (x), ie

↓x ↔ X , ↓ϑ > 0, ⇑N ⇐ 0 tel que ↓n ⇐ N, dY (fn(x), f (x)) < ϑ

↭ (fn) converge uniformément vers f si

↓ϑ > 0, ⇑N ⇐ 0 tel que ↓x ↔ X , ↓n ⇐ N, dY (fn(x), f (x)) < ϑ

Théorème
Soit (fn) une suite de fonctions continues de X vers Y qui converge

uniformément vers f : X ↑ Y . Alors, f est continue.

Théorème
Soit f : X ↑ Y une application linéaire entre deux evn (espaces

vectoriels normés) alors f est continue ssi f est continue en 0 ssi f est

lipschitzienne ssi ⇑M > 0, ↓x ↔ X , ↘f (x)↘Y ↗ M↘x↘X .
Dans ce cas, le plus petit M qui convient est la norme subordonnée de f ,

dénotée |||f |||.



Théorème
Soit f ↔ L(X ,Y ) (= ensemble des applications linéaires continues), on a

↭ ↓x ↔ X, ↘f (x)↘Y ↗ |||f ||| · ↘x↘X
↭

|||f ||| = sup
x↔X
x ≃=0

↘f (x)↘Y
↘x↘X

= sup
x↔X

⇐x⇐X⇒1

↘f (x)↘Y = sup
x↔X

⇐x⇐X=1

↘f (x)↘Y

↭ Soit g ↔ L(Y ,Z ), on a |||g ∞ f ||| ↗ |||g ||| |||f |||

Résultat. L(X ,Y ) avec la norme |||·||| est un evn

Définition
Un homéomorphisme entre deux espaces métriques f : X ↑ Y est une

bijection telle que f et f
↗1

sont continues. Dans ce cas, on dit que X et

Y sont homéomorphes.



Limite pour une distance particulière

Soit d la distance usuelle sur R : ↓(x , y) ↔ R2
, d(x , y) = |x ≃ y |. On

considère la fonction f : R ≃↑ R définie par :

f (x) =

{
x si x ↔ Q,

1≃ x si x ↔ R \Q.

1. Montrer que l’application ϖ : R2 ≃↑ R définie par

↓(x , y) ↔ R2, ϖ(x , y) = |f (x)≃ f (y)|

est une distance sur R.

2. Déterminer, si elle existe, la limite de la suite

(∈
2

n

)

n⇑1

pour cette

distance.



Calcul de normes d’applications linéaires.

1. On considère l’application linéaire ϱ : C([0; 1],R) ↑ R définie par

ϱ(u) =

∫ 1

0
x u(x) dx .

Calculer la norme de ϱ pour C([0; 1],R) muni de la norme ↘ · ↘↑.

Même question avec la norme ↘ · ↘1.
2. On considère l’application linéaire ς : R[X ] ↑ R définie par

ς(P) = P
→
(0).

Calculer la norme de ς pour R[X ] muni de la norme

↘P↘ = supx↔[0;1] |P(x)|.



§1.3 Compacité

Définition
Soit (X , d) un espace métrique.

↭ Propriété de Borel-Lebesgue. Soit (Ui )i↔I des ouverts de X tels que⋃
i↔I Ui = X (recouvrement d’ouverts), il existe I0 ⇒ I fini tel que⋃
i↔I0

Ui = X .

↭ Propriété de Bolzano-Weierstrass. Tout suite d’éléments de X admet

une sous-suite convergente.

Théorème
Ces deux propriétés sont équivalentes pour un espace métrique. Un

espace avec ces propriétés est un espace compact

Résultat. Les compacts de R sont les fermés bornés

Résultat. Soit X un espace compact et (Ui )i↔I un recouvrement

d’ouverts de X . Alors il existe r > 0 tel que ↓x ↔ X , ⇑i ↔ I avec

B(x , r) ⇒ Ui



Proposition
↭ Un sous-espace compact d’un espace métrique est fermé

↭ Une intersection arbitraire de compacts est compacte

↭ Une union finie de compacts est compacte

↭ Un fermé d’un espace compact est compact

Théorème
1. Borne atteinte. Soit X compact et f : X ↑ R continue. Alors f est

bornée et elle atteint ses bornes. De plus, f est uniformément

continue (aussi vrai si on remplace R par Y métrique).

2. Riesz. Soit E un evn. Alors, E est de dimension finie ssi Bf (0, 1) est
compacte.

3. Produit de compacts. Le produit de deux espaces compacts avec

la distance produit est un espace compact

Proposition
Soit n ⇐ 1, alors toutes les normes sur Rn

(resp. sur Cn
) sont équivalentes



§1.4 Connexité

Définition
Soit (X , d) un espace métrique. On dit que X est connexe si, pour tout

ouvert U et V avec X = U ′ V et U ⇓ V = ↖, on a (U,V ) = (X , ↖) ou
(↖,X ).

Proposition
↭ X est connexe ssi les seuls ouverts-fermés sont X et ↖
↭ X est connexe ssi toute fonction continue f : X ↑ {0, 1} est

constante

↭ L’image d’un connexe par une fonction continue est connexe

↭ Soit A ⇒ X connexe et A ⇒ B ⇒ Ā alors B connexe

En particulier, l’adhérence d’un connexe est connexe

↭ Le produit de deux espaces connexes est connexe



Théorème (Connexité dans R)
Les connexes de R sont les intervalles. En conséquence, si f : R ↑ R est

continue et si I est un intervalle, alors f (I ) est un intervalle (théorème

des valeurs intermédiaires)

Définition
Soit x ↔ X espace métrique. La composante connexe C (x) de x est la

réunion des connexes de X contenant x . C’est le plus grand connexe

contenant x . En particulier, C (x) est fermé.

Résultat. On utilise : une union (arbitraire) de connexes d’intersection

non vide est connexe

Théorème
Soient x , y ↔ X. Alors C (x) = C (y) ou C (x) ⇓ C (y) = ↖. En particulier,

X est l’union (disjointe) de composantes connexes.



Définition
Un chemin reliant x à y avec x , y ↔ X espace métrique est une

application φ : [0; 1] ↑ X continue avec φ(0) = x et φ(1) = y . (On peut

remplacer [0; 1] par un intervalle arbitraire [a; b])

On dit que X est connexe par arcs si, ↓x , y ↔ X , il existe un chemin

reliant x et y

Résultat. Connexe par arcs =∝ connexe

Résultat. L’image d’un connexe par arcs par une fonction continue est

connexe par arcs

Application
Les espaces R et R2

ne sont pas homéomorphes

Théorème
L’adhérence de l’ensemble

{
(t, sin(1/t)) : t ↔]0; 1]

}
est compact,

connexe mais pas connexe par arcs



§1.5 Complétude

Définition
Un suite (xn) d’un espace métrique X est une suite de Cauchy si ↓ϑ > 0,

⇑N tel que ↓n,m ⇐ N, on a d(xn, xm) < ϑ
On dit que X est complet si toute suite de Cauchy de X est convergente

Résultat. Suite convergente =∝ suite de Cauchy

Résultat. Suite de Cauchy avec une sous-suite convergente est

convergente (même limite)

Théorème
↭ Tout fermé d’un espace complet est complet

↭ Tout sous-espace complet est fermé

↭ Tout espace métrique compact est complet

↭ Tout evn de dimension finie sur R ou C est complet



Proposition
L’espace L(X ,Y ) avec X , Y evn et Y complet, munit de la norme

subordonnée |||·||| est complet

Théorème (Riesz-Fischer)
Soit p ↔ [1; +↙]. Alors (εp(N), ↘ · ↘p) est un evn complet avec

↘(un)↘p =

{(∑
n |un|p

)1/p
si p < +↙

supn |un| si p = +↙

et εp(N) = {suites réelles (un) avec ↘(un)↘p < +↙}.

Théorème
Soit X un espace métrique, il existe un unique (à isométrie près)

complété Y de X vérifiant X ⇒ Y , dX restriction de dY à X , Y complet

et X dense dans Y .



Théorème (Prolongement des fonctions unif. continues)
Soient X et Y deux espaces métriques avec X complet. Soient S ⇒ X,

une partie dense de X, et f : S ↑ Y une application uniformément

continue. Alors, il existe un unique prolongement de f par continuité de

X vers Y .

Rappel Les applications linéaires continues sont uniformément continues.

Théorème (Point fixe des applications contractantes)
Soit X un espace métrique. Une application f : X ↑ X est contractante

s’il existe 0 < ↼ < 1 tel que

↓x , y ↔ X , d(f (x), f (y)) ↗ ↼ d(x , y).

Supposons que X est complet et f : X ↑ X est contractante, alors elle

admet un unique point fixe x⇓ ↔ X avec f (x⇓) = x⇓. De plus, pour tout

x0 ↔ X, la suite (xn) avec xn+1 = f (xn) tend vers x⇓ géométriquement,

c’est-à-dire

↓n ⇐ 0, d(xn, x⇓) ↗ ↼n
d(x0, x⇓).



Une version faible du théorème de Picard.

Soit (X , d) un espace métrique compact et soit f : X ↑ X une fonction

telle que d(f (x), f (y)) < d(x , y) pour tous x , y ↔ X avec x ⇔= y .

1. Montrer que f admet au plus un point fixe.

2. Montrer qu’il existe z ↔ X tel que d(z , f (z)) ↗ d(x , f (x)) pour tout
x ↔ X .

3. Montrer que z est l’unique point fixe de f .

4. Soit x0 ↔ X . On définit une suite (xn)n⇑0 par xn+1 = f (xn) pour

tout n ⇐ 0.

Montrer que la suite (d(xn, z))n⇑0 converge vers ε ⇐ 0

5. Montrer que ε = 0 et donc que (xn) converge vers z .


