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§1.1 Topologie – Espaces métriques

Définition
Une distance sur un ensemble X est une fonction d : X × X → R+

vérifiant

1. (séparation) ∀x , y ∈ X , d(x , y) = 0 ssi x = y

2. (symétrie) ∀x , y ∈ X , d(x , y) = d(y , x)

3. (inégalité triangulaire) ∀x , y , z ∈ X , d(x , z) ≤ d(x , y) + d(y , z)

(X , d) est un espace métrique

Définition
Une norme sur un espace vectoriel X (sur C ou R) est une fonction
∥ · ∥ : X → R+ vérifiant

1. (séparation) ∀x ∈ X , ∥x∥ = 0 ssi x = 0

2. (homogénéité) ∀x ∈ X , ∀λ, ∥λx∥ = |λ| ∥x∥
3. (inégalité triangulaire) ∀x , y ∈ X , ∥x + y∥ ≤ ∥x∥+ ∥y∥

(X , ∥ · ∥) est un espace normé



Résultat. Soit (X , d) espace métrique,

∀x , y , z ∈ X , |d(x , z)− d(y , z)| ≤ d(x , y)

Théorème
Soit (X , ∥ · ∥) espace normé alors d(x , y) = ∥x − y∥ est une distance
sur X

Exemples

1. Rn avec la norme euclidienne ∥x∥ =
√
x21 + · · ·+ x2n

2. La distance discrète sur tout ensemble X

d(x , y) =

{
0 si x = y

1 sinon

Définition
Deux distances d1 et d2 sur X sont Lipschitz-équivalentes s’il existe
m,M > 0 tels que

∀x , y ∈ X , md1(x , y) ≤ d2(x , y) ≤ M d1(x , y)



Définition
Soit (X , d) espace métrique. Pour x ∈ X et r ≥ 0, on pose

B(x , r) = {y ∈ X : d(x , y) < r} (boule ouverte)

Bf (x , r) = {y ∈ X : d(x , y) ≤ r} (boule fermée)

Une partie A de X est bornée si il existe M ≥ 0 tel que ∀a, a′ ∈ A,
d(a, a′) ≤ M, c’est équivalent à demander que A est contenue dans une
boule. Pour A ⊆ X , une partie bornée, on définit son diamètre par

diam(A) = sup{d(a, a′) : a, a′ ∈ A}

Proposition
Soit (X , dX ) et (Y , dY ) espaces métriques. Alors on peut définir les deux
distances suivantes sur X × Y

d1((x1, y1), (x2, y2)) = dX (x1, x2) + dY (y1, y2)

d∞((x1, y1), (x2, y2)) = max{dX (x1, x2), dY (y1, y2)}

La distance d∞ est la distance produit

Résultat. Ces deux distances sont Lipschitz-équivalentes



Définition
Une partie A d’un espace métrique (X , d) est un ouvert si, pour tout
a ∈ A, il existe r > 0 tel que B(a, r) ⊆ A. Le complémentaire d’un ouvert
est un fermé.

Résultat. Une boule ouverte est un ouvert et une boule fermée est un
fermé.

Théorème
Si d1 et d2 sont Lipschitz-équivalentes sur X alors les ouverts de (X , d1)
sont exactement les ouverts de (X , d2).

Théorème
La famille des ouverts de (X , d) vérifie les propriétés suivantes :

1. Toute union (arbitraire) d’ouverts est un ouvert

2. Toute intersection finie d’ouverts est un ouvert

(Un énoncé équivalent en découle pour les fermés)



Définition
La topologie d’un espace métrique (X , d) est l’ensemble des ouverts de
X . Si A est une partie de X , la topologie induite est celle donnée par la
restriction de d à A× A.
Si (X , dX ) et (Y , dY ) sont des espaces métriques, la topologie produit de
X × Y est celle donnée par la distance d∞ (max. entre dX et dY )

Définition
Une base de la topologie de (X , d) est un ensemble B de parties de X
telles que : tout élément de B est ouvert et tout ouvert (non vide) de X
est union (arbitraire) d’éléments de B
Résultat. Les boules ouvertes forment une base de la topologie de (X , d)

Définition
Un espace métrique est séparable s’il admet une base de topologie au
plus dénombrable



Définition
Soit (xn) une suite d’éléments d’un espace métrique (X , d). On dit (xn)
converge vers ℓ ∈ X si

∀ϵ > 0,∃N ≥ 0 tel que ∀n ≥ N, d(xn, ℓ) ≤ ϵ

Résultat. La limite, si elle existe, est unique

Définition
Une suite extraite d’un suite (xn) d’éléments de X est une suite de la
forme (xf (n)) où f : N → N est strictement croissante (et donc ∀n,
f (n) ≥ n).

Théorème
Toute suite de réels admet une sous-suite monotone.

Définition
Soit (xn) une suite d’éléments d’un espace métrique (X , d). On dit que
x ∈ X est valeur d’adhérence de (xn) si, pour tout ϵ > 0 et tout N ≥ 0,
∃n ≥ N avec xn ∈ B(x , ϵ). C’est équivalent à dire qu’il existe une
sous-suite extraite de (xn) qui converge vers x .



Théorème
Une partie A de l’espace métrique X est ouverte ssi pour toute suite (xn)
d’éléments de X qui converge vers un élément de A, ∃N ≥ 0 tel que
∀n ≥ N, on a xn ∈ A

Théorème
Une partie A de l’espace métrique X est fermée ssi pour toute suite (xn)
convergente d’éléments de A, la limite est dans A

Définition
Soit A une partie de l’espace métrique X . L’intérieur de A, noté A◦, est
le plus grand ouvert contenu dans A. L’adhérence de A, noté Ā, est le
plus petit fermé contenant A. A est dense dans X si Ā = X . La frontière
de A, noté δA, est δA = Ā \ A◦

Résultat. On a A◦ ⊆ A ⊆ Ā ; A◦ = A ssi A est ouvert ; Ā = A ssi A est
fermé.

Théorème
On a x ∈ Ā ssi ∀U ouvert contenant x, U ∩ A ̸= ∅ ssi il existe une suite
d’éléments de A convergeant vers x



Boules ouvertes, boules fermées

Soit (X , d) un espace métrique. Soient x ∈ X et r un réel strictement
positif. On note B(x , r) (resp. Bf (x , r)) la boule ouverte (resp. fermée)
de centre x et de rayon r.

1. Montrer que la boule fermée Bf (x , r) est un fermé de X .

2. Montrer que l’adhérence de B(x , r) est incluse dans Bf (x , r) et que
l’intérieur de Bf (x , r) contient B(x , r).

3. On suppose dans cette question que X est un espace vectoriel
normé, muni d’une norme ∥ ∥. Montrer que les inclusions
précédentes sont en fait des égalités.

4. Donner un exemple d’un espace métrique (X , d) pour lequel les
résultats de la question 3. sont faux.



Définition
Pour p ∈ [1,+∞[, on définit la norme ∥ · ∥p sur Rn par

∥x∥p =

(
n∑

i=1

|xi |p
)1/p

et la norme ∥ · ∥∞

∥x∥∞ = max{|xi | : 1 ≤ i ≤ n}

Résultat. L’inégalité triangulaire pour ces normes est l’inégalité de
Minkowski

Théorème
Soient p, q ∈ [1,+∞]. Les normes ∥ · ∥p et ∥ · ∥q sont équivalentes sur
Rn, c’est-à-dire il existe m,M > 0 tels que

∀x ∈ Rn,m ∥x∥p ≤ ∥x∥q ≤ M ∥x∥p

et donc les distances correspondantes sont Lipschitz-équivalentes



Normes sur ℓ2

On note

ℓ2(R) =

{
x : N → R :

∞∑
n=0

x(n)2 <∞

}
et pour x ∈ ℓ2(R), on pose

∥x∥2 =

( ∞∑
n=0

x(n)2

)1/2

et ∥x∥∞ = sup
n∈N

|x(n)|.

1. Montrer que ∥ · ∥2 et ∥ · ∥∞ sont des normes sur ℓ2(R).
2. Montrer que, pour tout x ∈ ℓ2(R), ∥x∥∞ ≤ ∥x∥2.
3. Les normes ∥ · ∥∞ et ∥ · ∥2 sont-elles équivalentes ?

(Indication. considérer la suite (xk)k∈N d’éléments de ℓ2(R) définie par :

xk(n) = 1 si n ≤ k et xk(n) = 0 sinon.)



Normes sur C([0; 1],R)

On note E = C([0; 1],R) et A = {f ∈ E : f (0) = 0}. On rappelle la définition
des normes ∥ · ∥∞ et ∥ · ∥1 sur E :

∀f ∈ E , ∥f ∥∞ = sup
x∈[0;1]

∥f (x)∥, |f |1 =
∫ 1

0

|f (x)| dx .

1. Montrer que A est une partie fermée de (E , ∥ · ∥∞).

2. Soit f ∈ E . On définit pour tout n ≥ 1,

fn : [0; 1] → R,

x 7→

{
f (1/n) nx si 0 ≤ x ≤ 1/n,

f (x) sinon.

2.1 Montrer que, pour tout n ∈ N∗, fn ∈ A.
2.2 Montrer que, pour tout n ∈ N∗, on a

∥fn − f ∥1 ≤
3

2n
∥f ∥∞.

3. Montrer que A est dense dans (E , ∥ · ∥1).
4. Déterminer l’intérieur de A pour ∥ · ∥∞ puis pour ∥ · ∥1.



§1.2 Fonctions continues

Définition
Une fonction f : X → Y est continue en x ∈ X si ∀ϵ > 0, ∃δ > 0 tel que

∀x ′ ∈ X , dX (x , x
′) < δ =⇒ dY (f (x), f (x

′)) < ϵ

f est continue sur A ⊆ X si f est continue en x pour tout x ∈ A

f est uniformément continue sur A ⊆ X si

∀ϵ > 0,∃δ > 0,∀x , x ′ ∈ A, dX (x , x
′) < δ =⇒ dY (f (x), f (x

′)) < ϵ

Remarque
Définition de continuité : δ = δx,ϵ
Définition de continuité uniforme : δ = δϵ

Définition
Soit K > 0. Une fonction f : X → Y est K -lipschitzienne ∈ X si

∀x , x ′ ∈ X , dY (f (x), f (x
′)) ≤ K dX (x , x

′)

Résultat. Lipschitzienne =⇒ uniformément continue =⇒ continue



Théorème (Autre caractérisation de la continuité)
Soit f : X → Y .

▶ f est continue en x ∈ X ssi pour tout suite (xn) suite d’éléments de
X de limite x, on a limn f (xn) = f (x) (caractérisation séquentielle)

▶ f est continue sur X ssi pour tout ouvert U de Y , on a f −1(U)
ouvert de X (caractérisation topologique)
Remarque. vérifier pour U dans une base d’ouverts de Y est suffisant

Résultat. La composée, la somme, la multiplication de fonctions
continues est continue

Résultat. Deux fonctions continues qui cöıncident sur un ensemble
dense sont égales

Théorème
Soit f : X → Y × Z (avec le distance d∞). On note f = (fY , fZ ). Alors f
est continue ssi fY et fZ sont continues



Définition
Soient f : X → Y , A ⊆ X , a ∈ Ā et b ∈ B. On dit que f tend vers b
quand x tend vers a ou la limite de f en a est b, noté lim

x→a
f (x) = b, si

∀ϵ > 0,∃δ > 0,∀x ∈ A, 0 < dX (x , a) < δ =⇒ dY (f (x), b) < ϵ

Résultat. On a lim
x→a

f (x) = b ssi lim
n

f (xn) = b pour tout suite (xn) de

limite a avec xn ̸= a ∀n
Résultat. f est continue en a ssi lim

x→a
f (x) = f (a)

Théorème (Prolongement par continuité)
Soit A ⊆ X et f : A → Y . Soit c ∈ Ā \ A tel que lim

x→c
f (x) existe. On

définit g : A ∪ {c} → Y par

g(x) = f (x) si x ∈ A et g(c) = lim
x→c

f (x).

Alors, g est continue en c.



Définition
Soit (fn) une suite de fonctions de X vers Y et soit f : X → Y .

▶ (fn) converge simplement vers f si ∀x ∈ X , lim
n

fn(x) = f (x), ie

∀x ∈ X ,∀ϵ > 0,∃N ≥ 0 tel que ∀n ≥ N, dY (fn(x), f (x)) < ϵ

▶ (fn) converge uniformément vers f si

∀ϵ > 0,∃N ≥ 0 tel que ∀x ∈ X ,∀n ≥ N, dY (fn(x), f (x)) < ϵ

Théorème
Soit (fn) une suite de fonctions continues de X vers Y qui converge
uniformément vers f : X → Y . Alors, f est continue.

Théorème
Soit f : X → Y une application linéaire entre deux evn (espaces
vectoriels normés) alors f est continue ssi f est continue en 0 ssi f est
lipschitzienne ssi ∃M > 0,∀x ∈ X , ∥f (x)∥Y ≤ M∥x∥X .
Dans ce cas, le plus petit M qui convient est la norme subordonnée de f ,
dénotée |||f |||.



Théorème
Soit f ∈ L(X ,Y ) (= ensemble des applications linéaires continues), on a

▶ ∀x ∈ X, ∥f (x)∥Y ≤ |||f ||| · ∥x∥X
▶

|||f ||| = sup
x∈X
x ̸=0

∥f (x)∥Y
∥x∥X

= sup
x∈X

∥x∥X≤1

∥f (x)∥Y = sup
x∈X

∥x∥X=1

∥f (x)∥Y

▶ Soit g ∈ L(Y ,Z ), on a |||g ◦ f ||| ≤ |||g ||| |||f |||

Résultat. L(X ,Y ) avec la norme |||·||| est un evn

Définition
Un homéomorphisme entre deux espaces métriques f : X → Y est une
bijection telle que f et f −1 sont continues. Dans ce cas, on dit que X et
Y sont homéomorphes.



Limite pour une distance particulière

Soit d la distance usuelle sur R : ∀(x , y) ∈ R2, d(x , y) = |x − y |. On
considère la fonction f : R −→ R définie par :

f (x) =

{
x si x ∈ Q,

1− x si x ∈ R \Q.

1. Montrer que l’application δ : R2 −→ R définie par

∀(x , y) ∈ R2, δ(x , y) = |f (x)− f (y)|

est une distance sur R.

2. Déterminer, si elle existe, la limite de la suite

(√
2

n

)
n≥1

pour cette

distance.



Calcul de normes d’applications linéaires.

1. On considère l’application linéaire ϕ : C([0; 1],R) → R définie par

ϕ(u) =

∫ 1

0

x u(x) dx .

Calculer la norme de ϕ pour C([0; 1],R) muni de la norme ∥ · ∥∞.

Même question avec la norme ∥ · ∥1.
2. On considère l’application linéaire ψ : R[X ] → R définie par

ψ(P) = P ′(0).

Calculer la norme de ψ pour R[X ] muni de la norme
∥P∥ = supx∈[0;1] |P(x)|.



§1.3 Compacité

Définition
Soit (X , d) un espace métrique.

▶ Propriété de Borel-Lebesgue. Soit (Ui )i∈I des ouverts de X tels que⋃
i∈I Ui = X (recouvrement d’ouverts), il existe I0 ⊆ I fini tel que⋃
i∈I0

Ui = X .

▶ Propriété de Bolzano-Weierstrass. Tout suite d’éléments de X admet
une sous-suite convergente.

Théorème
Ces deux propriétés sont équivalentes pour un espace métrique. Un
espace avec ces propriétés est un espace compact

Résultat. Les compacts de R sont les fermés bornés

Résultat. Soit X un espace compact et (Ui )i∈I un recouvrement
d’ouverts de X . Alors il existe r > 0 tel que ∀x ∈ X , ∃i ∈ I avec
B(x , r) ⊆ Ui



Proposition

▶ Un sous-espace compact d’un espace métrique est fermé

▶ Une intersection arbitraire de compacts est compacte

▶ Une union finie de compacts est compacte

▶ Un fermé d’un espace compact est compact

Théorème
1. Borne atteinte. Soit X compact et f : X → R continue. Alors f est

bornée et elle atteint ses bornes. De plus, f est uniformément
continue (aussi vrai si on remplace R par Y métrique).

2. Riesz. Soit E un evn. Alors, E est de dimension finie ssi Bf (0, 1) est
compacte.

3. Produit de compacts. Le produit de deux espaces compacts avec
la distance produit est un espace compact

Proposition
Soit n ≥ 1, alors toutes les normes sur Rn (resp. sur Cn) sont équivalentes



§1.4 Connexité

Définition
Soit (X , d) un espace métrique. On dit que X est connexe si, pour tout
ouvert U et V avec X = U ∪ V et U ∩ V = ∅, on a (U,V ) = (X , ∅) ou
(∅,X ).

Proposition

▶ X est connexe ssi les seuls ouverts-fermés sont X et ∅
▶ X est connexe ssi toute fonction continue f : X → {0, 1} est

constante

▶ L’image d’un connexe par une fonction continue est connexe

▶ Soit A ⊆ X connexe et A ⊆ B ⊆ Ā alors B connexe
En particulier, l’adhérence d’un connexe est connexe

▶ Le produit de deux espaces connexes est connexe



Théorème (Connexité dans R)
Les connexes de R sont les intervalles. En conséquence, si f : R → R est
continue et si I est un intervalle, alors f (I ) est un intervalle (théorème
des valeurs intermédiaires)

Définition
Soit x ∈ X espace métrique. La composante connexe C (x) de x est la
réunion des connexes de X contenant x . C’est le plus grand connexe
contenant x . En particulier, C (x) est fermé.

Résultat. On utilise : une union (arbitraire) de connexes d’intersection
non vide est connexe

Théorème
Soient x , y ∈ X. Alors C (x) = C (y) ou C (x) ∩ C (y) = ∅. En particulier,
X est l’union (disjointe) de composantes connexes.



Définition
Un chemin reliant x à y avec x , y ∈ X espace métrique est une
application γ : [0; 1] → X continue avec γ(0) = x et γ(1) = y . (On peut
remplacer [0; 1] par un intervalle arbitraire [a; b])
On dit que X est connexe par arcs si, ∀x , y ∈ X , il existe un chemin
reliant x et y

Résultat. Connexe par arcs =⇒ connexe

Résultat. L’image d’un connexe par arcs par une fonction continue est
connexe par arcs

Application
Les espaces R et R2 ne sont pas homéomorphes

Théorème
L’adhérence de l’ensemble

{
(t, sin(1/t)) : t ∈]0; 1]

}
est compact,

connexe mais pas connexe par arcs



§1.5 Complétude

Définition
Un suite (xn) d’un espace métrique X est une suite de Cauchy si ∀ϵ > 0,
∃N tel que ∀n,m ≥ N, on a d(xn, xm) < ϵ
On dit que X est complet si toute suite de Cauchy de X est convergente

Résultat. Suite convergente =⇒ suite de Cauchy

Résultat. Suite de Cauchy avec une sous-suite convergente est
convergente (même limite)

Théorème
▶ Tout fermé d’un espace complet est complet

▶ Tout sous-espace complet est fermé

▶ Tout espace métrique compact est complet

▶ Tout evn de dimension finie sur R ou C est complet



Proposition
L’espace L(X ,Y ) avec X , Y evn et Y complet, munit de la norme
subordonnée |||·||| est complet

Théorème (Riesz-Fischer)
Soit p ∈ [1;+∞]. Alors (ℓp(N), ∥ · ∥p) est un evn complet avec

∥(un)∥p =

{(∑
n |un|p

)1/p
si p < +∞

supn |un| si p = +∞

et ℓp(N) = {suites réelles (un) avec ∥(un)∥p < +∞}.

Théorème
Soit X un espace métrique, il existe un unique (à isométrie près)
complété Y de X vérifiant X ⊆ Y , dX restriction de dY à X , Y complet
et X dense dans Y .



Théorème (Prolongement des fonctions unif. continues)
Soient X et Y deux espaces métriques avec X complet. Soient S ⊆ X,
une partie dense de X, et f : S → Y une application uniformément
continue. Alors, il existe un unique prolongement de f par continuité de
X vers Y .

Rappel Les applications linéaires continues sont uniformément continues.

Théorème (Point fixe des applications contractantes)
Soit X un espace métrique. Une application f : X → X est contractante
s’il existe 0 < α < 1 tel que

∀x , y ∈ X , d(f (x), f (y)) ≤ α d(x , y).

Supposons que X est complet et f : X → X est contractante, alors elle
admet un unique point fixe x∗ ∈ X avec f (x∗) = x∗. De plus, pour tout
x0 ∈ X, la suite (xn) avec xn+1 = f (xn) tend vers x∗ géométriquement,
c’est-à-dire

∀n ≥ 0, d(xn, x∗) ≤ αn d(x0, x∗).



Une version faible du théorème de Picard.

Soit (X , d) un espace métrique compact et soit f : X → X une fonction
telle que d(f (x), f (y)) < d(x , y) pour tous x , y ∈ X avec x ̸= y .

1. Montrer que f admet au plus un point fixe.

2. Montrer qu’il existe z ∈ X tel que d(z , f (z)) ≤ d(x , f (x)) pour tout
x ∈ X .

3. Montrer que z est l’unique point fixe de f .

4. Soit x0 ∈ X . On définit une suite (xn)n≥0 par xn+1 = f (xn) pour
tout n ≥ 0.
Montrer que la suite (d(xn, z))n≥0 converge vers ℓ ≥ 0

5. Montrer que ℓ = 0 et donc que (xn) converge vers z .


