Mesure et intégration

- 1. Tribus et boréliens
- 2. Mesures
- 3. Fonctions mesurables
- 4. Intégrales
- 5. Les grands théorèmes
- 6. Mesures produit
- 7. Changements de variables

§1 Tribus et boréliens

X un ensemble

Définition

Un clan de X est un ensemble \mathcal{C} de parties de X tel que

- 1. $\emptyset \in \mathcal{C}$
- 2. Si $A \in \mathcal{C}$ alors $A^c \in \mathcal{C}$ $(A^c = X \setminus A) = 2 \times \mathcal{C}$
- 3. \mathcal{C} stable par union finie

Une tribu est un clan aussi stable par union dénombrable.)

Soit \mathcal{T} une tribu de X et soit $Y \subseteq X$. Alors $\mathcal{T}_Y = \{A \cap Y : A \in \mathcal{T}\}$ est une tribu de Y (idem pour un clan). C'est la tribu induite par \mathcal{T} sur Y.

Soit \mathcal{T} une tribu fixée de X. Une partie A de X est mesurable si $A \in \mathcal{T}$.

Proposition

Soit T une tribu de X alors

- $X \in \mathcal{T}$
- ► T est stable par intersection dénombrable
- ightharpoonup Si $A, B \in \mathcal{T}$, alors $A \setminus B \in \mathcal{T}$ \leftarrow

Définition

Une classe monotone \mathcal{M} de X est un ensemble de parties de X tel que pour toute suite (A_n) d'éléments de \mathcal{M}

- ▶ Si (A_n) est une suite croissante (ie $A_n \subseteq A_{n+1}$) alors $\cup A_n \in \mathcal{M}^{\boldsymbol{\mathcal{E}}}$
- ▶ Si (A_n) est une <mark>suite décroissant</mark>e (ie $A_{n+1} \subseteq A_n$) alors $\cap A_n \in \mathcal{M}$

 $Résultat. Clan + classe monotone <math>\implies$ tribu

'Um An = OAn 19

Définition

T(A) = () T This we AST s il existe une plus petite tribu conter

Soit $\mathcal{A} \subset \mathcal{P}(X)$. Alors il existe une plus petite tribu contenant \mathcal{A} , on l'appelle la tribu engendrée par \mathcal{A} , dénotée $\mathcal{T}(\mathcal{A})$. (De même pour clan et classe monotone dénotés $\mathcal{C}(\mathcal{A})$ et $\mathcal{M}(\mathcal{A})$ respectivement)

Résultat. On a $\mathcal{C}(\mathcal{A}) \subseteq \mathcal{T}(\mathcal{A})$ et $\mathcal{M}(\mathcal{A}) \subseteq \mathcal{T}(\mathcal{A})$

Théorème (Classe monotone)

Soit C un clan, alors $\mathcal{M}(C) = \mathcal{T}(C)$ (et donc c'est une tribu)

Le but de cet exercice est de montrer qu'une réunion *arbitraire* d'ensembles mesurables n'est pas forcément un ensemble mesurable. Soit

 $\mathscr{T} = \{A \subseteq \mathbb{R} \text{ avec } A \text{ au plus dénombrable ou } A^c \text{ au plus dénombrable}\}.$

- 1. Montrer que $\mathcal T$ est une tribu.
- 2. Montrer que $\mathscr{T} \neq \mathscr{P}(\mathbb{R})$.
- 3. Conclure.

Définition

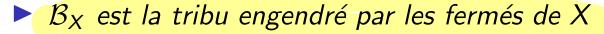
Soit X un espace métrique, la tribu des boréliens de X, dénotée \mathcal{B}_X , est la tribu engendrée par les ouverts de X. Les éléments de cette tribu sont les boréliens de X.

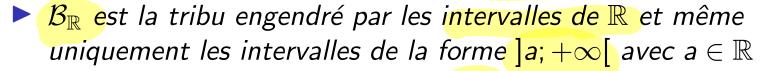
Résultat. Soit Y sous-espace métrique de X alors \mathcal{B}_Y est la tribu de Y induite par \mathcal{B}_X sur Y

Résultat. Les intervalles ouverts et fermés de $\mathbb R$ sont des boréliens de $\mathbb R$

Proposition

Soit X espace métrique. On a





 $lackbox{$\triangleright$} \mathcal{B}_{\mathbb{R}^n}$ est la tribu engendré par le<mark>s pavés</mark> $I_1 \times \cdots \times I_n$ avec I_j intervalle ouvert de \mathbb{R}

Remarque. Quand X est un espace métrique, la tribu considérée sur X est par défaut la tribu des boréliens

§2 Mesures

Définition

Soit \mathcal{T} une tribu de X. Une mesure (positive) sur X est une application $\mu: \mathcal{T} \to [0; +\infty]$ telle que

- $\mu(\emptyset) = 0$
- ightharpoonup Si (A_n) est une suite d'éléments de \mathcal{T} d.d.d. (deux à deux disjoints) AnnAm=&
 pow n + m

alors $\mu(\bigcup A_n) = \sum \mu(A_n)$ (propriété de σ -additivité)

mple Exemple

On prend T = P(X) l'ensemble des parties de X

$$\mu(A) = \begin{cases} \operatorname{card}(A) & \text{si } A \text{ est finie} \\ +\infty & \text{sinon} \end{cases}$$

C'est la mesure de comptage

Définition

Une espace mesurable est un couple (X, \mathcal{T}) avec \mathcal{T} tribu de X et un espace mesuré est un triplet (X, \mathcal{T}, μ) avec, de plus, μ une mesure sur \mathcal{T}

Soit (X, \mathcal{T}, μ) un espace mesuré.

Proposition

ABE V

- Soient A et B deux mesurables avec $A \subseteq B$, alors $\mu(A) \le \mu(B)$ (monotonie). Si, de plus, $\mu(B) < +\infty$ alors $\mu(B) = \mu(A) + \mu(B \setminus A)$
- ► Soient $A_1, \ldots A_k$ des mesurables, alors $\mu(\bigcup_i A_i) \leq \sum_i \mu(A_i)$ avec égalité si les A_i sont d.d.d. (deux à deux disjoints)
- Soient A et B deux mesurables alors

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$$

- \triangleright Soit (A_n) une suite de mesurables
 - ightharpoonup Alors $\mu(\bigcup_i A_i) \leq \sum_i \mu(A_i)$ (sous-additivité)
- Si $(A_n) \nearrow A$ alors $\mu(A_n) \to \mu(A)$ Si $(A_n) \searrow A$ et $\mu(A_0) < \infty$ alors $\mu(A_n) \to \mu(A)$

Am CAL

Définition

- La mesure μ est finie si $\mu(X) < +\infty$ =7 +AeT, $\mu(A) < +\infty$ La mesure μ est σ -finie s'il existe une suite (A_n) de mesurables avec $\bigcup_n A_n = X$ et $\mu(A_n) < +\infty \ \forall n$
- \blacktriangleright La mesure μ est une mesure de probabilité si $\mu(X)=1$
- \triangleright Si X est métrique et $\mathcal T$ est la tribu des boréliens, la mesure μ est borélienne
- ightharpoonup Si $X = \mathbb{R}^n$ alors μ est une mesure de Radon si μ est borélienne et $\forall K$ compact de X, $\mu(K) < +\infty$

Définition

Un partie A de X (non nécessairement mesurable) est négligeable s'il existe un mesurable B avec $A \subseteq B$ et $\mu(B) = 0$. Une mesure est complète si toutes les parties négligeables sont mesurables. Si ce n'est pas le cas, on peut construire une extension de μ en une (unique) mesure complète $\bar{\mu}$ en ajoutant les négligeables à \mathcal{T} pour obtenir la tribu complétée \mathcal{T} . Une propriété P(x) définie pour $x \in X$ est vraie presque partout ou vraie p.p. si l'ensemble $\{x \in X : P(x) \text{ est faux}\}$ est négligeable.

Théorème

Il existe une unique mesure ν_n sur \mathbb{R}^n telle que, pour chaque pavé $P = I_1 \times \cdots \times I_n$ avec I_i intervalle, on a

$$\nu_n(P) = \text{vol}(P) = \text{produit des longueurs de } I_j$$

On note λ_n la complétée de ν_n et on l'appelle la mesure de Lebesgue dans \mathbb{R}^n . On note \mathcal{L}_n la complétée de $\mathcal{B}_{\mathbb{R}^n}$ pour cette mesure et on l'appelle la tribu de Lebesgue de \mathbb{R}^n .

On a les propriétés suivantes

- ν_n est unique
- $\triangleright \nu_n$ est une mesure de Radon et est σ -finie
- u_n est invariante par translation, $\forall A \in \mathcal{B}_{\mathbb{R}^n}, \forall x \in \mathbb{R}^n$ $u_n(x+A) = \nu_n(A)$
- $ightharpoonup
 u_1$ est donnée par la formule suivante pour $A \in \mathcal{B}_{\mathbb{R}}$

$$\nu_1(A) = \inf \left\{ \sum_j (b_j - a_j) : A \subseteq \bigcup_j]a_j, b_j [\right\}$$

Le but de cet exercice est d'aboutir à l'existence d'une partie $A \subseteq \mathbb{R}$ qui n'est pas Lebesgue-mesurable. En particulier, A n'est pas borélienne.

- 1. Soit B une partie de \mathbb{R} telle que, pour tout $x \in \mathbb{R}$, il existe $b \in B$ tel que $x b \in \mathbb{Q}$. Montrer que si B est Lebesgue-mesurable alors $\lambda(B) > 0$.
- 2. Soit B une partie de [0,1] telle que $\forall x,y \in B, \ x \neq y \implies x-y \notin \mathbb{Q}$. Montrer qu'il existe une infinité de translatés de B inclus dans [0,2] et deux à deux disjoints. En déduire que si B est Lebesgue-mesurable alors $\lambda(B)=0$.
- 3. Que peut-on dire d'une partie de $\mathbb R$ vérifiant les deux propriétés ci-dessus? De quelle façon peut-on obtenir une telle partie de $\mathbb R$?

§3 Fonctions mesurables et intégrales

Soit (X, \mathcal{T}) un espace mesurable.

Définition

Une fonction étagée est une fonction $f: X \to \mathbb{R}$ de la forme

$$f = \sum_{i=1}^{k} a_i \chi_{A_i}$$
 continum lineare

Lineare

Lineare

avec $k \ge 0$, $a_i \in \mathbb{R}$, $A_i \in \mathcal{T}$ et χ_A est la fonction caractéristique de A Une fonction $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ est mesurable si elle est la limite (simple) de fonctions étagées. Si X métrique et \mathcal{T} tribu des boréliens, on dit que f est borélienne

On dit que la fonction $f: X \to \mathbb{R}^n$ donnée par $f = (f_1, \dots f_n)$ est mesurable si chaque f_i est mesurable

Résultat. Si f est mesurable et positive, on peut trouver une suite croissante de fonctions étagées de limite f

Remarque. Convention de calcul : $0 \cdot (\pm \infty) = 0$ donc le produit est toujours défini dans \mathbb{R} (mais pas la somme)

Définition

Soit A une partie de X et f ($A \rightarrow \mathbb{R}$). On dit que f est mesurable si A est mesurable et si f_{χ_A} (= f étendue à X par 0 sur A^c) est mesurable

Résultat. La fonction χ_A est mesurable ssi A est mesurable

Théorème

Soit A un mesurable de X. La fonction $f: A \to \mathbb{R}$ est mesurable ssi on $a: f^{-1}(+\infty) \in \mathcal{T}$, $f^{-1}(-\infty) \in \mathcal{T}$ et, $\forall B \in \mathcal{B}_{\mathbb{R}}$, $f^{-1}(B) \in \mathcal{T}$.

Proposition

- Si X est métrique alors les fonctions continues sont boréliennes
- Une limite simple de fonctions mesurables est mesurable
- Soient $g: \mathbb{R}^n \to \mathbb{R}^k$ borélienne et $f: X \to \mathbb{R}^n$ mesurable alors $g \circ f$ mesurable
- Soient $f,g:X\to \overline{\mathbb{R}}$ mesurables alors fg est mesurable, λf est mesurable $(\lambda\in\mathbb{R})$ et f+g mesurable là où elle est définie

non defrie pour

) < 40 - s

x wec g(n) = - 20 +20

Proposition

- Soient f_1, \ldots, f_n mesurables alors $\max(f_1, \ldots, f_n)$ et $\min(f_1, \ldots, f_n)$ sont mesurables
- Soit (f_n) une suite de fonctions mesurables alors sup f_n , inf f_n , lim sup f_n et lim inf f_n sont mesurables

Théorème

Soit (f_n) une suite de fonctions mesurables. On pose

 $A = \{x \in \mathbb{R} : la \text{ suite } (f_n(x)) \text{ converge dans } \overline{\mathbb{R}} \}.$

Alors la partie A est mesurable et la fonction $f:A \to \overline{\mathbb{R}}$ définie par $f(x) = \lim_n f_n(x)$ est mesurable

Exercice. Soient (X, \mathcal{T}) un espace mesurable et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables $f_n : X \longrightarrow \overline{\mathbb{R}}$. Démontrer que l'ensemble des points $x \in X$ tels que la suite $(f_n(x))_{n \in \mathbb{N}}$ admet une limite est un ensemble mesurable. Indication : On rappelle que $(a_n)_{n \in \mathbb{N}}$ converge ssi lim inf $a_n = \limsup a_n$.

$$n \to +\infty$$
 $n \to +\infty$

f(z) ∂_{z} ∂_{z}

Soit (X, \mathcal{T}, μ) espace mesuré.

Définition

Soit (f_n) une suite de fonctions mesurables.

 $ightharpoonup (f_n)$ est de Cauchy en mesure si, $\forall \epsilon > 0$

$$\lim_{m,n} \mu(\{x \in X : |f_n(x) - f_m(x)| \ge \epsilon\} = 0$$

 $f(f_n)$ est de Cauchy presque uniformément si, $\forall \epsilon > 0$, $\exists A \in \mathcal{T}$ avec $\mu(A) < \epsilon$ et (f_n) de Cauchy uniforme sur $X \setminus A$

Soit f mesurable.

$$f_n \to f$$
 en mesure si, $\forall \epsilon > 0$,

$$\lim_{n} \mu(\{x: |f_n(x) - f(x)| \ge \epsilon\} = 0$$

• $f_n \to f$ presque uniformément si, $\forall \epsilon > 0$, $\exists A \in \mathcal{T}$ avec $\mu(A) < \epsilon$ et $f_n \to f$ uniformément sur $X \setminus A$

Soit $f:[0,1] \to \mathbb{R}$ une fonction Lebesgue-mesurable. Le but de cet exercice est de montrer le résultat suivant : pour tout $\epsilon > 0$, il existe un borélien $B \subseteq [0,1]$ tel que $\nu_1(B) < \epsilon$ et la restriction de f à $[0,1] \setminus B$ est continue.

1. Soient F et G deux fermés non vides et disjoints d'un espace métrique (X,d). Montrer que la fonction

$$x \mapsto \frac{d(x,G)}{d(x,F)+d(x,G)}$$

est une fonction continue sur X qui vaut 1 sur F et 0 sur G. (On rappelle que d(x,A) est la plus petite distance entre x et les points de A)

- Soit A un Lebesgue-mesurable. On admet le résultat suivant : il existe F fermé et U ouvert tels que $F\subseteq A\subseteq U$ et $\nu_1(U\setminus F)<\epsilon$. En déduire le résultat pour f la fonction caractéristique de A.
- 3. Montrer le résultat pour f une fonction étagée.
- 4. En utilisant le résultat suivant, déduire des questions précédentes le résultat en général :

Théorème d'Egoroff. Soit (X, \mathcal{T}, μ) un espace mesuré. Soit (f_n) une suite de fonctions qui tend simplement vers f. Alors, pour tout $\epsilon > 0$, il existe $A \in \mathcal{T}$ avec $\mu(A) \leq \epsilon$ et (f_n) converge unif. vers f sur $X \setminus A$.

§4 Intégrales

Définition

Soit une fonction étagée $f: X \to \mathbb{R}$ de représentation $f = \sum_i a_i \chi_{A_i}$. On dit que la représentation est admissible si $\forall i \ a_i \geq 0$ (et donc $f \geq 0$). Elle est canonique si les a_i sont deux à deux distincts et les A_i sont d.d.d.

Résultat. Une fonction étagée admet une unique représentation canonique (à l'ordre près) et elle est admissible ssi $f \ge 0$.

Définition

Soit f étagée et positive de représentation canonique $f = \sum_i a_i \chi_{A_i}$, on définit l'intégale de f sur X par rapport à μ par

$$\int_X f(x) d\mu(x) = \int_X f d\mu = \int_X f = \sum_i a_i \mu(A_i) \in [0; \infty]$$

Résultat. Si f étagée et positive de représentation admissible $f = \sum_i b_i \chi_{B_i}$ alors on a $\int f = \sum_i b_i \mu(B_i)$

Définition

Soit $f: X \to [0; +\infty]$ mesurable. On définit l'intégale de f sur X par rapport à μ par

$$\int_X f(x) \, d\mu(x) = \int_X f \, d\mu = \int f = \sup \left\{ \int u : u \text{ étagée, positive et } u \le f \right\}$$

On dit que f est intégrable si $\int f$ est finie.

Soit $f: X \to \mathbb{R}$ mesurable, on dit que f a un intégrale si $\int f_+ - \int f_-$ a un sens où $f_+ = \max(f, 0)$ et $f_- = \max(-f, 0)$ sont mesurables, positives telles que $f = f_+ - f_-$. Dans ce cas, on pose

$$\int_X f \, d\mu = \int_X f_+ \, d\mu - \int_X f_- \, d\mu \in \bar{\mathbb{R}}$$

On dit que f est intégrable si f_+ et f_- sont intégrables. On note $\mathcal{L}^1(X; \mu)$ l'ensemble des fonctions intégrables

Remarque. f intégrable \iff f a une intégrale finie \iff $\int f_+ < +\infty$ et $\int f_- < +\infty \iff \int |f| < +\infty$

Proposition

Soient f et g mesurables ayant une intégrale.

- ► Si $f \le g$ alors $\int f \le \int g$
- Si $\lambda \in \mathbb{R}$ alors $\int (f + \lambda g) = \int f + \lambda \int g$

Définition

Soit $A \subseteq X$ mesurable et $f: A \to \overline{\mathbb{R}}$ mesurable. On dit que f a une intégrale si $f\chi_A$ (= extension de f à X en prenant 0 sur A^c) a une intégrale. On pose

$$\int_{A} f \, d\mu = \int_{X} f \chi_{A} \, d\mu$$

Résultat. Si A est négligeable alors $\forall f: A \to \overline{\mathbb{R}}$ mesurable, on a $\int_A f = 0$. De même, si $f: X \to \overline{\mathbb{R}}$ mesurable et f = 0 p.p. alors $\int f = 0$.

Exercice. Soient (X, μ) un espace mesuré et $f: X \longrightarrow \overline{\mathbb{R}}$ une fonction μ -intégrable.

- 1. Montrer que f est finie μ -presque partout.
- 2. Montrer que si $\int_X |f| d\mu = 0$ alors f est nulle μ -presque partout.

Résultat. Soit f mesurable alors f a une intégrale pour μ ssi f a une intégrale pour $\bar{\mu}$ et, dans ce cas, les deux sont égales.

Résultat. Soient f, g mesurables et f = g p.p. Si f a une intégrale alors g a une intégrale et, dans ce cas, les deux sont égales.

Proposition

Soit $f: X \to \overline{\mathbb{R}}$ intégrable. On pose $A = f^{-1}(\{\pm \infty\})$. Alors $\mu(A) = 0$. On pose $g: X \to \overline{\mathbb{R}}$ définie par g(x) = f(x) si $x \notin A$ et g(x) = 0. Alors $\int |f - g| = 0$ et donc $\int f = \int g$.

Remarque. Il suit qu'on peut toujours modifier f intégrable pour qu'elle ne prenne que des valeurs finies sans changer son intégrale.

Définition

Soit $f = (f_1, \ldots, f_n) : X \to \mathbb{R}^n$ mesurable. f est intégrable ssi chaque f_i est intégrable et $\int f = (\int f_i)_i$. En particulier, si $f : X \to \mathbb{C}$ alors $\int f = \int \operatorname{Re}(f) + i \int \operatorname{Im}(f)$

Théorème (Beppo-Levi)

Soit (f_n) une suite croissante de fonctions mesurables positives. On suppose que (f_n) est convergente. Alors, on a $\lim_{n \to \infty} f_n = \int_{n \to \infty} \lim_{n \to \infty} f_n$.

Résultat. Si f et g ont une intégrale et les sommes f+g et $\int f+\int g$ existent. Alors, f+g a une intégrale et $\int (f+g)=\int f+\int g$.

Proposition

- ► Si f mesurable alors |f| mesurable
- ▶ Si f a une intégrale alors $|\int f| \leq \int |f|$
- ▶ Si f mesurable et g intégrable avec $|f| \le g$ alors f intégrable
- ► Si f intégrable et $\int |f| = 0$ alors f = 0 p.p.
- ▶ Si f et g intégrables, $f \le g$ et $\int f = \int g$ alors f = g p.p.

Proposition (Inégalité de Markov)

Soit f mesurable. Soient $1 \le p < +\infty$ et t > 0. Alors

$$\mu(\{x \in X : |f(x)| > t\}) \le \frac{1}{t^p} \int |f|^p$$

Notation. L'intégrale de Riemann est dénotée par $\int_a^b f(x) dx$

Théorème

- Soit $f:[a,b] \to \mathbb{R}$ continue alors f est Lebesgue-intégrable sur [a,b] et $\int_a^b f(x) dx = \int_{[a,b]} f d\nu_1$
- ▶ Dans le cas $f: I \to \mathbb{R}$ continue avec I non compact d'extrémités $a, b \in \overline{\mathbb{R}}$
 - f est Lebesgue-intégrable ssi l'intégrale $\int_a^b f(x) dx$ converge absolument et dans ce cas $\int_a^b f(x) dx = \int_I f d\nu_1$
 - Si $f \ge 0$ alors $\int_a^b f(x) dx = \int_I f d\nu_1$
 - Si $\int_{I} f d\nu_1$ existe alors on a $\int_{a}^{b} f(x) dx = \int_{I} f d\nu_1$

Remarque. Dans le cas I non compact d'extrémités $a, b \in \mathbb{R}$, il est possible que $\int_a^b f(x) dx$ existe mais pas $\int_I f d\nu_1$

Notation. Pour $I \subseteq \mathbb{R}$ intervalle, on notera parfois $\int_I f(x) dx$ plutôt que $\int_I f d\nu_1$ (s'il n'y a pas de risque de confusion)

Théorème (Critère de Lebesgue)

Soit $f:[a,b] \to \mathbb{R}$. Alors f est Riemann-intégrable sur [a,b] ssi f est bornée et l'ensemble des discontinuités de f est ν_1 -négligeable.

Résultat. Si $f:[a,b] \to \mathbb{R}$ est Riemann-intégrable alors f est Lebesgue-intégrable et $\int_a^b f(x) dx = \int_{[a,b]} f d\nu_1$.

Théorème

Soit $f:[a,b] \to \mathbb{R}$ Lebesgue-intégrable. On pose $F(x) = \int_{[a,x]} f \ d\nu_1$. Alors F est dérivable ν_1 -p.p. et pour $F'(x) = f(x) \ \nu_1$ -p.p.

Théorème (Leibniz-Newton pour l'intégrale de Lebesgue)

Soit $F:[a,b] \to \mathbb{R}$ continue, dérivable sur]a,b[avec F' ν_1 -intégrable. Alors, $\forall x \in [a,b]$, $F(x) = F(a) + \int_{[a,x]} F'(t) d\nu_1(t)$.

Remarque. Ce résultat n'est pas forcément vraie si on suppose juste F dérivable ν_1 -p.p (exemple : F(x) = 0 sur [0, 1/2] et = 1 sur]1/2, 1]) et même avec F continue (on peut construire F continue avec F' = 0 p.p.)

Exercice. On considère la fonction $f: \left[0; \frac{\pi}{2}\right] \longrightarrow \mathbb{R}$, définie par

$$f(x) = \begin{cases} \sin(x) & \text{si } \cos(x) \in \mathbb{Q} \\ \sin^2(x) & \text{si } \cos(x) \notin \mathbb{Q} \end{cases}$$

- 1. Montrer que la fonction f est Lebesgue-intégrable sur $\left[0; \frac{\pi}{2}\right]$.
- 2. Calculer l'intégrale de Lebesgue $\int_{[0;\pi/2]} f(x) d\nu_1(x)$.

§5 Les grands théorèmes

Théorème (Lemme de Fatou)

Soit (f_n) suite de fonctions mesurables ≥ 0 , alors \int lim inf $f_n \leq$ lim inf $\int f_n$

Théorème (Convergence dominée)

Soit (f_n) suite de fonctions mesurables avec $f_n \to f$ et telle qu'il existe g intégrable avec $\forall n, |f_n| \leq g$. Alors f est intégrable et $\int |f_n - f| \to 0$ et donc $\int \lim f_n = \lim \int f_n$.

Proposition (Réciproque de la convergence dominée)

Soit (f_n) suite de fonctions mesurables et f mesurable tels que $\int |f_n - f| \to 0$. Alors il existe une suite extraite (f_{n_k}) et une fonction intégrable g tels que $\forall k$, $|f_{n_k}| \leq g$ et $f_{n_k} \to f$ p.p.

Théorème (Convergence dominée p.p.)

Soit (f_n) suite de fonctions mesurables telle qu'il existe g intégrable avec $\forall n, |f_n| \leq g$ p.p et il existe f mesurable avec $f_n \to f$ p.p. Alors f intégrable, $\int |f_n - f| \to 0$ et $\int f_n \to f$.

Intégrales dépendant d'un paramètre

Notation. $f: X \times \Lambda \to \mathbb{R}$ (avec $\Lambda \subseteq Y$ espace métrique). Pour $\lambda \in \Lambda$, $f(\cdot, \lambda): X \to \mathbb{R}, \ x \mapsto f(x, \lambda)$. De même avec $f(x, \cdot)$ pour $x \in X$.

Théorème

Supposons que

- 1. Pour tout $\lambda \in \Lambda$, $f(\cdot, \lambda)$ est mesurable
- 2. Pour presque tout $x \in X$, $f(x, \cdot)$ est continue
- 3. Il existe $g: X \to \mathbb{R}$ intégrable telle, $\forall \lambda \in \Lambda$, $|f(\cdot, \lambda)| \leq g$ p.p.

Alors $F: \Lambda \to \mathbb{R}$ définie par $F(\lambda) = \int f(\cdot, \lambda) d\mu$ est continue.

Proposition

Dans le cas où Λ est un ouvert de $Y = \mathbb{R}^n$, on peut remplacer la condition 3 par

3'. Pour toute boule fermée $\bar{B}(\lambda_0, r) \subseteq \Lambda$, il existe une fonction intégrable g telle que $\forall \lambda \in \bar{B}(\lambda_0, r)$, $|f(\cdot, \lambda)| \leq g$ p.p.

On suppose Λ ouvert de $Y = \mathbb{R}^n$. Pour la variable $\lambda = (\lambda_1, \dots, \lambda_n) \in \Lambda$, on dénote par $\partial_j = \frac{\partial}{\partial \lambda_j}$ la dérivée partielle

Théorème

Soit $j \in \{1, ..., n\}$. Supposons que

- 1. Pour tout $\lambda \in \Lambda$, la fonction $f(\cdot, \lambda)$ est intégrable Donc la fonction $F(\lambda) = \int f(\cdot, \lambda) d\mu$ existe
- 2. Pour tout $x \in X$, la fonction $\partial_i f(x, \cdot)$ existe
- 3. Pour toute boule fermée $\bar{B}(\lambda_0, r) \subseteq \Lambda$, il existe une fonction intégrable g telle que $\forall \lambda \in \bar{B}(\lambda_0, r)$, $|\partial_j f(\cdot, \lambda)| \leq g$ p.p.

Alors $\partial_j F$ existe et $\partial_j F(\lambda) = \int \partial_j f(\cdot, \lambda) d\mu$

Théorème

Soit (f_n) une suite de fonctions intégrables telles que $\sum_n \int |f_n| < +\infty$. Alors $\sum_n f_n(x)$ converge p.p. et $\sum_n \int f_n = \int f$ avec

$$f(x) = \begin{cases} \sum_{n} f_n(x) & \text{si la s\'erie converge} \\ 0 & \text{sinon} \end{cases}$$

Exercice.

- 1. Montrer que $f: x \mapsto \frac{\sin x}{e^x 1}$ est Lebesgue-intégrable sur $[0, \infty[$.
- 2. Montrer que, pour tout x > 0, on peut écrire $f(x) = \sum_{n=1}^{\infty} e^{-nx} \sin x$. Et pour x = 0?
- 3. En déduire que $\int_0^\infty \frac{\sin x}{e^x 1} dx = \sum_{n=1}^\infty \frac{1}{n^2 + 1}.$

Exercice. Pour
$$y \ge 0$$
, on pose $F(y) = \int_0^\infty \frac{e^{-x^2y}}{1+x^2} dx$.

- 1. Montrer que F est continue sur \mathbb{R}_+ .
- 2. Calculer F(0) et déterminer $\lim_{y\to\infty} F(y)$.
- 3. Montrer que F est dérivable sur \mathbb{R}_+^* .
- 4. Montrer que F est solution sur \mathbb{R}_+^* d'une équation différentielle du premier ordre s'exprimant à l'aide du nombre $I = \int_0^\infty e^{-x^2} dx$.
- 5. En déduire, sous forme intégrale, une expression de F(y) pour y > 0.
- 6. En déduire la valeur de 1.

§6 Mesures produit

Soient (X, \mathcal{T}, μ) et (Y, \mathcal{S}, ν) deux espaces mesurés.

Définition

La tribu produit $\mathcal{T} \otimes \mathcal{S}$ est la tribu de $X \times Y$ engendrée par les pavés $A \times B$ avec $A \in \mathcal{T}$ et $B \in \mathcal{S}$.

Pour $E \in \mathcal{T} \otimes \mathcal{S}$, la coupe de E en $x \in X$ est $E_x = \{y \in Y : (x, y) \in E\}$ et la coupe de E en $y \in Y$ est $E^y = \{x \in X : (x, y) \in E\}$.

Résultat. $\mathcal{B}_{\mathbb{R}^n} \otimes \mathcal{B}_{\mathbb{R}^m} = \mathcal{B}_{\mathbb{R}^{n+m}}$

Résultat. Soit $E \in \mathcal{T} \otimes \mathcal{S}$ alors $\forall x, E_x \in \mathcal{S}$ et $\forall y, E^y \in \mathcal{T}$

Proposition

Supposons μ et ν σ -finies alors il existe une unique mesure $\mu \otimes \nu$ sur $\mathcal{T} \otimes \mathcal{S}$, appellée mesure produit, telle que $\mu \otimes \nu(A \times B) = \mu(A) \nu(B)$, pour $A \in \mathcal{T}$ et $B \in \mathcal{S}$. De plus, on a $\forall E \in \mathcal{T} \otimes \mathcal{S}$

$$\mu \otimes \nu(E) = \int_X \nu(E_X) d\mu(X) = \int_Y \mu(E^Y) d\nu(Y).$$

Résultat. Si seulement une des deux mesures est σ -finie, on a bien l'existence mais pas l'unicité (ni la deuxième propriété)

Remarque. Pour μ et ν σ -finies, on a $\bar{\mu} \otimes \bar{\nu} = \overline{\mu \otimes \nu}$.

Théorème (Tonelli)

Soit $f: X \times Y \to [0, +\infty]$ fonction $\mathcal{T} \otimes \mathcal{S}$ -mesurable. Alors les fonctions

$$y \mapsto \int_X f(\cdot, y) d\mu$$
 et $x \mapsto \int_Y f(x, \cdot) d\nu$

sont mesurables (pour S et T respectivement) et

$$\int_{X\times Y} f \, d\mu \otimes \nu = \int_{Y} \left(\int_{X} f(x, y) \, d\mu(x) \right) d\nu(y)$$
$$= \int_{X} \left(\int_{Y} f(x, y) \, d\nu(y) \right) d\mu(x)$$

Corollaire

Soit $f:X imes Y o ar{\mathbb{R}}$ mesurable. Alors f est intégrable ssi

$$\int_X \left(\int_Y |f(x,y)| \, d\nu(y) \right) d\mu(x) < +\infty$$

ce qui est bien sûr équivalent à $\int_Y \left(\int_X |f(x,y)| \, d\mu(x) \right) \, d\nu(y) < +\infty$

Théorème (Fubini)

Soit $f: X \times Y \to \overline{\mathbb{R}}$ intégrable. Alors

- Pour presque tout $y \in Y$, la fonction $f(\cdot, y)$ est μ -intégrable
- ightharpoonup La fonction g est ν -intégrable avec

$$g(y) = \begin{cases} \int_X f(\cdot, y) d\mu & \text{si l'intégrale existe} \\ 0 & \text{sinon} \end{cases}$$

• On a
$$\int_{X\times Y} f d\mu \otimes \nu = \int_{Y} g d\nu$$

(Et un énoncé analogue avec x et y échangés)

Notation. Si $B \subseteq \mathbb{R}^n$ est un borélien et $f: B \to \mathbb{R}$ a une intégrale pour la mesure de Lebesgue λ_n , on note par abus (s'il n'y pas de risque de confusion) $\int_B f \ d\lambda_n = \int_B f(x) \ dx = \int_B f(x_1, \dots, x_n) \ dx_1 \cdots dx_n$.

Pour
$$B = \mathbb{R}^n$$
, on a

$$\int_{\mathbb{R}^n} f \, d\lambda_n = \int_{\mathbb{R}} \left(\cdots \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x_1, \ldots, x_n) \, dx_1 \right) dx_2 \cdots \right) dx_n$$

Théorème (Tonelli et Fubini, versions locales)

Soit $E \subseteq X \times Y$ mesurable et $f : E \to \overline{\mathbb{R}}$ mesurable.

► (Tonelli) Supposons $f \ge 0$. Alors, $y \mapsto \int_{E^y} f(\cdot, y) d\mu$ est mesurable et

$$\int_{E} f \, d\mu \otimes \nu = \int_{Y} \left(\int_{E^{y}} f \, d\mu \right) d\nu = \int_{Z} \left(\int_{E^{y}} f \, d\mu \right) d\nu$$

pour Z mesurable avec $Z \supseteq \{y \in Y : \exists x \in X \text{ avec } (x,y) \in E\}$ (Et un énoncé analogue avec x et y échangés)

Fubini) Supposons f intégrable. Alors, pour presque tout y, $f(\cdot, y)$ est intégrable sur E^y , la fonction g est ν -intégrable avec

$$g(y) = \begin{cases} \int_{E^y} f(\cdot, y) d\mu & \text{si l'intégrale existe} \\ 0 & \text{sinon} \end{cases}$$

et

$$\int_{E} f \, d\mu \otimes \nu = \int_{Y} g \, d\nu = \int_{Z} g \, d\nu$$

pour Z mesurable avec $Z \supseteq \{y \in Y : \exists x \in X \text{ avec } (x,y) \in E\}$ (Et un énoncé analogue avec x et y échangés)

Exercice.

Soit μ la mesure de comptage sur $([0,1],\mathscr{B}([0,1]))$.

- 1. Soit $\Delta=\big\{(x,x)\,;\,x\in[0,1]\big\}$. Est-ce que Δ est un borélien de \mathbb{R}^2 ? de $[0,1]^2$?
- 2. Justifier l'existence des intégrales itérées suivantes et les calculer :

$$I_{1} = \int_{[0,1]} \left(\int_{[0,1]} \chi_{\Delta}(x,y) \, d\lambda(x) \right) \, d\mu(y)$$

$$I_{2} = \int_{[0,1]} \left(\int_{[0,1]} \chi_{\Delta}(x,y) \, d\mu(y) \right) \, d\lambda(x).$$

3. Quelle conclusion peut-on tirer de cet exercice?

§7 Changements de variables

Proposition

Soit $A \in \operatorname{GL}_n(\mathbb{R})$ et soit $E \subseteq \mathbb{R}^n$. Alors, A(E) est borélien ssi E est borélien et, dans ce cas, $\lambda_n(A(E)) = |\det(A)| \lambda_n(E)$.

Résultat. Si A est non inversible alors $\forall E \subseteq \mathbb{R}^n, A(E)$ est négligeable

Définition

Soient U et V deux ouverts de \mathbb{R}^n . Une application $\Phi: U \to V$ est un \mathcal{C}^1 -diffeomorphisme si

- $lackbox{ } \Phi = (\Phi_1, \dots, \Phi_n)$ a des dérivées partielles continues,
- Φ est bijective,
- ightharpoonup Le déterminant jacobien de Φ est non nul en tout point de U

$$\det J_{\Phi} = \det \left(\frac{\partial \Phi_{i}}{\partial x_{j}} \right)_{i,j} = \det \begin{pmatrix} \frac{\partial \Phi_{1}}{\partial x_{1}} & \frac{\partial \Phi_{1}}{\partial x_{2}} & \cdots & \frac{\partial \Phi_{1}}{\partial x_{n}} \\ \frac{\partial \Phi_{2}}{\partial x_{1}} & \frac{\partial \Phi_{2}}{\partial x_{2}} & \cdots & \frac{\partial \Phi_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \Phi_{n}}{\partial x_{1}} & \frac{\partial \Phi_{n}}{\partial x_{2}} & \cdots & \frac{\partial \Phi_{n}}{\partial x_{n}} \end{pmatrix}$$

Théorème (changement de variables)

Soit $\Phi: U \to V$ un C^1 -diffeomorphisme et soient $f: V \to \overline{\mathbb{R}}$. On pose $g = |\det J_{\Phi}| (f \circ \Phi): U \to \overline{\mathbb{R}}$. Alors, on a

- g est borélienne ssi f est borélienne,
- g est Lebesgue-mesurable ssi f est Lebesgue-mesurable,
- p g a une intégrale ssi f a une intégrale et on a

$$\int_{V} f \, d\lambda_{n} = \int_{U} g \, d\lambda_{n} = \int_{\Phi^{-1}(V)} |\det J_{\Phi}| \, (f \circ \Phi) \, d\lambda_{n}$$

Corollaire

Supposons Φ continue sur U_1 ouvert avec $U_1 \supseteq U$ (et toujours $\Phi: U \to V$ un C^1 -diffeomorphisme). Soit $E \subseteq U_1 \setminus U$ fermé et négligeable, $f: V \cup \Phi(E) \to \overline{\mathbb{R}}$. On pose $g = |J_{\Phi}| (f \circ \Phi) : U \cup E \to \overline{\mathbb{R}}$. Alors, on a les mêmes résultats et

$$\int_{V\cup\Phi(E)} f \, d\lambda_n = \int_{\Phi^{-1}(V\cup\Phi(E))} |\det J_{\Phi}| \, (f\circ\Phi) \, d\lambda_n = \int_{\Phi^{-1}(V)} |\det J_{\Phi}| \, (f\circ\Phi) \, d\lambda_n$$

Remarque. En général, on prendra $E = \partial U$ (frontière)

Coordonnées polaires

$$\begin{split} \Phi: \mathbb{R}^2 &\to \mathbb{R}^2 \text{ avec } \Phi(r,\theta) = (r\cos(\theta),r\sin(\theta)) \\ U = &]0, +\infty[\times]0, 2\pi[,\ V = \mathbb{R}^2 \setminus [0,\infty[\times\{0\}]]) \\ &\int_{\mathbb{R}^2} f(x,y)\,d\lambda_2(x,y) = \int_{[0,+\infty[\times[0,2\pi]]} f(r\cos(\theta),r\sin(\theta)) \cdot r\,d\lambda_2(r,\theta) \end{split}$$

Coordonnées sphériques

$$\Phi: \mathbb{R}^{3} \to \mathbb{R}^{3} \text{ avec } \Phi(r, \phi, \theta) = (r\cos(\phi)\cos(\theta), r\cos(\phi)\sin(\theta), r\sin(\phi))$$

$$U =]0, +\infty[\times] - \pi/2, \pi/2[\times]0, 2\pi[$$

$$V = \mathbb{R}^{3} \setminus (((0, 0) \times \mathbb{R}) \cup (]0, \infty[\times\{0\} \times \mathbb{R}))$$

$$\int_{\mathbb{R}^{3}} f(x, y, z) d\lambda_{3}(x, y, z) =$$

$$\int_{[0, +\infty[\times[-\pi/2, \pi/2] \times [0, 2\pi]]} f(r\cos(\phi)\cos(\theta), r\cos(\phi)\sin(\theta), r\sin(\phi)) \cdot r^{2}\cos(\phi) d\lambda_{3}(r, \phi, \theta)$$

Coordonnées cylindriques

$$\Phi:\mathbb{R}^3 o\mathbb{R}^3 ext{ avec } \Phi(r, heta,z)=(r\cos(heta),r\sin(heta),z) \ U=]0,+\infty[imes]0,2\pi[imes\mathbb{R},\ V=\mathbb{R}^3\setminus([0,\infty[imes\{0\} imes\mathbb{R})$$

$$\int_{\mathbb{R}^3} f(x,y,z) \, d\lambda_3(x,y,z) = \int_{[0,+\infty[\times[0,2\pi]\times\mathbb{R}]} f(r\cos(\theta),r\sin(\theta),z) \cdot r \, d\lambda_3(r,\phi,z)$$

Proposition (Comparaison avec des fonctions classiques)

Soient $a, b \in \mathbb{R}$. On se place dans l'espace métrique \mathbb{R}^n . Alors

- $ightharpoonup x \mapsto 1/\|x\|^a$ est intégrable sur $B(0,1)\setminus\{0\}$ ssi a < n
- $ightharpoonup x\mapsto 1/\|x\|^a$ est intégrable sur $\mathbb{R}^n\setminus B(0,1)$ ssi a>n
- $x \mapsto 1/(\|x\|^a |\ln \|x\||^b)$ est intégrable sur $B(0,1/2) \setminus \{0\}$ ssi a < n ou (a = n et b > 1)
- $x \mapsto 1/(\|x\|^a |\ln \|x\||^b)$ est intégrable sur $\mathbb{R}^n \setminus B(0,2)$ ssi a > n ou (a = n et b > 1)

Fonction Gamma d'Euler.

On rappelle la définition de la fonction Gamma d'Euler :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

1. Montrer que, $\forall x > 0, \forall y > 0$, l'application $t \mapsto t^{x-1}(1-t)^{y-1}$ est λ_1 -intégrable sur]0; 1[.

Pour x > 0, y > 0, on pose

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
 (fonction Bêta d'Euler)

- 2. Soient x > 0, y > 0 et $I = \int_{\mathbb{R}_+^* \times \mathbb{R}_+^*} t^{x-1} s^{y-1} e^{-(t+s)} ds dt$, calculer I en utilisant le changement de variables dans \mathbb{R}^2 : u = t et v = t + s.
- 3. En calculant I d'une autre manière, établir pour x, y > 0, l'identité

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$