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§1 Tribus et boréliens

X un ensemble

Définition

Un clan de X est un ensemble C de parties de X tel que
1.oecC
2.SiAeCalors AeC (A°=X\A)
3. C stable par union finie

Une tribu est un clan aussi stable par union dénombrable.

Soit 7 une tribu de X et soit Y C X. Alors Ty = {ANY : A€ T} est
une tribu de Y (idem pour un clan). C'est la tribu induite par T sur Y.

Soit T une tribu fixée de X. Une partie A de X est mesurable si A€ T.

Proposition

Soit T une tribu de X alors
> XeT
» T est stable par intersection dénombrable
> SiABeT,alors A\BeT



Définition
Une classe monotone M de X est un ensemble de parties de X tel que
pour toute suite (A,) d'éléments de M

» Si (A,) est une suite croissante (ie A, C Ap41) alors UA, € M

» Si (A,) est une suite décroissante (ie A,4+1 C A,) alors NA, € M

Résultat. Clan + classe monotone = tribu

Définition

Soit A C P(X). Alors il existe une plus petite tribu contenant A, on
I'appelle la tribu engendrée par A, dénotée T (.A). (De méme pour clan
et classe monotone dénotés C(A) et M(.A) respectivement)

Résultat. On a C(A) C T(A) et M(A) C T(A)

Théoreme (Classe monotone)
Soit C un clan, alors M(C) = T(C) (et donc c'est une tribu)



Le but de cet exercice est de montrer qu'une réunion arbitraire
d'ensembles mesurables n'est pas forcément un ensemble mesurable. Soit

7 = {A CR avec A au plus dénombrable ou A au plus dénombrable}.

1. Montrer que 7 est une tribu.
2. Montrer que .7 # Z(R).

3. Conclure.



Définition

Soit X un espace métrique, la tribu des boréliens de X, dénotée By, est
la tribu engendrée par les ouverts de X. Les éléments de cette tribu sont
les boréliens de X.

Résultat. Soit Y sous-espace métrique de X alors By est la tribu de Y
induite par Bx sur Y

Résultat. Les intervalles ouverts et fermés de R sont des boréliens de R

Proposition
Soit X espace métrique. On a
» Bx est la tribu engendré par les fermés de X

» Bg est la tribu engendré par les intervalles de R et méme
uniquement les intervalles de la forme |a; +o00[ avec a € R

» Bg» est la tribu engendré par les pavés I, x --- x I, avec I; intervalle
ouvert de R

Remarque. Quand X est un espace métrique, la tribu considérée sur X
est par défaut la tribu des boréliens



§2 Mesures
Définition
Soit 7 une tribu de X. Une mesure (positive) sur X est une application
T — [0; +00] telle que
> p(0)=0
> Si (A,) est une suite d'éléments de T d.d.d. (deux a deux disjoints)
alors p(UA,) = > u(A,)  (propriété de o-additivité)

Exemple
On prend T = P(X) I'ensemble des parties de X

card(A) si A est finie
u(A) = { (A) o
—+00 sinon

C’est la mesure de comptage
Définition

Une espace mesurable est un couple (X,7T) avec T tribu de X et un
espace mesuré est un triplet (X, 7, 1) avec, de plus, 1 une mesure sur T



Soit (X, T, 1) un espace mesuré.
Proposition

» Soient A et B deux mesurables avec A C B, alors (1(A) < u(B)
(monotonie). Si, de plus, (B) < +oo alors u(B) = u(A) + u(B\ A)

» Soient Ay, ... Ay des mesurables, alors j1(U;A;) < >~ u(A;) avec
égalité si les A; sont d.d.d. (deux a deux disjoints)

» Soient A et B deux mesurables alors
WAU B) + u(AN B) = u(A) + u(B)

> Soit (An) une suite de mesurables
> Alors u(UjA1) < >, u(Ai) (sous-additivité)
> Si(A,) A alors u(An) — u(A)
> Si(An) \(A et u(Ao) < oo alors p(As) — p(A)



Définition
» La mesure p est finie si u(X) < +oo
» La mesure p est o-finie s'il existe une suite (A,) de mesurables avec
UpA, =X et p(As) < +oo Vn

> La mesure p est une mesure de probabilité si p(X) =1

> Si X est métrique et T est la tribu des boréliens, la mesure p est
borélienne

> Si X = R" alors p est une mesure de Radon si p est borélienne et
VK compact de X, pu(K) < +o00

Définition

Un partie A de X (non nécessairement mesurable) est négligeable s'il
existe un mesurable B avec A C B et u(B) = 0. Une mesure est compléte
si toutes les parties négligeables sont mesurables. Si ce n'est pas le cas,
on peut construire une extension de 1 en une (unique) mesure compléte
[i en ajoutant les négligeables 3 7~ pour obtenir la tribu complétée T

Une propriété P(x) définie pour x € X est vraie presque partout ou vraie
p.p. si I'ensemble {x € X : P(x) est faux} est négligeable.



Théoreme

I existe une unique mesure v, sur R" telle que, pour chaque pavé
P=1h x---x I, avec l; intervalle, on a

vn(P) = vol(P) = produit des longueurs de |;

On note )\, la complétée de v, et on I'appelle la mesure de Lebesgue
dans R". On note L, la complétée de Brn pour cette mesure et on
I'appelle la tribu de Lebesgue de R”.
On a les propriétés suivantes

» v, est unique

» v, est une mesure de Radon et est o-finie

» v, est invariante par translation, VA € Bgn,Vx € R"”
Vn(x + A) = v,(A)

» 1y est donnée par la formule suivante pour A € Br

v1(A) = inf { Z(bj —aj):AC U]aj, bj[}

J



Le but de cet exercice est d'aboutir a |'existence d'une partie A C R qui
n'est pas Lebesgue-mesurable. En particulier, A n'est pas borélienne.

1. Soit B une partie de R telle que, pour tout x € R, il existe b € B tel
que x — b € Q. Montrer que si B est Lebesgue-mesurable alors
A(B) > 0.

2. Soit B une partie de [0, 1] telle que
Vx,y € B, x#y = x—y & Q. Montrer qu'il existe une infinité
de translatés de B inclus dans [0, 2] et deux a deux disjoints. En
déduire que si B est Lebesgue-mesurable alors A\(B) = 0.

3. Que peut-on dire d’une partie de R vérifiant les deux propriétés
ci-dessus ? De quelle facon peut-on obtenir une telle partie de R?



§3 Fonctions mesurables et intégrales

Soit (X, 7) un espace mesurable.

Définition

Une fonction étagée est une fonction f : X — R de la forme

K
f= Z aiXA;
i—1

avec k >0, a; € R, A; € T et xa est la fonction caractéristique de A

Une fonction f : X — R = RU {#oc} est mesurable si elle est la limite
(simple) de fonctions étagées. Si X métrique et T tribu des boréliens, on
dit que f est borélienne

On dit que la fonction f : X — R" donnée par f = (f1,--- f,) est
mesurable si chaque f; est mesurable

Résultat. Si f est mesurable et positive, on peut trouver une suite
croissante de fonctions étagées de limite f

Remarque. Convention de calcul : 0 - (00) = 0 donc le produit est
toujours défini dans R (mais pas la somme)



Définition
Soit A une partie de X et f : A — R. On dit que f est mesurable si A est
mesurable et si fya (= f étendue & X par 0 sur A) est mesurable

Résultat. La fonction x4 est mesurable ssi A est mesurable

Théoréeme .
Soit A un mesurable de X. La fonction f : A — R est mesurable ssi on
a:fl(+o0)eT, fi(—00)eT et VBeBg, fYB)eT.

Proposition
» Si X est métrique alors les fonctions continues sont boréliennes
» Une limite simple de fonctions mesurables est mesurable

» Soient g : R" — RK borélienne et f : X — R" mesurable alors g o f
mesurable

> Soient f, g : X — R mesurables alors fg est mesurable, \f est
mesurable (A € R) et f + g mesurable 13 ol elle est définie



Proposition

> Soient fy,...,f, mesurables alors max(fy,...,f,) et min(fy,...,f,)
sont mesurables

» Soit (f,) une suite de fonctions mesurables alors sup f,, inf f,,
limsup f, et liminf f, sont mesurables

Théoreme
Soit (f,) une suite de fonctions mesurables. On pose

A= {x € R : la suite (f,(x)) converge dans R}.

Alors la partie A est mesurable et la fonction f : A — R définie par
f(x) = lim, f,(x) est mesurable

Exercice. Soient (X, 7) un espace mesurable et (f,)nen une suite de fonctions

mesurables f, : X — R. Démontrer que I'ensemble des points x € X tels que

la suite (fa(x))nen admet une limite est un ensemble mesurable.

Indication : On rappelle que (an)nen converge ssi liminf a, = limsup a,.
n—+oo n—+00



Soit (X, T, 1) espace mesuré.
Définition
Soit (f,) une suite de fonctions mesurables.

» (f,) est de Cauchy en mesure si, Ve >0
Iri,n;u({x € X |fo(x) — fn(x)| > €} =0
» (f,) est de Cauchy presque uniformément si, Ve > 0, 3A € T avec
u(A) < e et (f,) de Cauchy uniforme sur X \ A
Soit f mesurable.
» f, — f en mesure si, Ve > 0,

m (1) = F()] > €} =0

» f, — f presque uniformément si, Ve > 0, 3A € T avec u(A) < € et
f, — f uniformément sur X \ A



Soit f : [0,1] — R une fonction Lebesgue-mesurable. Le but de cet exercice est
de montrer le résultat suivant : pour tout € > 0, il existe un borélien B C [0, 1]
tel que v1(B) < ¢ et la restriction de f a [0,1] \ B est continue.

1. Soient F et G deux fermés non vides et disjoints d'un espace métrique
(X, d). Montrer que la fonction

d(x, G)

X7 d(x, F) + d(x, G)

est une fonction continue sur X qui vaut 1 sur F et O sur G.
(On rappelle que d(x, A) est la plus petite distance entre x et les points
de A)

2. Soit A un Lebesgue-mesurable. On admet le résultat suivant : il existe F
fermé et U ouvert tels que F C AC U et 11(U\ F) < e. En déduire le
résultat pour f la fonction caractéristique de A.

3. Montrer le résultat pour f une fonction étagée.

4. En utilisant le résultat suivant, déduire des questions précédentes le
résultat en général :

Théoréme d’Egoroff. Soit (X, .7, 1) un espace mesuré. Soit (f,) une suite
de fonctions qui tend simplement vers f. Alors, pour tout € > 0, il existe
A € T avec u(A) < € et (f,) converge unif. vers f sur X \ A.



84 Intégrales

Définition

Soit une fonction étagée f : X — R de représentation f = >, ajxa,. On
dit que la représentation est admissible si Vi a; > 0 (et donc f > 0). Elle
est canonique si les a; sont deux a deux distincts et les A; sont d.d.d.

Résultat. Une fonction étagée admet une unique représentation
canonique (a 'ordre pres) et elle est admissible ssi £ > 0.

Définition
Soit f étagée et positive de représentation canonique f =Y. ajxa,, on
définit I'intégale de f sur X par rapport a u par

/f ) du(x /fdu /f—Zau ) € [0; 0]

Résultat. Si f étagée et positive de représentation admissible
f=>,bixg alorsona [f=>"biu(B;)



Définition
Soit f : X — [0; +00] mesurable. On définit I'intégale de f sur X par
rapport a p par

/f(x)dp(x):/ fdu—/f—sup{/u:uétagée, positive etugf}
X X

On dit que f est intégrable si [ f est finie.

Soit f : X — R mesurable, on dit que f a un intégralesi [ f; — [f_ aun
sens ol f;. = max(f,0) et £~ = max(—f,0) sont mesurables, positives
telles que f = f, — f_. Dans ce cas, on pose

/fdu:/ﬁdu—/f,dﬂelﬁ
X X X

On dit que f est intégrable si f; et f_ sont intégrables. On note £(X; )
I'ensemble des fonctions intégrables

Remarque. f intégrable <=> f a une intégrale finie <= [f, < +oc
et [fL <400 < [|f] <+o0



Proposition

Soient f et g mesurables ayant une intégrale.
> Sif<galors [f< [g
> SixeRalors [(f+Ag)=[f+)X[g

Définition )
Soit A C X mesurable et f : A — R mesurable. On dit que f a une
intégrale si fya (= extension de f a X en prenant 0 sur A°) a une

intégrale. On pose
/ fdu= / fxadu
A X

Résultat. Si A est négligeable alors Vf : A — R mesurable, on a
Jof =0. De méme, si f : X — R mesurable et f =0 p.p. alors [ f = 0.

Exercice. Soient (X, 1) un espace mesuré et f : X — R une fonction
p-intégrable.

1. Montrer que f est finie u-presque partout.

2. Montrer que si fx |fldp = 0 alors f est nulle u-presque partout.



Résultat. Soit f mesurable alors f a une intégrale pour y ssi f a une
intégrale pour i et, dans ce cas, les deux sont égales.

Résultat. Soient f, g mesurables et f = g p.p. Si f a une intégrale alors
g a une intégrale et, dans ce cas, les deux sont égales.

Proposition

Soit f : X — R intégrable. On pose A = f~*({xoc}). Alors ju(A) = 0.
On pose g : X — R définie par g(x) = f(x) si x ¢ A et g(x) = 0. Alors
J|If —g|=0etdonc [f= [g.

Remarque. Il suit qu'on peut toujours modifier f intégrable pour qu'elle
ne prenne que des valeurs finies sans changer son intégrale.

Définition
Soit f = (f1,...,f,) : X — R" mesurable. f est intégrable ssi chaque f;
est intégrable et [ = ([ f;);. En particulier, si f : X — C alors

[ f=[Re(f)+i[Im(f)



Théoreme (Beppo-Levi)
Soit (f,) une suite croissante de fonctions mesurables positives. On
suppose que (f,) est convergente. Alors, on a lim [ f, = [limf,.

Résultat. Si f et g ont une intégrale et les sommes f +get [f+ [g
existent. Alors, f + g a une intégrale et [(f+g)= [+ [g.
Proposition

» Sif mesurable alors |f| mesurable

> Sif a une intégrale alors | [ f| < [|f]

» Sif mesurable et g intégrable avec |f| < g alors f intégrable

> Sif intégrable et [ |f| =0 alors f =0 p.p.

> Sif etg intégrables, f < g et [f= [galorsf=g p.p.

Proposition (Inégalité de Markov)
Soit f mesurable. Soient 1 < p < +o0 et t > 0. Alors

ullx e X101 > e < o [ 19



Notation. L'intégrale de Riemann est dénotée par fab f(x) dx

Théoreéme
» Soit f : [a, b] — R continue alors f est Lebesgue-intégrable sur [a, b]
et [ F(x)dx = i, fdn
» Dans le cas f : | — R continue avec | non compact d’extrémités
a,beR
> f est Lebesgue-intégrable ssi I'intégrale fab f(x) dx converge
absolument et dans ce cas f: f(x)dx = [, fdun
> Sif>0alors [ f(x)dx = [ fdu
> Si [, f dv existe alors on a fab f(x)dx = [, fdun

Remarque. Dans le cas | non compact d'extrémités a, b € R, il est
possible que fab f(x) dx existe mais pas [, f du;

Notation. Pour / C R intervalle, on notera parfois f, f(x) dx plutét que
J; fdvi (s'il n'y a pas de risque de confusion)



Théoreme (Critére de Lebesgue)

Soit f : [a,b] = R. Alors f est Riemann-intégrable sur [a, b] ssi f est
bornée et I'ensemble des discontinuités de f est vi-négligeable.
Résultat. Si f : [a, b] — R est Riemann-intégrable alors f est
Lebesgue-intégrable et fab f(x)dx = f[a y fdvr.

Théoreme
Soit f : [a, b] = R Lebesgue-intégrable. On pose F(x) = f[a qfdn.
Alors F est dérivable v1-p.p. et pour F'(x) = f(x) v1-p.p.

Théoreme (Leibniz-Newton pour I'intégrale de Lebesgue)

Soit F : [a,b] — R continue, dérivable sur]a, b[ avec F' v;-intégrable.
Alors, Vx € [a, b], F(x) = F(a) + f[a q F'(£) dua(t).

Remarque. Ce résultat n'est pas forcément vraie si on suppose juste F
dérivable v1-p.p (exemple : F(x) =0 sur [0,1/2] et =1 sur |1/2,1]) et
méme avec F continue (on peut construire F continue avec F’ =0 p.p.)



Exercice. On considére la fonction f : [0; g] — R, définie par

F(x) = {sin(x) si cos(x) € Q
sin?(x)  si cos(x) ¢ Q

1. Montrer que la fonction f est Lebesgue-intégrable sur [0; g}

2. Calculer I'intégrale de Lebesgue f[o-w/2] f(x) dvi(x).



§5 Les grands théoremes

Théoréme (Lemme de Fatou)
Soit (f,) suite de fonctions mesurables > 0, alors f liminf f, <lim inff fn

Théoreme (Convergence dominée)

Soit (f,) suite de fonctions mesurables avec f, — f et telle qu'il existe g
intégrable avec Vn, |f,| < g. Alors f est intégrable et [ |f, — f| — 0 et
donc [limf, =lim [ f,.

Proposition (Réciproque de la convergence dominée)

Soit (f,) suite de fonctions mesurables et f mesurable tels que
[ |fa — f| — 0. Alors il existe une suite extraite (f,,) et une fonction
intégrable g tels que Yk, |f,| < g et f,, — f p.p.

Théoreme (Convergence dominée p.p.)

Soit (f,) suite de fonctions mesurables telle qu'il existe g intégrable avec
Vn, |f,| < g p.p et il existe f mesurable avec f, — f p.p. Alors f
intégrable, [ |f, —f| - 0et [, — [F.



Intégrales dépendant d'un parameétre

Notation. f: X x A — R (avec A C Y espace métrique). Pour X € A,
f(-,A) : X = R, x+— f(x,A). De méme avec f(x,-) pour x € X.

Théoreme
Supposons que

1. Pour tout A € A, f(-,\) est mesurable

2. Pour presque tout x € X, f(x, ) est continue

3. Il existe g : X — R intégrable telle, VA € A, |f(-,\)| < g p.p.
Alors F : N — R définie par F(X\) = [ f(-,\) dp est continue.

Proposition
Dans le cas ot N\ est un ouvert de Y = R", on peut remplacer la
condition 3 par

3'. Pour toute boule fermée B(/_\o, r) C A, il existe une fonction
intégrable g telle que YA € B(Xo, r), |f(-,A\)| < g p.p.




On suppose A ouvert de Y = R". Pour la variable A = (Aq,...,\;) €A,
on dénote par J; = 8%}, la dérivée partielle

Théoreme
Soit j € {1,...,n}. Supposons que
1. Pour tout A € A, la fonction (-, \) est intégrable

Donc la fonction F(X\) = [ f(-,\) du existe
2. Pour tout x € X, la fonctlon 8 )i (x, ) existe
3. Pour toute boule fermée BQ\O, r) C A, il existe une fonction
intégrable g telle que V€ B()\o7 ) ) < g p.p.
Alors O;F existe et ;F()\) = [ 9;f(-
Théoreme

Soit (f,) une suite de fonctions intégrables telles que Y [ |f,] < +oo.
Alors 3~ fa(x) converge p.p. et > [ f, = [ f avec

F(x) = {Zn fa(x) s.i la série converge
sinon



Exercice.

1.

Exercice. Pour y > 0, on pose F(y) :/
0

1.
2.

sin x
Montrer que f: x —

praneiC Lebesgue-intégrable sur [0, oo|.

(o)
. Montrer que, pour tout x > 0, on peut écrire f(x) = >, e~ ™ sinx. Et
n=1

pour x =07

> sinx > 1
En dédui dx = E —_.
n déduire que/0 e Ix 2 e

2
e Y
— dx.
1+ x2
Montrer que F est continue sur R..

Calculer F(0) et déterminer lim F(y).
y—oo

3. Montrer que F est dérivable sur R}.

Montrer que F est solution sur R} d'une équation différentielle du premier
. N 2
ordre s'exprimant a I'aide du nombre | = fooo e dx.

5. En déduire, sous forme intégrale, une expression de F(y) pour y > 0.

6. En déduire la valeur de /.



§6 Mesures produit
Soient (X, T, u) et (Y,S,v) deux espaces mesurés.

Définition

La tribu produit 7 ® S est la tribu de X x Y engendrée par les pavés
Ax Bavec AcT et BeS.

Pour EET ®S, lacoupede Eenxe Xest E,={yeY:(xy)e€E}
etlacoupede Eeny € Yest EY ={xeX:(x,y) € E}

Résultat. Br» ® Brm = Bgaom
Résultat. Soit E € T ® S alors Vx, Ex € SetVy, EY €T

Proposition

Supposons i et v o-finies alors il existe une unique mesure |1 @ v sur
T ® S, appellée mesure produit, telle que @ v(A x B) = u(A)v(B),
pour AcT et Bc S. Deplus,onaVECT®S

1 (E) = /X V(E.) du(x) = / H(EY) du(y).

Résultat. Si seulement une des deux mesures est o-finie, on a bien
I'existence mais pas I'unicité (ni la deuxieme propriété)



Remarque. Pour u et v o-finies,on a i® 7 = @ v.

Théoreme (Tonelli)
Soit f : X x Y — [0,40¢] fonction T @ S-mesurable. Alors les fonctions

y|—>/ f(,y)dp et X'—)/ f(x
sont mesurables (pour S et T respectivement) et
| rawsv=[ ([ rxonduto) auy)
XxY y \Ux
[ ([ et} ante
x \Jy

Corollaire .
Soit f : X x Y — R mesurable. Alors f est intégrable ssi

/X< /Y I£(x, y)Idy(y)> du() < o0

ce qui est bien siir équivalent & [, ([, |f(x,y)du(x)) dv(y) < +oo



Théoreme (Fubini)

Soit f : X x Y — R intégrable. Alors
» Pour presque tout y € Y, la fonction f(-,y) est u-intégrable
» La fonction g est v-intégrable avec

f(-,y)du sil'intégrale existe
£ly) - {fx Cydp s
sinon

FOna/ fdﬂ@V:/ng
XxY Y

(Et un énoncé analogue avec x et y échangés)

Notation. Si B C R” est un borélien et f : B — R a une intégrale pour
la mesure de Lebesgue A,, on note par abus (s'il n'y pas de risque de
confusion) [p fdA, = [5f(x)dx = [ f(x1,...,xy) dxy- - dxp.

Pour B=R" on a

/nfd/\n:/R(.../R(/Rf(xl,...,x,,)dxl>dxz...)an



Théoreme (Tonelli et Fubini, versions locales)
Soit E C X x Y mesurable et f : E — R mesurable.
> (Tonelli) Supposons f > 0. Alors, y — [, f(:,y) du est mesurable

" fravone [ ([ ra) o[ (Leo)

pour Z mesurable avec Z D {y € Y : 3x € X avec (x,y) € E}
(Et un énoncé analogue avec x et y échangés)

» (Fubini) Supposons f intégrable. Alors, pour presque tout y, f(-,y)
est intégrable sur EY, la fonction g est v-intégrable avec

sinon

/fdp@z/:/gduz/gdu
E Y z

pour Z mesurable avec Z D {y € Y : 3x € X avec (x,y) € E}
(Et un énoncé analogue avec x et y échangés)

, f(-,y)du sil'intégrale existe
gly) = {({E ()

et



Exercice.

Soit 1 la mesure de comptage sur ([0, 1],%([0, 1]))

1. Soit A = {(x,x); x € [0,1]}. Est-ce que A est un borélien de R??
de [0,1]27

2. Justifier I'existence des intégrales itérées suivantes et les calculer :

h = /[071] </[0)1] xa(x,y) d/\(X)> du(y)
= / ( / Xa(x,y) du(y)> dA(x).
[0,1] [0,1]

3. Quelle conclusion peut-on tirer de cet exercice?



§7 Changements de variables

Proposition
Soit A € GL,(R) et soit E C R". Alors, A(E) est borélien ssi E est
borélien et, dans ce cas, A,(A(E)) = | det(A)| A,(E).
Résultat. Si A est non inversible alors VE C R, A(E) est négligeable
Définition
Soient U et V deux ouverts de R". Une application ® : U — V est un
C-diffeomorphisme si

> &= (dy,...,d,) a des dérivées partielles continues,

> ® est bijective,

» Le déterminant jacobien de ¢ est non nul en tout point de U

a1 8%y . 9y
Ox1 Ox Oxp
8¢2 8@2 .. 8@2
. Ox1 Ixp Oxn
det Jo = det (5%) = det
AN : : :
o®, 0%, P,

(9X1 (9X2 e BX,,



Théoréme (changement de variables)

Soit ®: U — V un Cl—diffegmorphisme et soient f : V — R. On pose
g =|detJo|(fo®): U—R. Alors, on a

» g est borélienne ssi f est borélienne,
» g est Lebesgue-mesurable ssi f est Lebesgue-mesurable,

» g a une intégrale ssi f a une intégrale et on a
/fd)\,,:/gd)\,,:/ |det Jo| (F o ®) dA,
v U S-1(V)

Corollaire

Supposons & continue sur Uy ouvert avec U; D U(et toujours

® : U — V un C-diffeomorphisme). Soit E C Uy \ U fermé et
négligeable, f : VU ®(E) — R. On pose g = |Jo| (fo®): UUE — R.
Alors, on a les mémes résultats et

/ fdA, :/ | det Jo| (Fo®) dA, :/ | det Jo| (Fod) d,
VUS(E) d-1(VUD(E)) *-1(V)

Remarque. En général, on prendra E = 9U (frontiére)



Coordonnées polaires
® : R? — R? avec (r,0) = (rcos(), rsin(6))
U =]0, +00[x]0,27[, V = R?\ [0, co[x {0}

/ £, y) dha(x,y) = / F(r cos(8), rsin(8)) - r da(r, 6)
R? [0,+00[x[0,27]

Coordonnées sphériques

® : R® — R avec d(r, ¢,0) = (rcos(¢) cos(d), r cos(¢) sin(8), r sin(¢))
U =)0, +oo[x] — 7/2,7/2[x]0, 27|

vV =R3\ (((0,0) x R) U (]0, 00[x{0} x R))

/JR3 f(x,y,z)dX\s(x,y,z) =

/[0 — f(r cos(¢) cos(6), r cos(¢) sin(6), rsin(¢)) - r* cos(¢) dAs(r, ¢, 0)

/2,7 /2] x[0,27]



Coordonnées cylindriques
o : R3 — R3 avec ®(r,0,z) = (rcos(#), rsin(f), z)
U =0, +00[x]0, 2[xR, V = 3\ ([0, 00[x{0} x R)

/ f(x,y,z)dXs(x,y,z) = / f(rcos(9), rsin(0),z) - rdis(r, ¢, z)
R3 [0,+00[x[0,27] xR

Proposition (Comparaison avec des fonctions classiques)
Soient a, b € R. On se place dans I'espace métrique R". Alors
> x> 1/||x||? est intégrable sur B(0,1) \ {0} ssia < n
» x — 1/||x||? est intégrable sur R"\ B(0,1) ssia>n
> x = 1/(|Ix]|?|In||x]|||P) est intégrable sur B(0,1/2)\ {0} ssia<n
ou(a=nethb>1)
» x — 1/(|Ix|1? [In||x|||®) est intégrable sur R" \ B(0,2) ssi a > n ou
(a=netb>1)



Fonction Gamma d'Euler.

On rappelle la définition de la fonction Gamma d'Euler :

+oo
M(x) = / t*le tdt.
0

1. Montrer que, Vx > 0,Vy > 0, I'application t — t*71(1 — t)¥ ! est
Ai-intégrable sur ]0; 1[.

Pour x > 0,y > 0, on pose
1
B(x,y) :/ t*71(1 —t)Y"1dt (fonction Béta d’Euler)
0
2. Soient x >0,y >0et/ = fRiXRi t*~lsy—Lle—(t+s) ds dt, calculer /
en utilisant le changement de variables dans R? : u =t et v =t +s.
3. En calculant | d’une autre maniere, établir pour x,y > 0, I'identité

Fry)

o = ey



