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§1 Tribus et boréliens
X un ensemble

Définition
Un clan de X est un ensemble C de parties de X tel que

1. ∅ ∈ C
2. Si A ∈ C alors Ac ∈ C (Ac = X \ A)
3. C stable par union finie

Une tribu est un clan aussi stable par union dénombrable.

Soit T une tribu de X et soit Y ⊆ X . Alors TY = {A ∩ Y : A ∈ T } est
une tribu de Y (idem pour un clan). C’est la tribu induite par T sur Y .

Soit T une tribu fixée de X . Une partie A de X est mesurable si A ∈ T .

Proposition
Soit T une tribu de X alors

▶ X ∈ T
▶ T est stable par intersection dénombrable

▶ Si A,B ∈ T , alors A \ B ∈ T



Définition
Une classe monotone M de X est un ensemble de parties de X tel que
pour toute suite (An) d’éléments de M
▶ Si (An) est une suite croissante (ie An ⊆ An+1) alors ∪An ∈ M
▶ Si (An) est une suite décroissante (ie An+1 ⊆ An) alors ∩An ∈ M

Résultat. Clan + classe monotone =⇒ tribu

Définition
Soit A ⊂ P(X ). Alors il existe une plus petite tribu contenant A, on
l’appelle la tribu engendrée par A, dénotée T (A). (De même pour clan
et classe monotone dénotés C(A) et M(A) respectivement)

Résultat. On a C(A) ⊆ T (A) et M(A) ⊆ T (A)

Théorème (Classe monotone)
Soit C un clan, alors M(C) = T (C) (et donc c’est une tribu)



Le but de cet exercice est de montrer qu’une réunion arbitraire
d’ensembles mesurables n’est pas forcément un ensemble mesurable. Soit

T = {A ⊆ R avec A au plus dénombrable ou Ac au plus dénombrable}.

1. Montrer que T est une tribu.

2. Montrer que T ̸= P(R).

3. Conclure.



Définition
Soit X un espace métrique, la tribu des boréliens de X , dénotée BX , est
la tribu engendrée par les ouverts de X . Les éléments de cette tribu sont
les boréliens de X .

Résultat. Soit Y sous-espace métrique de X alors BY est la tribu de Y
induite par BX sur Y

Résultat. Les intervalles ouverts et fermés de R sont des boréliens de R

Proposition
Soit X espace métrique. On a

▶ BX est la tribu engendré par les fermés de X

▶ BR est la tribu engendré par les intervalles de R et même
uniquement les intervalles de la forme ]a; +∞[ avec a ∈ R

▶ BRn est la tribu engendré par les pavés I1 × · · · × In avec Ij intervalle
ouvert de R

Remarque. Quand X est un espace métrique, la tribu considérée sur X
est par défaut la tribu des boréliens



§2 Mesures

Définition
Soit T une tribu de X . Une mesure (positive) sur X est une application
µ : T → [0;+∞] telle que

▶ µ(∅) = 0

▶ Si (An) est une suite d’éléments de T d.d.d. (deux à deux disjoints)
alors µ(∪An) =

∑
µ(An) (propriété de σ-additivité)

Exemple
On prend T = P(X ) l’ensemble des parties de X

µ(A) =

{
card(A) si A est finie

+∞ sinon

C’est la mesure de comptage

Définition
Une espace mesurable est un couple (X , T ) avec T tribu de X et un
espace mesuré est un triplet (X , T , µ) avec, de plus, µ une mesure sur T



Soit (X , T , µ) un espace mesuré.

Proposition

▶ Soient A et B deux mesurables avec A ⊆ B, alors µ(A) ≤ µ(B)
(monotonie). Si, de plus, µ(B) < +∞ alors µ(B) = µ(A) +µ(B \A)

▶ Soient A1, . . .Ak des mesurables, alors µ(∪iAi ) ≤
∑

i µ(Ai ) avec
égalité si les Ai sont d.d.d. (deux à deux disjoints)

▶ Soient A et B deux mesurables alors

µ(A ∪ B) + µ(A ∩ B) = µ(A) + µ(B)

▶ Soit (An) une suite de mesurables
▶ Alors µ(∪iAi ) ≤

∑
i µ(Ai ) (sous-additivité)

▶ Si (An) ↗ A alors µ(An) → µ(A)

▶ Si (An) ↘ A et µ(A0) < ∞ alors µ(An) → µ(A)



Définition
▶ La mesure µ est finie si µ(X ) < +∞
▶ La mesure µ est σ-finie s’il existe une suite (An) de mesurables avec

∪nAn = X et µ(An) < +∞ ∀n
▶ La mesure µ est une mesure de probabilité si µ(X ) = 1

▶ Si X est métrique et T est la tribu des boréliens, la mesure µ est
borélienne

▶ Si X = Rn alors µ est une mesure de Radon si µ est borélienne et
∀K compact de X , µ(K ) < +∞

Définition
Un partie A de X (non nécessairement mesurable) est négligeable s’il
existe un mesurable B avec A ⊆ B et µ(B) = 0. Une mesure est complète
si toutes les parties négligeables sont mesurables. Si ce n’est pas le cas,
on peut construire une extension de µ en une (unique) mesure complète
µ̄ en ajoutant les négligeables à T pour obtenir la tribu complétée T̄ .

Une propriété P(x) définie pour x ∈ X est vraie presque partout ou vraie
p.p. si l’ensemble {x ∈ X : P(x) est faux} est négligeable.



Théorème
Il existe une unique mesure νn sur Rn telle que, pour chaque pavé
P = I1 × · · · × In avec Ij intervalle, on a

νn(P) = vol(P) = produit des longueurs de Ij

On note λn la complétée de νn et on l’appelle la mesure de Lebesgue
dans Rn. On note Ln la complétée de BRn pour cette mesure et on
l’appelle la tribu de Lebesgue de Rn.

On a les propriétés suivantes

▶ νn est unique

▶ νn est une mesure de Radon et est σ-finie

▶ νn est invariante par translation, ∀A ∈ BRn ,∀x ∈ Rn

νn(x + A) = νn(A)

▶ ν1 est donnée par la formule suivante pour A ∈ BR

ν1(A) = inf
{∑

j

(bj − aj) : A ⊆
⋃
j

]aj , bj [
}



Le but de cet exercice est d’aboutir à l’existence d’une partie A ⊆ R qui
n’est pas Lebesgue-mesurable. En particulier, A n’est pas borélienne.

1. Soit B une partie de R telle que, pour tout x ∈ R, il existe b ∈ B tel
que x − b ∈ Q. Montrer que si B est Lebesgue-mesurable alors
λ(B) > 0.

2. Soit B une partie de [0, 1] telle que
∀x , y ∈ B, x ̸= y =⇒ x − y ̸∈ Q. Montrer qu’il existe une infinité
de translatés de B inclus dans [0, 2] et deux à deux disjoints. En
déduire que si B est Lebesgue-mesurable alors λ(B) = 0.

3. Que peut-on dire d’une partie de R vérifiant les deux propriétés
ci-dessus ? De quelle façon peut-on obtenir une telle partie de R ?



§3 Fonctions mesurables et intégrales

Soit (X , T ) un espace mesurable.

Définition
Une fonction étagée est une fonction f : X → R de la forme

f =
k∑

i=1

aiχAi

avec k ≥ 0, ai ∈ R, Ai ∈ T et χA est la fonction caractéristique de A

Une fonction f : X → R̄ = R ∪ {±∞} est mesurable si elle est la limite
(simple) de fonctions étagées. Si X métrique et T tribu des boréliens, on
dit que f est borélienne

On dit que la fonction f : X → Rn donnée par f = (f1, · · · fn) est
mesurable si chaque fi est mesurable

Résultat. Si f est mesurable et positive, on peut trouver une suite
croissante de fonctions étagées de limite f

Remarque. Convention de calcul : 0 · (±∞) = 0 donc le produit est
toujours défini dans R̄ (mais pas la somme)



Définition
Soit A une partie de X et f : A → R. On dit que f est mesurable si A est
mesurable et si f χA (= f étendue à X par 0 sur Ac) est mesurable

Résultat. La fonction χA est mesurable ssi A est mesurable

Théorème
Soit A un mesurable de X . La fonction f : A → R̄ est mesurable ssi on
a : f −1(+∞) ∈ T , f −1(−∞) ∈ T et, ∀B ∈ BR, f

−1(B) ∈ T .

Proposition

▶ Si X est métrique alors les fonctions continues sont boréliennes

▶ Une limite simple de fonctions mesurables est mesurable

▶ Soient g : Rn → Rk borélienne et f : X → Rn mesurable alors g ◦ f
mesurable

▶ Soient f , g : X → R̄ mesurables alors fg est mesurable, λf est
mesurable (λ ∈ R) et f + g mesurable là où elle est définie



Proposition

▶ Soient f1, . . . , fn mesurables alors max(f1, . . . , fn) et min(f1, . . . , fn)
sont mesurables

▶ Soit (fn) une suite de fonctions mesurables alors sup fn, inf fn,
lim sup fn et lim inf fn sont mesurables

Théorème
Soit (fn) une suite de fonctions mesurables. On pose

A = {x ∈ R : la suite (fn(x)) converge dans R̄}.

Alors la partie A est mesurable et la fonction f : A → R̄ définie par
f (x) = limn fn(x) est mesurable

Exercice. Soient (X , T ) un espace mesurable et (fn)n∈N une suite de fonctions
mesurables fn : X −→ R. Démontrer que l’ensemble des points x ∈ X tels que
la suite (fn(x))n∈N admet une limite est un ensemble mesurable.

Indication : On rappelle que (an)n∈N converge ssi lim inf
n→+∞

an = lim sup
n→+∞

an.



Soit (X , T , µ) espace mesuré.

Définition
Soit (fn) une suite de fonctions mesurables.

▶ (fn) est de Cauchy en mesure si, ∀ϵ > 0

lim
m,n

µ({x ∈ X : |fn(x)− fm(x)| ≥ ϵ} = 0

▶ (fn) est de Cauchy presque uniformément si, ∀ϵ > 0, ∃A ∈ T avec
µ(A) < ϵ et (fn) de Cauchy uniforme sur X \ A

Soit f mesurable.

▶ fn → f en mesure si, ∀ϵ > 0,

lim
n

µ({x : |fn(x)− f (x)| ≥ ϵ} = 0

▶ fn → f presque uniformément si, ∀ϵ > 0, ∃A ∈ T avec µ(A) < ϵ et
fn → f uniformément sur X \ A



Soit f : [0, 1] → R une fonction Lebesgue-mesurable. Le but de cet exercice est
de montrer le résultat suivant : pour tout ϵ > 0, il existe un borélien B ⊆ [0, 1]
tel que ν1(B) < ϵ et la restriction de f à [0, 1] \ B est continue.

1. Soient F et G deux fermés non vides et disjoints d’un espace métrique
(X , d). Montrer que la fonction

x 7→ d(x ,G)

d(x ,F ) + d(x ,G)

est une fonction continue sur X qui vaut 1 sur F et 0 sur G .
(On rappelle que d(x ,A) est la plus petite distance entre x et les points
de A)

2. Soit A un Lebesgue-mesurable. On admet le résultat suivant : il existe F
fermé et U ouvert tels que F ⊆ A ⊆ U et ν1(U \ F ) < ϵ. En déduire le
résultat pour f la fonction caractéristique de A.

3. Montrer le résultat pour f une fonction étagée.

4. En utilisant le résultat suivant, déduire des questions précédentes le
résultat en général :

Théorème d’Egoroff. Soit (X ,T , µ) un espace mesuré. Soit (fn) une suite
de fonctions qui tend simplement vers f . Alors, pour tout ϵ > 0, il existe
A ∈ T avec µ(A) ≤ ϵ et (fn) converge unif. vers f sur X \ A.



§4 Intégrales

Définition
Soit une fonction étagée f : X → R de représentation f =

∑
i aiχAi . On

dit que la représentation est admissible si ∀i ai ≥ 0 (et donc f ≥ 0). Elle
est canonique si les ai sont deux à deux distincts et les Ai sont d.d.d.

Résultat. Une fonction étagée admet une unique représentation
canonique (à l’ordre près) et elle est admissible ssi f ≥ 0.

Définition
Soit f étagée et positive de représentation canonique f =

∑
i aiχAi , on

définit l’intégale de f sur X par rapport à µ par∫
X

f (x) dµ(x) =

∫
X

f dµ =

∫
f =

∑
i

aiµ(Ai ) ∈ [0;∞]

Résultat. Si f étagée et positive de représentation admissible
f =

∑
i biχBi alors on a

∫
f =

∑
i biµ(Bi )



Définition
Soit f : X → [0;+∞] mesurable. On définit l’intégale de f sur X par
rapport à µ par∫
X

f (x) dµ(x) =

∫
X

f dµ =

∫
f = sup

{∫
u : u étagée, positive et u ≤ f

}
On dit que f est intégrable si

∫
f est finie.

Soit f : X → R̄ mesurable, on dit que f a un intégrale si
∫
f+ −

∫
f− a un

sens où f+ = max(f , 0) et f− = max(−f , 0) sont mesurables, positives
telles que f = f+ − f−. Dans ce cas, on pose∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ ∈ R̄

On dit que f est intégrable si f+ et f− sont intégrables. On note L1(X ;µ)
l’ensemble des fonctions intégrables

Remarque. f intégrable ⇐⇒ f a une intégrale finie ⇐⇒
∫
f+ < +∞

et
∫
f− < +∞ ⇐⇒

∫
|f | < +∞



Proposition
Soient f et g mesurables ayant une intégrale.

▶ Si f ≤ g alors
∫
f ≤

∫
g

▶ Si λ ∈ R alors
∫
(f + λg) =

∫
f + λ

∫
g

Définition
Soit A ⊆ X mesurable et f : A → R̄ mesurable. On dit que f a une
intégrale si f χA (= extension de f à X en prenant 0 sur Ac) a une
intégrale. On pose ∫

A

f dµ =

∫
X

f χA dµ

Résultat. Si A est négligeable alors ∀f : A → R̄ mesurable, on a∫
A
f = 0. De même, si f : X → R̄ mesurable et f = 0 p.p. alors

∫
f = 0.

Exercice. Soient (X , µ) un espace mesuré et f : X −→ R une fonction
µ-intégrable.

1. Montrer que f est finie µ-presque partout.

2. Montrer que si
∫
X
|f |dµ = 0 alors f est nulle µ-presque partout.



Résultat. Soit f mesurable alors f a une intégrale pour µ ssi f a une
intégrale pour µ̄ et, dans ce cas, les deux sont égales.

Résultat. Soient f , g mesurables et f = g p.p. Si f a une intégrale alors
g a une intégrale et, dans ce cas, les deux sont égales.

Proposition
Soit f : X → R̄ intégrable. On pose A = f −1({±∞}). Alors µ(A) = 0.
On pose g : X → R̄ définie par g(x) = f (x) si x ̸∈ A et g(x) = 0. Alors∫
|f − g | = 0 et donc

∫
f =

∫
g.

Remarque. Il suit qu’on peut toujours modifier f intégrable pour qu’elle
ne prenne que des valeurs finies sans changer son intégrale.

Définition
Soit f = (f1, . . . , fn) : X → Rn mesurable. f est intégrable ssi chaque fi
est intégrable et

∫
f = (

∫
fi )i . En particulier, si f : X → C alors∫

f =
∫
Re(f ) + i

∫
Im(f )



Théorème (Beppo-Levi)
Soit (fn) une suite croissante de fonctions mesurables positives. On
suppose que (fn) est convergente. Alors, on a lim

∫
fn =

∫
lim fn.

Résultat. Si f et g ont une intégrale et les sommes f + g et
∫
f +

∫
g

existent. Alors, f + g a une intégrale et
∫
(f + g) =

∫
f +

∫
g .

Proposition

▶ Si f mesurable alors |f | mesurable

▶ Si f a une intégrale alors |
∫
f | ≤

∫
|f |

▶ Si f mesurable et g intégrable avec |f | ≤ g alors f intégrable

▶ Si f intégrable et
∫
|f | = 0 alors f = 0 p.p.

▶ Si f et g intégrables, f ≤ g et
∫
f =

∫
g alors f = g p.p.

Proposition (Inégalité de Markov)
Soit f mesurable. Soient 1 ≤ p < +∞ et t > 0. Alors

µ({x ∈ X : |f (x)| > t}) ≤ 1

tp

∫
|f |p



Notation. L’intégrale de Riemann est dénotée par
∫ b

a
f (x) dx

Théorème
▶ Soit f : [a, b] → R continue alors f est Lebesgue-intégrable sur [a, b]

et
∫ b

a
f (x) dx =

∫
[a,b]

f dν1

▶ Dans le cas f : I → R continue avec I non compact d’extrémités
a, b ∈ R̄
▶ f est Lebesgue-intégrable ssi l’intégrale

∫ b

a
f (x) dx converge

absolument et dans ce cas
∫ b

a
f (x) dx =

∫
I
f dν1

▶ Si f ≥ 0 alors
∫ b

a
f (x) dx =

∫
I
f dν1

▶ Si
∫
I
f dν1 existe alors on a

∫ b

a
f (x) dx =

∫
I
f dν1

Remarque. Dans le cas I non compact d’extrémités a, b ∈ R̄, il est
possible que

∫ b

a
f (x) dx existe mais pas

∫
I
f dν1

Notation. Pour I ⊆ R intervalle, on notera parfois
∫
I
f (x) dx plutôt que∫

I
f dν1 (s’il n’y a pas de risque de confusion)



Théorème (Critère de Lebesgue)
Soit f : [a, b] → R. Alors f est Riemann-intégrable sur [a, b] ssi f est
bornée et l’ensemble des discontinuités de f est ν1-négligeable.

Résultat. Si f : [a, b] → R est Riemann-intégrable alors f est

Lebesgue-intégrable et
∫ b

a
f (x) dx =

∫
[a,b]

f dν1.

Théorème
Soit f : [a, b] → R Lebesgue-intégrable. On pose F (x) =

∫
[a,x]

f dν1.

Alors F est dérivable ν1-p.p. et pour F
′(x) = f (x) ν1-p.p.

Théorème (Leibniz-Newton pour l’intégrale de Lebesgue)
Soit F : [a, b] → R continue, dérivable sur ]a, b[ avec F ′ ν1-intégrable.
Alors, ∀x ∈ [a, b], F (x) = F (a) +

∫
[a,x]

F ′(t) dν1(t).

Remarque. Ce résultat n’est pas forcément vraie si on suppose juste F
dérivable ν1-p.p (exemple : F (x) = 0 sur [0, 1/2] et = 1 sur ]1/2, 1]) et
même avec F continue (on peut construire F continue avec F ′ = 0 p.p.)



Exercice. On considère la fonction f :
[
0;

π

2

]
−→ R, définie par

f (x) =

{
sin(x) si cos(x) ∈ Q
sin2(x) si cos(x) /∈ Q

1. Montrer que la fonction f est Lebesgue-intégrable sur
[
0;

π

2

]
.

2. Calculer l’intégrale de Lebesgue
∫
[0;π/2]

f (x) dν1(x).



§5 Les grands théorèmes

Théorème (Lemme de Fatou)
Soit (fn) suite de fonctions mesurables ≥ 0, alors

∫
lim inf fn ≤ lim inf

∫
fn

Théorème (Convergence dominée)
Soit (fn) suite de fonctions mesurables avec fn → f et telle qu’il existe g
intégrable avec ∀n, |fn| ≤ g. Alors f est intégrable et

∫
|fn − f | → 0 et

donc
∫
lim fn = lim

∫
fn.

Proposition (Réciproque de la convergence dominée)
Soit (fn) suite de fonctions mesurables et f mesurable tels que∫
|fn − f | → 0. Alors il existe une suite extraite (fnk ) et une fonction

intégrable g tels que ∀k , |fnk | ≤ g et fnk → f p.p.

Théorème (Convergence dominée p.p.)
Soit (fn) suite de fonctions mesurables telle qu’il existe g intégrable avec
∀n, |fn| ≤ g p.p et il existe f mesurable avec fn → f p.p. Alors f
intégrable,

∫
|fn − f | → 0 et

∫
fn →

∫
f .



Intégrales dépendant d’un paramètre
Notation. f : X × Λ → R (avec Λ ⊆ Y espace métrique). Pour λ ∈ Λ,
f (·, λ) : X → R, x 7→ f (x , λ). De même avec f (x , ·) pour x ∈ X .

Théorème
Supposons que

1. Pour tout λ ∈ Λ, f (·, λ) est mesurable

2. Pour presque tout x ∈ X, f (x , ·) est continue
3. Il existe g : X → R intégrable telle, ∀λ ∈ Λ, |f (·, λ)| ≤ g p.p.

Alors F : Λ → R définie par F (λ) =
∫
f (·, λ) dµ est continue.

Proposition
Dans le cas où Λ est un ouvert de Y = Rn, on peut remplacer la
condition 3 par

3’. Pour toute boule fermée B̄(λ0, r) ⊆ Λ, il existe une fonction
intégrable g telle que ∀λ ∈ B̄(λ0, r), |f (·, λ)| ≤ g p.p.



On suppose Λ ouvert de Y = Rn. Pour la variable λ = (λ1, . . . , λn) ∈ Λ,
on dénote par ∂j =

∂
∂λj

la dérivée partielle

Théorème
Soit j ∈ {1, . . . , n}. Supposons que
1. Pour tout λ ∈ Λ, la fonction f (·, λ) est intégrable

Donc la fonction F (λ) =
∫
f (·, λ) dµ existe

2. Pour tout x ∈ X, la fonction ∂j f (x , ·) existe
3. Pour toute boule fermée B̄(λ0, r) ⊆ Λ, il existe une fonction

intégrable g telle que ∀λ ∈ B̄(λ0, r), |∂j f (·, λ)| ≤ g p.p.

Alors ∂jF existe et ∂jF (λ) =
∫
∂j f (·, λ) dµ

Théorème
Soit (fn) une suite de fonctions intégrables telles que

∑
n

∫
|fn| < +∞.

Alors
∑

n fn(x) converge p.p. et
∑

n

∫
fn =

∫
f avec

f (x) =

{∑
n fn(x) si la série converge

0 sinon



Exercice.

1. Montrer que f : x 7→ sin x

ex − 1
est Lebesgue-intégrable sur [0,∞[.

2. Montrer que, pour tout x > 0, on peut écrire f (x) =
∞∑
n=1

e−nx sin x . Et

pour x = 0 ?

3. En déduire que

∫ ∞

0

sin x

ex − 1
dx =

∞∑
n=1

1

n2 + 1
.

Exercice. Pour y ≥ 0, on pose F (y) =

∫ ∞

0

e−x2y

1 + x2
dx .

1. Montrer que F est continue sur R+.

2. Calculer F (0) et déterminer lim
y→∞

F (y).

3. Montrer que F est dérivable sur R∗
+.

4. Montrer que F est solution sur R∗
+ d’une équation différentielle du premier

ordre s’exprimant à l’aide du nombre I =
∫∞
0

e−x2 dx .

5. En déduire, sous forme intégrale, une expression de F (y) pour y > 0.

6. En déduire la valeur de I .



§6 Mesures produit
Soient (X , T , µ) et (Y ,S, ν) deux espaces mesurés.

Définition
La tribu produit T ⊗ S est la tribu de X × Y engendrée par les pavés
A× B avec A ∈ T et B ∈ S.
Pour E ∈ T ⊗ S, la coupe de E en x ∈ X est Ex = {y ∈ Y : (x , y) ∈ E}
et la coupe de E en y ∈ Y est E y = {x ∈ X : (x , y) ∈ E}.

Résultat. BRn ⊗ BRm = BRn+m

Résultat. Soit E ∈ T ⊗ S alors ∀x , Ex ∈ S et ∀y , E y ∈ T

Proposition
Supposons µ et ν σ-finies alors il existe une unique mesure µ⊗ ν sur
T ⊗ S, appellée mesure produit, telle que µ⊗ ν(A× B) = µ(A) ν(B),
pour A ∈ T et B ∈ S. De plus, on a ∀E ∈ T ⊗ S

µ⊗ ν(E ) =

∫
X

ν(Ex) dµ(x) =

∫
Y

µ(E y ) dν(y).

Résultat. Si seulement une des deux mesures est σ-finie, on a bien
l’existence mais pas l’unicité (ni la deuxième propriété)



Remarque. Pour µ et ν σ-finies, on a µ̄⊗ ν̄ = µ⊗ ν.

Théorème (Tonelli)
Soit f : X × Y → [0,+∞] fonction T ⊗ S-mesurable. Alors les fonctions

y 7→
∫
X

f (·, y) dµ et x 7→
∫
Y

f (x , ·) dν

sont mesurables (pour S et T respectivement) et∫
X×Y

f dµ⊗ ν =

∫
Y

(∫
X

f (x , y) dµ(x)

)
dν(y)

=

∫
X

(∫
Y

f (x , y) dν(y)

)
dµ(x)

Corollaire
Soit f : X × Y → R̄ mesurable. Alors f est intégrable ssi∫

X

(∫
Y

|f (x , y)| dν(y)
)
dµ(x) < +∞

ce qui est bien sûr équivalent à
∫
Y

(∫
X
|f (x , y)| dµ(x)

)
dν(y) < +∞



Théorème (Fubini)
Soit f : X × Y → R̄ intégrable. Alors

▶ Pour presque tout y ∈ Y , la fonction f (·, y) est µ-intégrable
▶ La fonction g est ν-intégrable avec

g(y) =

{∫
X
f (·, y)dµ si l’intégrale existe

0 sinon

▶ On a

∫
X×Y

f dµ⊗ ν =

∫
Y

g dν

(Et un énoncé analogue avec x et y échangés)

Notation. Si B ⊆ Rn est un borélien et f : B → R a une intégrale pour
la mesure de Lebesgue λn, on note par abus (s’il n’y pas de risque de
confusion)

∫
B
f dλn =

∫
B
f (x) dx =

∫
B
f (x1, . . . , xn) dx1 · · · dxn.

Pour B = Rn, on a∫
Rn

f dλn =

∫
R

(
· · ·
∫
R

(∫
R
f (x1, . . . , xn) dx1

)
dx2 · · ·

)
dxn



Théorème (Tonelli et Fubini, versions locales)
Soit E ⊆ X × Y mesurable et f : E → R̄ mesurable.

▶ (Tonelli) Supposons f ≥ 0. Alors, y 7→
∫
E y f (·, y) dµ est mesurable

et ∫
E

f dµ⊗ ν =

∫
Y

(∫
E y

f dµ

)
dν =

∫
Z

(∫
E y

f dµ

)
dν

pour Z mesurable avec Z ⊇ {y ∈ Y : ∃x ∈ X avec (x , y) ∈ E}
(Et un énoncé analogue avec x et y échangés)

▶ (Fubini) Supposons f intégrable. Alors, pour presque tout y, f (·, y)
est intégrable sur E y , la fonction g est ν-intégrable avec

g(y) =

{∫
E y f (·, y)dµ si l’intégrale existe

0 sinon

et ∫
E

f dµ⊗ ν =

∫
Y

g dν =

∫
Z

g dν

pour Z mesurable avec Z ⊇ {y ∈ Y : ∃x ∈ X avec (x , y) ∈ E}
(Et un énoncé analogue avec x et y échangés)



Exercice.

Soit µ la mesure de comptage sur
(
[0, 1],B

(
[0, 1]

))
.

1. Soit ∆ =
{
(x , x) ; x ∈ [0, 1]

}
. Est-ce que ∆ est un borélien de R2 ?

de [0, 1]2 ?

2. Justifier l’existence des intégrales itérées suivantes et les calculer :

I1 =

∫
[0,1]

(∫
[0,1]

χ∆(x , y) dλ(x)

)
dµ(y)

I2 =

∫
[0,1]

(∫
[0,1]

χ∆(x , y) dµ(y)

)
dλ(x).

3. Quelle conclusion peut-on tirer de cet exercice ?



§7 Changements de variables

Proposition
Soit A ∈ GLn(R) et soit E ⊆ Rn. Alors, A(E ) est borélien ssi E est
borélien et, dans ce cas, λn(A(E )) = | det(A)|λn(E ).

Résultat. Si A est non inversible alors ∀E ⊆ Rn,A(E ) est négligeable

Définition
Soient U et V deux ouverts de Rn. Une application Φ : U → V est un
C1-diffeomorphisme si

▶ Φ = (Φ1, . . . ,Φn) a des dérivées partielles continues,

▶ Φ est bijective,

▶ Le déterminant jacobien de Φ est non nul en tout point de U

det JΦ = det
(

∂Φi

∂xj

)
i,j

= det


∂Φ1

∂x1
∂Φ1

∂x2
· · · ∂Φ1

∂xn
∂Φ2

∂x1
∂Φ2

∂x2
· · · ∂Φ2

∂xn

...
... · · ·

...
∂Φn

∂x1
∂Φn

∂x2
· · · ∂Φn

∂xn





Théorème (changement de variables)
Soit Φ : U → V un C1-diffeomorphisme et soient f : V → R̄. On pose
g = | det JΦ| (f ◦ Φ) : U → R̄. Alors, on a

▶ g est borélienne ssi f est borélienne,

▶ g est Lebesgue-mesurable ssi f est Lebesgue-mesurable,

▶ g a une intégrale ssi f a une intégrale et on a∫
V

f dλn =

∫
U

g dλn =

∫
Φ−1(V )

| det JΦ| (f ◦ Φ) dλn

Corollaire
Supposons Φ continue sur U1 ouvert avec U1 ⊇ U(et toujours
Φ : U → V un C1-diffeomorphisme). Soit E ⊆ U1 \ U fermé et
négligeable, f : V ∪ Φ(E ) → R̄. On pose g = |JΦ| (f ◦ Φ) : U ∪ E → R̄.
Alors, on a les mêmes résultats et∫
V∪Φ(E)

f dλn =

∫
Φ−1(V∪Φ(E))

| det JΦ| (f ◦Φ) dλn =

∫
Φ−1(V )

| det JΦ| (f ◦Φ) dλn

Remarque. En général, on prendra E = ∂U (frontière)



Coordonnées polaires
Φ : R2 → R2 avec Φ(r , θ) = (r cos(θ), r sin(θ))

U =]0,+∞[×]0, 2π[, V = R2 \ [0,∞[×{0}∫
R2

f (x , y) dλ2(x , y) =

∫
[0,+∞[×[0,2π]

f (r cos(θ), r sin(θ)) · r dλ2(r , θ)

Coordonnées sphériques
Φ : R3 → R3 avec Φ(r , ϕ, θ) = (r cos(ϕ) cos(θ), r cos(ϕ) sin(θ), r sin(ϕ))

U =]0,+∞[×]− π/2, π/2[×]0, 2π[
V = R3 \

(
((0, 0)× R) ∪ (]0,∞[×{0} × R)

)
∫
R3

f (x , y , z) dλ3(x , y , z) =∫
[0,+∞[×[−π/2,π/2]×[0,2π]

f (r cos(ϕ) cos(θ), r cos(ϕ) sin(θ), r sin(ϕ)) · r 2 cos(ϕ) dλ3(r , ϕ, θ)



Coordonnées cylindriques
Φ : R3 → R3 avec Φ(r , θ, z) = (r cos(θ), r sin(θ), z)

U =]0,+∞[×]0, 2π[×R, V = R3 \ ([0,∞[×{0} × R)∫
R3

f (x , y , z) dλ3(x , y , z) =

∫
[0,+∞[×[0,2π]×R

f (r cos(θ), r sin(θ), z) · r dλ3(r , ϕ, z)

Proposition (Comparaison avec des fonctions classiques)
Soient a, b ∈ R. On se place dans l’espace métrique Rn. Alors

▶ x 7→ 1/∥x∥a est intégrable sur B(0, 1) \ {0} ssi a < n

▶ x 7→ 1/∥x∥a est intégrable sur Rn \ B(0, 1) ssi a > n

▶ x 7→ 1/(∥x∥a | ln ∥x∥|b) est intégrable sur B(0, 1/2) \ {0} ssi a < n
ou (a = n et b > 1)

▶ x 7→ 1/(∥x∥a | ln ∥x∥|b) est intégrable sur Rn \ B(0, 2) ssi a > n ou
(a = n et b > 1)



Fonction Gamma d’Euler.

On rappelle la définition de la fonction Gamma d’Euler :

Γ(x) =

∫ +∞

0

tx−1e−t dt.

1. Montrer que, ∀x > 0,∀y > 0, l’application t 7→ tx−1(1− t)y−1 est
λ1-intégrable sur ]0; 1[.

Pour x > 0, y > 0, on pose

B(x , y) =

∫ 1

0

tx−1(1− t)y−1 dt (fonction Bêta d’Euler)

2. Soient x > 0, y > 0 et I =
∫
R∗

+×R∗
+
tx−1sy−1e−(t+s) ds dt, calculer I

en utilisant le changement de variables dans R2 : u = t et v = t + s.

3. En calculant I d’une autre manière, établir pour x , y > 0, l’identité

B(x , y) =
Γ(x)Γ(y)

Γ(x + y)
.


