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Définition <= (/3) fﬁé (— /’; /f)
Un groupe est un ensemble non vide G avec opération * interne vérifiant

1. (élément neutre) dJe € G avec xxe=exx=x Vx € G

2. (associativité) Vx,y,z€ G, xx(yxz) = (x*x y) x z :@
Jo-pos

3. (inversibilité) Vx € G, 3x' € G avec xxx' = x'xx =€

B (2,0) (R WM}
(lm‘"ﬁemarq ues mj
» [ 'élément neutre et ?'inverse de x ( pc‘[L “gonne 3) sont uniques

@ Le groupe est abélien (commutatif) si, Vx,y € G, xxy = y * X,

» Notations usuelles : multiplicative ou additive (abélien)
——\/W\/-

(xy)™! = y~Ix71 (inversion inverse Ifordre)

BN = gosm U KRE - Y22

, Résultat. Soient x,y,z € G, xz = yz => x = y (simplification) et



Définition
Soient x € G et n € Z, on pose

(@ sin=20

X X XX sin>0

n Vo

7 X :< n termes

¢
&‘6%)/.’7“ 5_1-X_1---X_1-X_1/ sin<O

~~

A( X WZ \ —n termes

Résultat.|Soient x € G et n,m € Z, x"x™ = x"™M et (x")" = x"™
Résultat. Soient x,z€ Get n€ Z, (zxz71)" = zx"z 71

y (.
- XZ
Définition 7
Soit x € G, le plus petit n > 1 tel que X" ="e est I'ordre de x (ordre fini).

~|
2xy Fx 3" . .- 2
Si n n'existe pas, alors x est d'ordre infini.

oy dote L (o 'l ool ey it 4]
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Définition - iém* Noppne 2 V\7L

Soit x € G, le plus petit n > 1 tel que x” = e est I'ordre de x (ordre fini).
Si n n'existe pas, alors x est d'ordre infini.

Lemme
Soit x € G d’ordre finin > 1. On a

@ Pour t € 7, x* = e si et seulement si n divise t.

» Pour ¢ € 7, l'ordre de x* est fini et est égal 3

xY)
D e

Soit y € G d’ordre fini m > 1 tel que x et y commutent alors |'ordre

de Xy@PCM n, m)
XY X

P

l Remarque

Si le groupe G est fini alors tous les éléments de G sont d’ordre fini
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Définition /

Un sousgroupgl est un|sous-ensen
I"inversion (contient .W

Sous-groupes particuliers.

e non vide stable par I'opération * et
AN  Nael, 27 el
/ /l /)
gk z X
2 g
» Centre du groupe G : Z(G) ={x € G :Vg € G, xg = gx}

Note. G = Z(G) ssi G est abélien. 852% Lt
» Pour H sous-groupe de G, le centralisateur de H :

ZH(G) ={x€ G m . ggzéd:j’

',

Note. H C CY-ssi H est abélien. o . £
2%"" c < Zl/f,( =&
» Potir H sous-groupe de G, le normalisateur de H :

Ny(&) = {x € G :Vhe H,xhx ! € H}.

el

Note. xh =gk <= xhx~! = h donc Zy(G) C Ny(G).

Yﬁxllc_@ -



Définition S¢ 6
Soit S un partie de G, on note (S) le plus petit sous-groupe de G
contenant S. On |'appelle le sous-groupe engendré;? 5.Si(5) =G, on

dit que S est générateur. > z/gz
Si S ={g}, on note plutét (g). Un groupe est mofiogene s'il ést

engendré par un seul élément- “%j 6 )= (ﬁ> &
Resultat.ﬁ( > est |'intersection d€s sous-grdupes de G contenant S,
- i forme ,

isfls;’2 . 57 avecZ t > O?s,- €S,a = +1 (g):
I Sk: 2 fpided
Proposition ¥ g‘jl" - A

Soit g € G. Si g est d’ordre infini alors le groupe (g) est de c dinal

infini. $i g est d’ordrg’¥ini égal & n,)alors le cardinal dee@ plus

c'est aussi

—

exactement
g)={g"=eg.8%....8" '}
(= (D B L
) b ke, pedids ke
Définition h“/‘
a L’(Eie d'un groupe G est le cardinal du groupe G. On note |G]|.
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Définition (?[%7)% 7y
Soient G; et G, deux groupes. Une applicatjon f : G; — G, est un
morphisme (de groupes) si, Vx,y € Gy Jf(Xy) = f(x)f(y).]Si, de_&qus f
est bijective, on dit que f est un isopforphisme et on notg G; ~ G,. Une
isomorphisme entre G et lui-mémg est un automorphisme:

> )= 4l )¢ 10y

L 'ensemble des automorphismes de G est un groupe polr la composmon
dénoté Aut(G).

e peerg B040

Proposition [\ r,,\,,
Soit f : Gi — Gy un morphisme de groupes. Alors, les ensembl

m(f) ={f(x): x € G} Q ﬁz image de f
é‘ 7 Ker(f) = {x € G; tel que f(x) = e>} noyau de f

sont des sous-groupes de G, et Gy resp. De plus, f est surjective ssi
Im(f) = Gy et injective ssi Ker(f) = {e1}.

I e 1)U 5 o L/2n) e e

Remarque

/ouk..
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Partie génératrice de GL,( ( ~| F\D %'AJ] & l'@/}
g,@K A C—/M\)'WM& Nxh M).Sg

Matrices élmentaires E,J = (0 partout sauf 1 en ligne /, colonne j).

Matrices de dilaéﬁggs “ﬁ”‘” ",F 0

l, + \E; j = diag(1,--- , 14+ A,---,1) ave@
(L — </

Matrices de transvections

\
I, + AE; avec \ # O@
— A
Théoreme

L 'ensemble des matrices de dilatation et des matrices de transvection

engendre le groupe (multiplicatif) GL, (k).
Wok n @M)

(o} . A 2 & -44’ L




ﬁ‘”‘ fnle) L 11 1 224)
Partie génératrice de O ygu}‘,e 04%94%/[

Matrice orthogonale. MtM = |, «~~ M inversible et M—! =t M.

Une Reflexion or’gﬁo onale est (la matrice d') une symétrie orthogonale
par rapport a un hyperplan.

v_h+pavech€Heth_H(dou p=0oup¢&H). La réflexion

corresgfondante est la fonction x —» h p. {%

Théoreme
L ‘'ensemble des réflexions orthogonales engendre le groupe (multiplicatif)
O, (k) (qui est un sous-groupe de GL,(k)).

' Soit H hyperplan de k" (= s.e.v. de dim n — 1), tout v € k" se décompose

(*%) &) E« e,



2. Quotients de grouw /ﬁ" ; Z«:

Notation. Pour AC G et g € G. On pose gA {ga:ac A} (ldem

pour Ag). C'est un sous-ensemble de G.
Définition /ﬁtva Kol
Soit H sous-groupe de G. Relaty/d/eq;aﬂv/alence sur G : 6
f”w’&arl
1

~ i xH = yH HY.
X ~HY SsioX y (<= X € @7—/\/)(

On note G/H I'ensemble quotient ou encore ensemble des classes a
auche, c'est-a-dire G/H = {gH : g € G}.
gau / {;g g } @%"/3 5‘;32 X

Remarques @ X ll\’y WQP’Z = a2
» On définit de méme H\ G I'ensemble des classes a droites. )I.{
-5 » Toutes les classes ont le méme cardinal qui est ['ordre de H. 9

“» Une autre relation d'équivalence importante est x ~ y si 3g € G
avec x = gyg ! qui donne les classes de conjugaison

=TT K@ alles



G Helnd A ] wte )
Théoreme (Lagrange)

On a card(G/H) = card(H\G) et |G| = card(G/H) |H|.

En particulier, si |G| est fini, I'ordre de tout sous-groupe de G et de tout
élément de G divise |G|.

On appelle card(G /H) I'indice de H dans G.

Remarque. La réciproque en fausse en général : si d divise |'ordre de G, il
n'existe pas forcément d'élément ou de sous-groupe de G d'ordre d. (Cas

particulier : d premier, G cyclique).

Application au petit théoreme de Fermat.

L'ensemble (Z/pZ)* des classes inversibles modulo p ave ,pzemiei est
un groupe multiplicatif d'ordre p — 1 et donc pour tout Z/pZ)

obtient 37! = 1, c’est-3-dire pour tout entier a non d|V|s\b‘1‘E“par p
i

N~ a»t=1 (mod p). /

16 (Zia)" o dors | ek bt g

o
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Définition M/D(M

On not —; m:\w /5L5” » ‘Q&‘M}

Result;fe Le noyau d'un morphisme est un sous-groupe distingué

Resuﬁiat L'intersection de sous-groupes dlstmgues est un sous- roupe

duistmgue j'é"’)éﬁ 7 )(ijd 61 ;0*96&
Thﬁ% Eé 6‘)(0(3(£‘> 3%2 ) S N'lw

Soif H< G 3lors G/H avec I'opération aH - bH = abH est un groupe et
I'apptication de G — G/H définie par g — gH est un morphisme f

surjectif de noyau H. = ol $J7/

De plus, si f : G — G’ est un morphisme alors on a

- G/Ker(f) ~ Im(f) ( Théoréme de factorisation)

g dy A oo o



Quelques applications du théoreme de factorisation é@

1. Reconnaitre les groupes suivants :
S,/An,  O,(R)/SO,(R), GL,(R)/SL,(R), R*/RZ.
2. Démontrer les isomorphismes suivants : j/:’k)c/it/ s %)-&/2/
R/Z~ S, R*/{£1}~RX, C*/S ~R}

avec S; = {z € C* : |z| = 1}, le cercle trigonométrique.

X X hor ﬁ}—-—c
Sous-groupe caractéristique a?' ”Z —> K-l' d"’#". ? g ’
Un sous-groupe H est caractéristique dans G s'il est stable par-tout
automorphisme de G. On note alors H C G.

1. Montrer qu'un sous-groupe caractéristique dans G est distingué.
2. Démontrerque HC KC G = HLC G.

3. Démontrer que HC K< G — H«G.
4

. Démontrer que le centre d'un groupe est toujours un sous-groupe
caractéristique.
5. Soit ¢ I'application qui a x € G associe |'automorphisme intérieur iy, défini
par : Vg € G, ix(g) = xgx~*. Montrer que ¢ est un morphisme de
groupes. Déterminer son noyau. En déduire I'isomorphisme suivant :

G/Z(G) ~ Int(G).



616" thor grepe G 8 gy ame (3,8(0,4)
Définition = (5h,4'%)

Soient H, K sous-groupes de G aved H < G,)G est produit semi-direct
(interne) de H par K si une des condifons équivalentes est vérifiée

& >HﬂK:{e}etG:@x ZM Kiygé‘kf
> Tout élément de g € G $'écrif de maniere unique g = hk avec

& heHetkeK 500«1"}‘/‘-’ r MG

X ( K ~ G/H via la surjectjon canonique k > kH)

On note G = H>4K f’H}){K

Résultat. MM@M

Si on a aussi K < G, on dit que c'est ur@oduit direct,

e cas, pour tout k € K et h € H, on a"Kh = hk et |'application
@ G définit par

(h, k) — hk

est un isomorphisme.



3. Quelques groupes particuliers

b ﬁﬂa?ﬂ ’
Lemme §£<§> fz"’é f/"‘/=j S - -
Soit G un gro%’pe:njﬁgéne. Si G est infini alors G ~ Z, sinon G est %éﬂ

cyclique et G o Z/nZ §vec n l'ordre de G. Zé/ / -
A tdedd be Z
Proposition =D }}4;0/ W%&MZ I Zé{;%:‘:ﬁ

Soit m € Z/nZ. L'ordre de m est n/PGCD{m, n) donc m est gén
ssi n et m sont premiers entre eux ssi m est inversible modulo n 'ﬁ\f .{_

Définition 3kt 40 ey ()

L'ensemble des inversibles modulo n forme un groupe multiplicatif

[ (Z/nZ)* = {m tel que PGCD(m, n) = 1} q/’)

2 -1
d’ordre ¢(n) mdicatrice d’Euler). g{}? )Sf /j’-—y

g
Théoreme (Théoréme des restes chinois) r k@/

SOient@tx\entiers > 1 et premiers entre eux, on a les

Isomorphismes naturels

Z/nmZ ~7./nZ x Z/mZ et (Z/nmZ)* ~ (Z/nZ)" x (Z/mZ)*

Y L [ =) Plon) - /) ) o
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Nombres d'éléments d'ordre donné dans un groupe cyclique

Soit G un groupe cyclique d'ordre n.

1.
2.

Soit d > 1 un entier. Déterminer le nombre d'éléments d'ordre d dans G.

En déduire la formule ) ¢(d) = n.
d|n

Le but de cet exercice est de déterminer la structure du groupe Aut((Z/227)")
des automorphismes de (Z/227.)*.

1.
2.

S

Déterminer |'ordre de (Z/227.)".

Montrer que 7 est un générateur de (Z/227Z)*. En déduire que (Z/227)*
est cyclique.

En déduire tous les sous-groupes de (Z/227.)*.
Déterminer tous les générateurs de (Z/227.)*.
Déterminer tous les automorphismes de (Z/227.)*.

Ecrire la table de multiplication de Aut((Z/227)*) et en déduire que
Aut((Z/22Z)*) est isomorphe a Z/47.



Définition
Soit n > 1, on appelle groupe symétrique sur n lettres, I'ensemble

S, = Bij({1,--- n}). Cest un groupe pour la composition et son ordre
est nl =1x2x---xn. I —»> &

27—
Exemple L

n

Les permutations peuvent s'écrire de deux manieres essentiellement

10243 4 56 7 8\ |
N YR (écriture sur deux lignes)
o~

(> (1,4,5)(2.3)(6,8) (produit de cycles disjoints)

oV b6

Remarques

» La multiplication se fait de droite a gauche (1,2)(2,3) = (1,2, 3)

> O a(al,ag,...,as):(32,33,...,35,31):---:(as,al,...,as_\l)j

Un cycle de longueur ¢ est un /-cycle et on appelle un 2-cycle une
transposition. - A

—

77/ P
Résultat. Les transpositions engendrent S,,.




Lemme
L ’ordre d’un f-cycle est £. L’ordre d’'une permutation écrit comme produit

de cycles disjoints est le PPCM des longueurs des cycles.
e ——

Proposition

Il existe un unique morphisme sign : S,, — {£1} non trivial. On I'appelle
la signature. Soit ¢ un {-cycle, on a sign(c) = (—1

Une permutation m est paire si sign(w) = 1 et impaire si sign(mw) = —1.
Le groupe des permutations paires (= noyau de sign) est le groupe
alterné, noté A,. Son ordre est n!/2.

C'est le seul sous-groupe d'ordre n!/2 dans S,.

§ov e Al m,;,;/({ SN SV @ik o
Remarque Unr — -

Un groupe G dont les séuls sous-groupes distingués sont {e} et uTheme
est un groupe simple. Le plus petit groupe simple non abélien est As ,
] d’ordre 60 et pour tout n > 5, le groupe A, est simple.



D

Soit n > 3. Le groupe diédral D, est le groupe des isométries du plan
qui fixe un polygone régulier é@:c“)tés.

C'est un groupe d'ordre 2n engendré par la rotation qui envoie un
sommet sur le sommet suivant et une des symétries axiales passant par
un des sommets.

De maniere abstraite, Dy, est le groupe engendré par o et 7 avec les
relations ——.

o = é, ° = e, ,f'} T
[ SR —
On a alors L)O—A{mh ] L)o,,

L : ; . -
» Pour tout entier i, To'T =o', 601" ‘ k‘f V=7
» Pour tout entier i, I'élément 7o' est d'ordre 2.

» Les éléments de D,, sont exactement les éléments

L N |

e, o,.. .,(7”_1{7', TO, ... ,7'0"_17</— M 2

~



4. Actions de groupe

Définition

Une action du groupe G sur un ensemble X est la donnée d'un
morphisme ® : G — Bij(X) (= groupe pour la composition).

En général, on écrit g - x plutot que ®(g)(x) pour g € G et x € X, d'ou

Vxe X, e-x=x et Vg,g'eG xeX, (gg')-x=g-(g"x).

Définition
Pour x € X, on pose -2 ‘X

» O(x) =0, ={g x:g € G} est I'gfbite de x.

» S(x) = Gy ={g € G tel que g- x = x} est le stabilisateur de x

(sous-groupe de G) é,é I l”?la
Le noyau de I'action est |'intersection des stabilisateurs. = ¥
On notg X /G lJensemble des orbites de X. ZC‘/\// j')(
L'action est transitive s'il existe une seule orblte:es JVL]/Q l X/ &Jff

L'action est fidele si le noyau est trivial.

[44?#4\/(1, Y 2N L o ;’\"%zq

-
&

A
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Lemme =) éﬂe

Soit K le noyau de I'action alors K est distingué et G/K hérite d'une
action fidéle sur X

Théoreme (Cayley)

Soit G un groupe d’ordre n. Alors G est isomorphe a un sous-groupe
de S,.

Théoreme (Formules des classes) Za/ Yy (= :Y'g ¢, §-xzY

Deux orbites sont ou bien égales, ou bien disjointes, et donc

[ Zﬂ"‘)yéf

rSX
[1e 8] gxon

, on a

G — e
4> 5%

é-ﬂ.c;/‘l
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Quelques résultats sur les p-groupes

Un p-groupe, avec p premier, est un groupe fini dont I'ordre est une
puissance (non triviale) de p.

1. Soit G un p-groupe. On montre que Z(G) n'est pas réduit a {e}.

1.1 Soit X un ensemble fini sur lequel G agit. On note X¢ I'ensemble
des points fixes de X sous cette action. Montrer que

card(X) = card(X®) (mod p).

1.2 Déterminer une action de G pour laquelle I'ensemble des points fixes
est Z(G), puis conclure.

2. Soit G un groupe fini. On suppose que G/Z(G) est un groupe
cyclique. Montrer que G est abélien.

En déduire la structure des groupes d'ordre p? avec p premier.



Sous-groupes d’'indice p avec p plus petit facteur premier de |G|

1. Soit H un sous-groupe d'indice 2 dans G. Montrer que H< G.

2. Soit G un groupe fini. Soit p le plus petit premier divisant |G].
Soit H sous-groupe d'indice p, on montre que H < G.
On considere I'action de G sur G/H par multiplication a gauche.
2.1 Montrer que cette action est transitive.
2.2 Soit K le noyau de |'action. Montrer que K C H.

2.3 Montrer que G /K est isomorphe a un sous-groupe de S,.

2.4 En déduire que H = K et le résultat.



F, X o X&;J/; X%

Proposition (Lemme de Burnside)
Pour g € G, on pose X8 = {x € X tel que g-x = x}. On a 7
!

&
Je o
card(X/G) = |G| Z card(X#) 7(1

< X 1 (Y
Probleme du collier de perles. 9) » 7(‘;”1"' /

o 1 O

1. Montrer qu’'avec 5 perles blanches et 3 perles noires, on ne peut
faire que 5 colliers différents de 8 perles.

2. Montrer que le nombre de bracelets de 5 perles qu'on peut faire en
utilisant des perles rouges, vertes ou bleues est 39.



5. Théoremes de Sylow

Théoreme
Soit G un_groupe d’ordre n. Soit p un nombre premier. On écrit n = p'm
avec @

» || existe un sous-groupe P d’ordre p". On appelle un tel groupe, un
p-Sylow de G N

» Soient P et Q deux p-Sylow, il existe g € G tel que QCngl /

(les p-Sylow sont conjugués deux a deux) o
» Soit H un p-sous-groupe de G, alors H est contenu dans un p-Sylow

» Le nombre n, de p-Sylow vérifie n, | m et n, =1 (mod p)

Coollare [Th. ot Camchy )

Un groupe G d’ordre n posséde un élément d’ordre p si et seulement si p

divise n = Ufﬂ'.o(j,
Exemple = 5’2 {P><1 Q

Soit G un groupe d'ordre pg avec p < g premiers. Alors, ng | p et ng =1
(mod q) d'ou ng = 1. |l suit qu'il existe un unique g-SYIGW @ qut istingué.

Soit P un p-Sylow, ona PN Q :)e/et G=PQ d’OULf ﬁW’:}
e



Déterminer tous les groupes d'ordre 12 a isomorphisme preés.

Soit G un groupe d'ordre 12.
1. Déterminer les valeurs possibles pour n» et ns.
2. Montrer que G est abélien si et seulement si no = n3 = 1.

2.1 On suppose que G est abélien. Montrer que G contient au moins un
élément d'ordre 6 ou 12.
2.2 En déduire la structure de G dans le cas abélien.

3. On suppose a présent que G n'est pas abélien.
Montrer que si n3 # 1, alors on a n, = 1.

4. On suppose que n3 = 4. On considere |I'action de G sur les 3-Sylow par
conjugaison.

4.1 Montrer que le stabilisateur d'un 3-Sylow pour cette action est
lui-méme.
4.2 En déduire que |'action est fidele, puis que G ~ A;.

5. On suppose que n3 = 1 et donc n; = 3. Montrer qu'on a dans ce cas
G~7/3Zx7/4Z ou G ~7/3Z % (Z/2Z)°.

6. (Question subsidiaire.) Montrer Z/3Z x (Z/27Z)* ~ Ds,.



