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§1. Notions de base

Définition

Un groupe est un ensemble non vide G avec opération * interne vérifiant
1. (élément neutre) Je € G avec xxe=exx=x Vxe€ G
2. (associativité) Vx,y,z € G, xx (y*z) = (x*y) s z=xxy*x z
3. (inversibilité) Vx € G, 3x’ € G avec xxx' =x"xx =e

Remarques

» L'élément neutre et I'inverse de x (pour x donné) sont uniques
> Le groupe est abélien (commutatif) si, Vx,y € G, xxy =y % X,
> Notations usuelles : multiplicative ou additive (abélien)

Résultat. Soient x,y,z € G, xz = yz = x = y (simplification) et

(xy)~! = y~1x71 (inversion inverse I'ordre)



Définition
Soient x € G et n € Z, on pose
e sin=0
X X XX sin>0
X = n termes

xPoxtoo.ox7tox7t sin<o

—n termes

Résultat. Soient x € G et n,m € Z, x"x™ = x"tM et (x")™ = x"™
Résultat. Soient x,z € Get n€ Z, (zxz71)" = zx"z7!

Définition
Soit x € G, le plus petit n > 1 tel que x" = e est I'ordre de x (ordre fini).
Si n n'existe pas, alors x est d'ordre infini.



Définition
Soit x € G, le plus petit n > 1 tel que x" = e est I'ordre de x (ordre fini).
Si n n’existe pas, alors x est d'ordre infini.

Lemme
Soit x € G d'ordre finin>1. On a

» Pourt € Z, xt = e si et seulement si n divise t.
» Pour{ € Z, l'ordre de x* est fini et est égal a
n

PGCD(n, £)

Soit y € G d’ordre fini m > 1 tel que x et y commutent alors ['ordre
de xy divise PPCM(n, m).

Remarque
Si le groupe G est fini alors tous les éléments de G sont d’ordre fini



Définition
Un sous-groupe est un sous-ensemble non vide stable par I'opération * et
I'inversion (contient forcément e)

Sous-groupes particuliers.

» Centre du groupe G : Z(G) = {x € G : Vg € G, xg = gx}
Note. G = Z(G) ssi G est abélien.

» Pour H sous-groupe de G, le centralisateur de H :
Zn(G) ={x € G :Vhe H,xh= hx}.

Note. H C Zy(G) ssi H est abélien.

» Pour H sous-groupe de G, le normalisateur de H :
Nu(G) = {x € G :Vh € H,xhx™* € H}.

Note. xh = hx <= xhx~! = h donc Zy(G) C Ny(G).



Définition

Soit S un partie de G, on note (S) le plus petit sous-groupe de G
contenant S. On |'appelle le sous-groupe engendré par S. Si (S) = G, on
dit que S est générateur.

Si S = {g}, on note plutdt (g). Un groupe est monogene s'il est
engendré par un seul élément.

Résultat. (S) est I'intersection des sous-groupes de G contenant S,
c'est aussi I'ensemble des produits de la forme

a a. a
sy'sy - -sitavec t > 0,5, € S5,a; = £1

Proposition

Soit g € G. Si g est d'ordre infini alors le groupe (g) est de cardinal
infini. Si g est d'ordre fini égal a n, alors le cardinal de (g) est n, plus
exactement

<g> - {go - e',g7g27"'?gn71}

Définition
L'ordre d'un groupe G est le cardinal du groupe G. On note |G|.



Définition

Soient Gj et G, deux groupes. Une application f : G; — G, est un
morphisme (de groupes) si, Vx,y € Gy, f(xy) = f(x)f(y). Si, de plus, f
est bijective, on dit que f est un isomorphisme et on note G; ~ G;. Une
isomorphisme entre G et lui-mé&me est un automorphisme.

Remarque

L’ensemble des automorphismes de G est un groupe pour la composition
dénoté Aut(G).

Proposition
Soit f : Gy = Gy un morphisme de groupes. Alors, les ensembles
Im(f) = {f(x): x € G} image de f
Ker(f) = {x € G; tel que f(x) = 2} noyau de f

sont des sous-groupes de Gy et Gy resp. De plus, f est surjective ssi
Im(f) = G, et injective ssi Ker(f) = {e1}.



Partie génératrice de GL,(k).
Matrices élémentaires E;; = (0 partout sauf 1 en ligne i, colonne j).

Matrices de dilatations

In+ ME;jj = diag(1,--- ,1+A,---,1) avec A # —1

Matrices de transvections

In+ AEjj avec A #0, i #j

Théoréme
L’ensemble des matrices de dilatation et des matrices de transvection
engendre le groupe (multiplicatif) GL,(k).



Partie génératrice de O,(k).

Matrice orthogonale. MtM = I, «~ M inversible et M~ =t M.

Une Reflexion orthogonale est (la matrice d') une symétrie orthogonale
par rapport a un hyperplan.

Soit H hyperplan de k" (= s.e.v. de dim n — 1), tout v € k" se décompose
v=h+paveche Het p L H(dot p=0oup¢ H). La réflexion
correspondante est la fonction x — h — p.

Théoreéme
L’ensemble des réflexions orthogonales engendre le groupe (multiplicatif)
On(k) (qui est un sous-groupe de GL,(k)).



2. Quotients de groupe

Notation. Pour AC G et g € G. On pose gA = {ga: a € A} (idem
pour Ag). C'est un sous-ensemble de G.

Définition
Soit H sous-groupe de G. Relation d'équivalence sur G :

xX~py ssi xH=yH (<= y x e H).

On note G/H I'ensemble quotient ou encore ensemble des classes a
gauche, c'est-a-dire G/H = {gH : g € G}.

Remarques

» On définit de méme H\ G I'ensemble des classes & droites.
» Toutes les classes ont le méme cardinal qui est I'ordre de H.

» Une autre relation d'équivalence importante est x ~ y si 3g € G
avec x = gyg ! qui donne les classes de conjugaison



Théoreme (Lagrange)

On a card(G/H) = card(H\G) et |G| = card(G/H) |H]|.

En particulier, si |G| est fini, I'ordre de tout sous-groupe de G et de tout
élément de G divise |G|.

On appelle card(G/H) I'indice de H dans G.

Remarque. La réciproque en fausse en général : si d divise I'ordre de G, il
n'existe pas forcément d’'élément ou de sous-groupe de G d'ordre d. (Cas
particulier : d premier, G cyclique).

Application au petit théoreme de Fermat.

L'ensemble (Z/pZ)* des classes inversibles modulo p avec p premier est
un groupe multiplicatif d'ordre p — 1 et donc pour tout 3 € (Z/pZ)*, o
obtient 3°~1 =1, c'est-a-dire pour tout entier a non divisible par p

a»'=1 (mod p).



Définition
H de G est distingué si, Ny(G) = G, ie Vg € G,Vh € h,ghg™ € H
(< VgeG, gHgT' CH +— VgeG, gHg ! = H).

On note H< G

Résultat. Le noyau d'un morphisme est un sous-groupe distingué

Résultat. L'intersection de sous-groupes distingués est un sous-groupe
distingué

Théoreme

Soit H< G alors G/H avec I'opération aH - bH = abH est un groupe et
I'application de G — G/H définie par g — gH est un morphisme
surjectif de noyau H.

De plus, si f : G — G’ est un morphisme alors on a

G /Ker(f) ~ Im(f) (Théoréme de factorisation)



Quelques applications du théoréeme de factorisation

1. Reconnaltre les groupes suivants :
Sa/As,  On(R)/SOA(R), GL,(R)/SL,(R), R*/R}.
2. Démontrer les isomorphismes suivants :
R/Z ~ S, R*/{+1} ~RY, C*/S ~R]

avec 51 = {z € C* : |z| = 1}, le cercle trigonométrique.

Sous-groupe caractéristique

Un sous-groupe H est caractéristique dans G s'il est stable par tout
automorphisme de G. On note alors H C G.

1. Montrer qu’un sous-groupe caractéristique dans G est distingué.
2. Démontrerque HC KC G = HLC G.

3. Démontrer que HC K< G = H<«G.
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. Démontrer que le centre d'un groupe est toujours un sous-groupe
caractéristique.
5. Soit ¢ I'application qui a x € G associe I'automorphisme intérieur iy défini
par : Vg € G, ix(g) = xgx~*. Montrer que ¢ est un morphisme de
groupes. Déterminer son noyau. En déduire I'isomorphisme suivant :

G/Z(G) ~ Int(G).



Définition
Soient H, K sous-groupes de G avec H< G, G est produit semi-direct
(interne) de H par K si une des conditions équivalentes est vérifiée
> HNK ={e} et G = HK
» Tout élément de g € G s'écrit de maniére unique g = hk avec
heHetkeK

» K ~ G/H via la surjection canonique k — kH
On note G = H x K.

Résultat. On a aussi G = KH et donc G = K x H.

Si on a aussi K < G, on dit que c'est un produit direct.
Dans ce cas, pour tout k € K et h € H, on a kh = hk et 'application
H x K — G définit par

(h, k) — hk

est un isomorphisme.



3. Quelques groupes particuliers

Lemme
Soit G un groupe monogéne. Si G est infini alors G ~ Z, sinon G est
cyclique et G ~ Z/nZ avec n l'ordre de G.

Proposition

Soit m € Z/nZ. L'ordre de m est n/PGCD(m, n) donc m est générateur
ssi n et m sont premiers entre eux ssi m est inversible modulo n

Définition

L'ensemble des inversibles modulo n forme un groupe multiplicatif
(z/nZ)* = {m tel que PGCD(m, n) =1}

d’ordre (n) (fonction indicatrice d'Euler).

Théoréme (Théoréme des restes chinois)

Soient n et m deux entiers > 1 et premiers entre eux, on a les
isomorphismes naturels

Z/nmZ ~Z/nZ x Z/mZ et (Z/nmZ)* ~ (Z/nZ)* x (Z/mZ)*



Nombres d'éléments d’'ordre donné dans un groupe cyclique

Soit G un groupe cyclique d'ordre n.
1. Soit d > 1 un entier. Déterminer le nombre d’'éléments d'ordre d dans G.
2. En déduire la formule > ¢(d) = n.
d|n

Le but de cet exercice est de déterminer la structure du groupe Aut((Z/227Z)")
des automorphismes de (Z/227Z)".

1. Déterminer I'ordre de (Z/227Z)*.

2. Montrer que 7 est un générateur de (Z/227)*. En déduire que (Z/227)*
est cyclique.

3. En déduire tous les sous-groupes de (Z/227Z)*.

4. Déterminer tous les générateurs de (Z/227Z)".

5. Déterminer tous les automorphismes de (Z/227Z)".
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. Ecrire la table de multiplication de Aut((Z/227)*) et en déduire que
Aut((Z/22Z)") est isomorphe a Z/4AZ.



Définition

Soit n > 1, on appelle groupe symétrique sur n lettres, I'ensemble

S, =Bij({1,- - n}). Cest un groupe pour la composition et son ordre
estnl=1x2x---xn.

Exemple
Les permutations peuvent s'écrire de deux maniéres essentiellement

1 2 3 45 6 7 8
4 3 2518 76

(1,4,5)(2,3)(6,8) (produit de cycles disjoints)

) (&écriture sur deux lignes)

Remarques
» La multiplication se fait de droite a gauche (1,2)(2,3) = (1,2,3)
» Ona(ay,a,...,as) = (a2 a3,...,8s,31) =+ = (35,31, ...,385-1)
Un cycle de longueur £ est un (-cycle et on appelle un 2-cycle une
transposition.

Résultat. Les transpositions engendrent S,,.



Lemme
L'ordre d'un £-cycle est £. L’ordre d’une permutation écrit comme produit
de cycles disjoints est le PPCM des longueurs des cycles.

Proposition

Il existe un unique morphisme sign : S, — {£1} non trivial. On I'appelle
la signature. Soit ¢ un {-cycle, on a sign(c) = (—1)**1.

Une permutation 7 est paire si sign(w) = 1 et impaire si sign(r) = —1.
Le groupe des permutations paires (= noyau de sign) est le groupe
alterné, noté A,. Son ordre est n!/2.

C'est le seul sous-groupe d'ordre n!/2 dans S,,.

Remarque

Un groupe G dont les seuls sous-groupes distingués sont {e} et lui-méme
est un groupe simple. Le plus petit groupe simple non abélien est As
d’ordre 60 et pour tout n > 5, le groupe A, est simple.



Soit n > 3. Le groupe diédral D,, est le groupe des isométries du plan
qui fixe un polygone régulier a n cotés.

C'est un groupe d'ordre 2n engendré par la rotation qui envoie un
sommet sur le sommet suivant et une des symétries axiales passant par
un des sommets.

De maniere abstraite, D,, est le groupe engendré par o et 7 avec les

relations

o"=e, T’=¢e, TOT=0 1.

On a alors
» Pour tout entier i, 7o' = o',
» Pour tout entier i, I'élément 7o' est d’ordre 2.

» Les éléments de D,, sont exactement les éléments

-1 -1
e,o,....,0" ", 1,T0,...,T0" .



4. Actions de groupe

Définition

Une action du groupe G sur un ensemble X est la donnée d’un

morphisme ¢ : G — Bij(X) (= groupe pour la composition).

En général, on écrit g - x plutdt que ®(g)(x) pour g € G et x € X, d'ol
VxeX, e-x=x et Vg,g€eG,xeX, (gg) - x=g (g x).

Définition
Pour x € X, on pose
> O(x)=Q,={g-x:g € G} est I'orbite de x.

> S(x) = Gy ={g € G tel que g- x = x} est le stabilisateur de x
(sous-groupe de G)

Le noyau de I'action est I'intersection des stabilisateurs.
On note X /G I'ensemble des orbites de X.
L'action est transitive s'il existe une seule orbite.

L'action est fidele si le noyau est trivial.



Lemme
Soit K le noyau de I'action alors K est distingué et G /K hérite d'une
action fidéle sur X

Théoreme (Cayley)

Soit G un groupe d’ordre n. Alors G est isomorphe a un sous-groupe
de S,.

Théoreme (Formules des classes)

Deux orbites sont ou bien égales, ou bien disjointes, et donc

card(X) = Z card(Q)

Qex/G
Soit x € X, on a G|
card(Qy) =
G
Soit R un systéme de représentants des orbites de X, on a

G
card(X) = Z ||G ||
xeR X




Quelques résultats sur les p-groupes

Un p-groupe, avec p premier, est un groupe fini dont I'ordre est une
puissance (non triviale) de p.

1. Soit G un p-groupe. On montre que Z(G) n'est pas réduit a {e}.

1.1 Soit X un ensemble fini sur lequel G agit. On note X© I'ensemble
des points fixes de X sous cette action. Montrer que

card(X) = card(X®) (mod p).

1.2 Déterminer une action de G pour laquelle I'ensemble des points fixes
est Z(G), puis conclure.

2. Soit G un groupe fini. On suppose que G/Z(G) est un groupe
cyclique. Montrer que G est abélien.

En déduire la structure des groupes d'ordre p? avec p premier.



Sous-groupes d'indice p avec p plus petit facteur premier de |G|

1. Soit H un sous-groupe d’indice 2 dans G. Montrer que H< G.

2. Soit G un groupe fini. Soit p le plus petit premier divisant |G]|.
Soit H sous-groupe d'indice p, on montre que H< G.
On considere I'action de G sur G/H par multiplication a gauche.
2.1 Montrer que cette action est transitive.
2.2 Soit K le noyau de I'action. Montrer que K C H.
2.3 Montrer que G/K est isomorphe a un sous-groupe de Sp.

2.4 En déduire que H = K et le résultat.



Proposition (Lemme de Burnside)
Pour g € G, on pose X8 = {x € X tel que g-x=x}. On a

\G| anrd (X#)

geG

card(X/G) =

Probléme du collier de perles.

1. Montrer qu'avec 5 perles blanches et 3 perles noires, on ne peut
faire que 5 colliers différents de 8 perles.

2. Montrer que le nombre de bracelets de 5 perles qu’on peut faire en
utilisant des perles rouges, vertes ou bleues est 39.



5. Théoremes de Sylow

Théoreme
Soit G un groupe d’ordre n. Soit p un nombre premier. On écrit n = p"m
avec p{m.
» |l existe un sous-groupe P d’ordre p". On appelle un tel groupe, un
p-Sylow de G
» Soient P et Q deux p-Sylow, il existe g € G tel que Q = gPg
(les p-Sylow sont conjugués deux a deux)

-1

» Soit H un p-sous-groupe de G, alors H est contenu dans un p-Sylow

» Le nombre n, de p-Sylow vérifie n, | m et n, =1 (mod p)

Corollaire
Un groupe G d’ordre n posséde un élément d’ordre p si et seulement si p
divise n

Exemple

Soit G un groupe d'ordre pq avec p < g premiers. Alors, ng | p et ng =1
(mod g) d'oli ng = 1. Il suit qu'il existe un unique g-Sylow Q qui est distingué.
Soit P un p-Sylow,ona PN Q =eet G =PQ d'ot G ~Z/pZ x Z/qZ.



Déterminer tous les groupes d'ordre 12 a isomorphisme pres.

Soit G un groupe d'ordre 12.
1. Déterminer les valeurs possibles pour n; et ns.
2. Montrer que G est abélien si et seulement si n, = n3 = 1.

2.1 On suppose que G est abélien. Montrer que G contient au moins un
élément d'ordre 6 ou 12.
2.2 En déduire la structure de G dans le cas abélien.

3. On suppose a présent que G n'est pas abélien.
Montrer que si n3 # 1, alors on a n, = 1.

4. On suppose que n3 = 4. On considere I'action de G sur les 3-Sylow par
conjugaison.

4.1 Montrer que le stabilisateur d'un 3-Sylow pour cette action est
lui-méme.
4.2 En déduire que I'action est fidéle, puis que G ~ A,.

5. On suppose que n3 = 1 et donc n; = 3. Montrer qu'on a dans ce cas
G~Z/3LXL/AL ou G~ 7Z/37 % (Z/2Z)°.

6. (Question subsidiaire.) Montrer Z/3Z x (Z/2Z)* ~ Dro.



