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§1. Notions de base

Définition
Un groupe est un ensemble non vide G avec opération ∗ interne vérifiant

1. (élément neutre) ∃e ∈ G avec x ∗ e = e ∗ x = x ∀x ∈ G

2. (associativité) ∀x , y , z ∈ G , x ∗ (y ∗ z) = (x ∗ y) ∗ z = x ∗ y ∗ z
3. (inversibilité) ∀x ∈ G , ∃x ′ ∈ G avec x ∗ x ′ = x ′ ∗ x = e

Remarques

▶ L’élément neutre et l’inverse de x (pour x donné) sont uniques

▶ Le groupe est abélien (commutatif) si, ∀x , y ∈ G, x ∗ y = y ∗ x,
▶ Notations usuelles : multiplicative ou additive (abélien)

Résultat. Soient x , y , z ∈ G , xz = yz =⇒ x = y (simplification) et
(xy)−1 = y−1x−1 (inversion inverse l’ordre)



Définition
Soient x ∈ G et n ∈ Z, on pose

xn =



e si n = 0

x · x · · · x · x︸ ︷︷ ︸
n termes

si n > 0

x−1 · x−1 · · · x−1 · x−1︸ ︷︷ ︸
−n termes

si n < 0

Résultat. Soient x ∈ G et n,m ∈ Z, xnxm = xn+m et (xn)m = xnm

Résultat. Soient x , z ∈ G et n ∈ Z, (zxz−1)n = zxnz−1

Définition
Soit x ∈ G , le plus petit n ≥ 1 tel que xn = e est l’ordre de x (ordre fini).
Si n n’existe pas, alors x est d’ordre infini.



Définition
Soit x ∈ G , le plus petit n ≥ 1 tel que xn = e est l’ordre de x (ordre fini).
Si n n’existe pas, alors x est d’ordre infini.

Lemme
Soit x ∈ G d’ordre fini n ≥ 1. On a

▶ Pour t ∈ Z, x t = e si et seulement si n divise t.

▶ Pour ℓ ∈ Z, l’ordre de xℓ est fini et est égal à

n

PGCD(n, ℓ)

Soit y ∈ G d’ordre fini m ≥ 1 tel que x et y commutent alors l’ordre
de xy divise PPCM(n,m).

Remarque
Si le groupe G est fini alors tous les éléments de G sont d’ordre fini



Définition
Un sous-groupe est un sous-ensemble non vide stable par l’opération ∗ et
l’inversion (contient forcément e)

Sous-groupes particuliers.

▶ Centre du groupe G : Z (G ) = {x ∈ G : ∀g ∈ G , xg = gx}
Note. G = Z (G ) ssi G est abélien.

▶ Pour H sous-groupe de G , le centralisateur de H :

ZH(G ) = {x ∈ G : ∀h ∈ H, xh = hx}.

Note. H ⊆ ZH(G ) ssi H est abélien.

▶ Pour H sous-groupe de G , le normalisateur de H :

NH(G ) = {x ∈ G : ∀h ∈ H, xhx−1 ∈ H}.

Note. xh = hx ⇐⇒ xhx−1 = h donc ZH(G ) ⊆ NH(G ).



Définition
Soit S un partie de G , on note ⟨S⟩ le plus petit sous-groupe de G
contenant S . On l’appelle le sous-groupe engendré par S . Si ⟨S⟩ = G , on
dit que S est générateur.
Si S = {g}, on note plutôt ⟨g⟩. Un groupe est monogène s’il est
engendré par un seul élément.

Résultat. ⟨S⟩ est l’intersection des sous-groupes de G contenant S ,
c’est aussi l’ensemble des produits de la forme

sa11 sa22 · · · satt avec t ≥ 0, si ∈ S , ai = ±1

Proposition
Soit g ∈ G. Si g est d’ordre infini alors le groupe ⟨g⟩ est de cardinal
infini. Si g est d’ordre fini égal à n, alors le cardinal de ⟨g⟩ est n, plus
exactement

⟨g⟩ = {g0 = e, g , g2, . . . , gn−1}

Définition
L’ordre d’un groupe G est le cardinal du groupe G . On note |G |.



Définition
Soient G1 et G2 deux groupes. Une application f : G1 → G2 est un
morphisme (de groupes) si, ∀x , y ∈ G1, f (xy) = f (x)f (y). Si, de plus, f
est bijective, on dit que f est un isomorphisme et on note G1 ≃ G2. Une
isomorphisme entre G et lui-même est un automorphisme.

Remarque
L’ensemble des automorphismes de G est un groupe pour la composition
dénoté Aut(G ).

Proposition
Soit f : G1 → G2 un morphisme de groupes. Alors, les ensembles

Im(f ) = {f (x) : x ∈ G1} image de f

Ker(f ) = {x ∈ G1 tel que f (x) = e2} noyau de f

sont des sous-groupes de G2 et G1 resp. De plus, f est surjective ssi
Im(f ) = G2 et injective ssi Ker(f ) = {e1}.



Partie génératrice de GLn(k).

Matrices élémentaires Ei,j = (0 partout sauf 1 en ligne i , colonne j).

Matrices de dilatations

In + λEi,i = diag(1, · · · , 1 + λ, · · · , 1) avec λ ̸= −1

Matrices de transvections

In + λEi,j avec λ ̸= 0, i ̸= j

Théorème
L’ensemble des matrices de dilatation et des matrices de transvection
engendre le groupe (multiplicatif) GLn(k).



Partie génératrice de On(k).

Matrice orthogonale. M tM = In ↭ M inversible et M−1 = tM.

Une Reflexion orthogonale est (la matrice d’) une symétrie orthogonale
par rapport à un hyperplan.

Soit H hyperplan de kn (= s.e.v. de dim n − 1), tout v ∈ kn se décompose
v = h + p avec h ∈ H et p ⊥ H (d’où p = 0 ou p ̸∈ H). La réflexion
correspondante est la fonction x 7→ h − p.

Théorème
L’ensemble des réflexions orthogonales engendre le groupe (multiplicatif)
On(k) (qui est un sous-groupe de GLn(k)).



2. Quotients de groupe

Notation. Pour A ⊂ G et g ∈ G . On pose gA = {ga : a ∈ A} (idem
pour Ag). C’est un sous-ensemble de G .

Définition
Soit H sous-groupe de G . Relation d’équivalence sur G :

x ∼H y ssi xH = yH ( ⇐⇒ y−1x ∈ H).

On note G/H l’ensemble quotient ou encore ensemble des classes à
gauche, c’est-à-dire G/H = {gH : g ∈ G}.

Remarques

▶ On définit de même H\G l’ensemble des classes à droites.

▶ Toutes les classes ont le même cardinal qui est l’ordre de H.

▶ Une autre relation d’équivalence importante est x ∼ y si ∃g ∈ G
avec x = gyg−1 qui donne les classes de conjugaison



Théorème (Lagrange)
On a card(G/H) = card(H\G ) et |G | = card(G/H) |H|.
En particulier, si |G | est fini, l’ordre de tout sous-groupe de G et de tout
élément de G divise |G |.
On appelle card(G/H) l’indice de H dans G.

Remarque. La réciproque en fausse en général : si d divise l’ordre de G , il
n’existe pas forcément d’élément ou de sous-groupe de G d’ordre d . (Cas
particulier : d premier, G cyclique).

Application au petit théorème de Fermat.

L’ensemble (Z/pZ)× des classes inversibles modulo p avec p premier est
un groupe multiplicatif d’ordre p − 1 et donc pour tout ā ∈ (Z/pZ)×, on
obtient āp−1 = 1̄, c’est-à-dire pour tout entier a non divisible par p

ap−1 ≡ 1 (mod p).



Définition
H de G est distingué si, NH(G ) = G , ie ∀g ∈ G , ∀h ∈ h, ghg−1 ∈ H
( ⇐⇒ ∀g ∈ G , gHg−1 ⊆ H ⇐⇒ ∀g ∈ G , gHg−1 = H).

On note H ◁ G

Résultat. Le noyau d’un morphisme est un sous-groupe distingué

Résultat. L’intersection de sous-groupes distingués est un sous-groupe
distingué

Théorème
Soit H ◁ G alors G/H avec l’opération aH · bH = abH est un groupe et
l’application de G → G/H définie par g 7→ gH est un morphisme
surjectif de noyau H.

De plus, si f : G → G ′ est un morphisme alors on a

G/Ker(f ) ≃ Im(f ) (Théorème de factorisation)



Quelques applications du théorème de factorisation

1. Reconnâıtre les groupes suivants :

Sn/An, On(R)/SOn(R), GLn(R)/SLn(R), R×/R×
+ .

2. Démontrer les isomorphismes suivants :

R/Z ≃ S1, R×/{±1} ≃ R×
+ , C×/S1 ≃ R×

+

avec S1 = {z ∈ C× : |z | = 1}, le cercle trigonométrique.

Sous-groupe caractéristique

Un sous-groupe H est caractéristique dans G s’il est stable par tout
automorphisme de G . On note alors H ⊏ G .

1. Montrer qu’un sous-groupe caractéristique dans G est distingué.

2. Démontrer que H ⊏ K ⊏ G =⇒ H ⊏ G .

3. Démontrer que H ⊏ K ◁ G =⇒ H ◁ G .

4. Démontrer que le centre d’un groupe est toujours un sous-groupe
caractéristique.

5. Soit ϕ l’application qui à x ∈ G associe l’automorphisme intérieur ix défini
par : ∀g ∈ G , ix(g) = xgx−1. Montrer que ϕ est un morphisme de
groupes. Déterminer son noyau. En déduire l’isomorphisme suivant :

G/Z(G) ≃ Int(G).



Définition
Soient H,K sous-groupes de G avec H ◁ G , G est produit semi-direct
(interne) de H par K si une des conditions équivalentes est vérifiée

▶ H ∩ K = {e} et G = HK

▶ Tout élément de g ∈ G s’écrit de manière unique g = hk avec
h ∈ H et k ∈ K

▶ K ≃ G/H via la surjection canonique k 7→ kH

On note G = H ⋊ K .

Résultat. On a aussi G = KH et donc G = K ⋉ H.

Si on a aussi K ◁ G , on dit que c’est un produit direct.
Dans ce cas, pour tout k ∈ K et h ∈ H, on a kh = hk et l’application
H × K → G définit par

(h, k) 7→ hk

est un isomorphisme.



3. Quelques groupes particuliers

Lemme
Soit G un groupe monogène. Si G est infini alors G ≃ Z, sinon G est
cyclique et G ≃ Z/nZ avec n l’ordre de G.

Proposition
Soit m̄ ∈ Z/nZ. L’ordre de m̄ est n/PGCD(m, n) donc m̄ est générateur
ssi n et m sont premiers entre eux ssi m est inversible modulo n

Définition
L’ensemble des inversibles modulo n forme un groupe multiplicatif

(Z/nZ)∗ = {m̄ tel que PGCD(m, n) = 1}

d’ordre φ(n) (fonction indicatrice d’Euler).

Théorème (Théorème des restes chinois)
Soient n et m deux entiers ≥ 1 et premiers entre eux, on a les
isomorphismes naturels

Z/nmZ ≃ Z/nZ× Z/mZ et (Z/nmZ)∗ ≃ (Z/nZ)∗ × (Z/mZ)∗



Nombres d’éléments d’ordre donné dans un groupe cyclique

Soit G un groupe cyclique d’ordre n.

1. Soit d ≥ 1 un entier. Déterminer le nombre d’éléments d’ordre d dans G .

2. En déduire la formule
∑
d|n

φ(d) = n.

Le but de cet exercice est de déterminer la structure du groupe Aut((Z/22Z)∗)
des automorphismes de (Z/22Z)∗.
1. Déterminer l’ordre de (Z/22Z)∗.
2. Montrer que 7̄ est un générateur de (Z/22Z)∗. En déduire que (Z/22Z)∗

est cyclique.

3. En déduire tous les sous-groupes de (Z/22Z)∗.
4. Déterminer tous les générateurs de (Z/22Z)∗.
5. Déterminer tous les automorphismes de (Z/22Z)∗.
6. Écrire la table de multiplication de Aut((Z/22Z)∗) et en déduire que

Aut((Z/22Z)∗) est isomorphe à Z/4Z.



Définition
Soit n ≥ 1, on appelle groupe symétrique sur n lettres, l’ensemble
Sn = Bij({1, · · · n}). C’est un groupe pour la composition et son ordre
est n! = 1× 2× · · · × n.

Exemple
Les permutations peuvent s’écrire de deux manières essentiellement(

1 2 3 4 5 6 7 8
4 3 2 5 1 8 7 6

)
(écriture sur deux lignes)

(1, 4, 5)(2, 3)(6, 8) (produit de cycles disjoints)

Remarques

▶ La multiplication se fait de droite à gauche (1, 2)(2, 3) = (1, 2, 3)

▶ On a (a1, a2, . . . , as) = (a2, a3, . . . , as , a1) = · · · = (as , a1, . . . , as−1)

Un cycle de longueur ℓ est un ℓ-cycle et on appelle un 2-cycle une
transposition.

Résultat. Les transpositions engendrent Sn.



Lemme
L’ordre d’un ℓ-cycle est ℓ. L’ordre d’une permutation écrit comme produit
de cycles disjoints est le PPCM des longueurs des cycles.

Proposition
Il existe un unique morphisme sign : Sn → {±1} non trivial. On l’appelle
la signature. Soit c un ℓ-cycle, on a sign(c) = (−1)ℓ+1.
Une permutation π est paire si sign(π) = 1 et impaire si sign(π) = −1.
Le groupe des permutations paires (= noyau de sign) est le groupe
alterné, noté An. Son ordre est n!/2.
C’est le seul sous-groupe d’ordre n!/2 dans Sn.

Remarque
Un groupe G dont les seuls sous-groupes distingués sont {e} et lui-même
est un groupe simple. Le plus petit groupe simple non abélien est A5

d’ordre 60 et pour tout n ≥ 5, le groupe An est simple.



Soit n ≥ 3. Le groupe diédral D2n est le groupe des isométries du plan
qui fixe un polygone régulier à n côtés.

C’est un groupe d’ordre 2n engendré par la rotation qui envoie un
sommet sur le sommet suivant et une des symétries axiales passant par
un des sommets.

De manière abstraite, D2n est le groupe engendré par σ et τ avec les
relations

σn = e, τ 2 = e, τστ = σ−1.

On a alors

▶ Pour tout entier i , τσiτ = σ−i .

▶ Pour tout entier i , l’élément τσi est d’ordre 2.

▶ Les éléments de D2n sont exactement les éléments

e, σ, . . . , σn−1, τ, τσ, . . . , τσn−1.



4. Actions de groupe

Définition
Une action du groupe G sur un ensemble X est la donnée d’un
morphisme Φ : G → Bij(X ) (= groupe pour la composition).

En général, on écrit g · x plutôt que Φ(g)(x) pour g ∈ G et x ∈ X , d’où

∀x ∈ X , e · x = x et ∀g , g ′ ∈ G , x ∈ X , (gg ′) · x = g · (g ′ · x).

Définition
Pour x ∈ X , on pose

▶ O(x) = Ωx = {g · x : g ∈ G} est l’orbite de x .

▶ S(x) = Gx = {g ∈ G tel que g · x = x} est le stabilisateur de x
(sous-groupe de G )

Le noyau de l’action est l’intersection des stabilisateurs.

On note X/G l’ensemble des orbites de X .

L’action est transitive s’il existe une seule orbite.

L’action est fidèle si le noyau est trivial.



Lemme
Soit K le noyau de l’action alors K est distingué et G/K hérite d’une
action fidèle sur X

Théorème (Cayley)
Soit G un groupe d’ordre n. Alors G est isomorphe à un sous-groupe
de Sn.

Théorème (Formules des classes)
Deux orbites sont ou bien égales, ou bien disjointes, et donc

card(X ) =
∑

Ω∈X/G

card(Ω)

Soit x ∈ X, on a
card(Ωx) =

|G |
|Gx |

Soit R un système de représentants des orbites de X , on a

card(X ) =
∑
x∈R

|G |
|Gx |



Quelques résultats sur les p-groupes

Un p-groupe, avec p premier, est un groupe fini dont l’ordre est une
puissance (non triviale) de p.

1. Soit G un p-groupe. On montre que Z (G ) n’est pas réduit à {e}.
1.1 Soit X un ensemble fini sur lequel G agit. On note XG l’ensemble

des points fixes de X sous cette action. Montrer que

card(X ) ≡ card(XG ) (mod p).

1.2 Déterminer une action de G pour laquelle l’ensemble des points fixes
est Z(G), puis conclure.

2. Soit G un groupe fini. On suppose que G/Z (G ) est un groupe
cyclique. Montrer que G est abélien.

En déduire la structure des groupes d’ordre p2 avec p premier.



Sous-groupes d’indice p avec p plus petit facteur premier de |G |

1. Soit H un sous-groupe d’indice 2 dans G . Montrer que H ◁ G .

2. Soit G un groupe fini. Soit p le plus petit premier divisant |G |.
Soit H sous-groupe d’indice p, on montre que H ◁ G .

On considère l’action de G sur G/H par multiplication à gauche.

2.1 Montrer que cette action est transitive.

2.2 Soit K le noyau de l’action. Montrer que K ⊆ H.

2.3 Montrer que G/K est isomorphe à un sous-groupe de Sp.

2.4 En déduire que H = K et le résultat.



Proposition (Lemme de Burnside)
Pour g ∈ G, on pose X g = {x ∈ X tel que g · x = x}. On a

card(X/G ) =
1

|G |
∑
g∈G

card(X g )

Problème du collier de perles.

1. Montrer qu’avec 5 perles blanches et 3 perles noires, on ne peut
faire que 5 colliers différents de 8 perles.

2. Montrer que le nombre de bracelets de 5 perles qu’on peut faire en
utilisant des perles rouges, vertes ou bleues est 39.



5. Théorèmes de Sylow

Théorème
Soit G un groupe d’ordre n. Soit p un nombre premier. On écrit n = prm
avec p ∤ m.

▶ Il existe un sous-groupe P d’ordre pr . On appelle un tel groupe, un
p-Sylow de G

▶ Soient P et Q deux p-Sylow, il existe g ∈ G tel que Q = gPg−1

(les p-Sylow sont conjugués deux à deux)

▶ Soit H un p-sous-groupe de G, alors H est contenu dans un p-Sylow

▶ Le nombre np de p-Sylow vérifie np | m et np ≡ 1 (mod p)

Corollaire
Un groupe G d’ordre n possède un élément d’ordre p si et seulement si p
divise n

Exemple
Soit G un groupe d’ordre pq avec p < q premiers. Alors, nq | p et nq ≡ 1
(mod q) d’où nq = 1. Il suit qu’il existe un unique q-Sylow Q qui est distingué.
Soit P un p-Sylow, on a P ∩ Q = e et G = PQ d’où G ≃ Z/pZ ⋉ Z/qZ.



Déterminer tous les groupes d’ordre 12 à isomorphisme près.

Soit G un groupe d’ordre 12.

1. Déterminer les valeurs possibles pour n2 et n3.

2. Montrer que G est abélien si et seulement si n2 = n3 = 1.

2.1 On suppose que G est abélien. Montrer que G contient au moins un
élément d’ordre 6 ou 12.

2.2 En déduire la structure de G dans le cas abélien.

3. On suppose à présent que G n’est pas abélien.
Montrer que si n3 ̸= 1, alors on a n2 = 1.

4. On suppose que n3 = 4. On considère l’action de G sur les 3-Sylow par
conjugaison.

4.1 Montrer que le stabilisateur d’un 3-Sylow pour cette action est
lui-même.

4.2 En déduire que l’action est fidèle, puis que G ≃ A4.

5. On suppose que n3 = 1 et donc n2 = 3. Montrer qu’on a dans ce cas

G ≃ Z/3Z ⋊ Z/4Z ou G ≃ Z/3Z ⋊ (Z/2Z)2.

6. (Question subsidiaire.) Montrer Z/3Z ⋊ (Z/2Z)2 ≃ D12.


