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Topologie des espaces métriques. Examen. Durée 2h. Décembre 2025

Partie A : à composer sur la copie N.1

Exercice 1.
1. On considère R, muni de sa distance usuelle. Justifier que R privé d’un point n’est pas connexe.

2. On considère un espace vectoriel normé (E, ∥ · ∥) de dimension ≥ 2 (éventuellement infinie).

(a) Soit a et b deux vecteurs non colinéaires de E. Expliciter un arc de a à b ne passant pas par 0E .

(b) En déduire que (E\{0E}, ∥ · ∥) est connexe par arcs.

(c) Montrer que (E, ∥ · ∥) n’est pas homéomorphe à R.

Exercice 2. Soit (E, ∥ · ∥) un espace de Banach et B : E × E → E une application bilinéaire et
continue. On rappelle qu’alors (par le critère de continuité des applications bilinéaires) :

∃C0 > 0, ∀x, y ∈ E : ∥B(x, y)∥ ≤ C0∥x∥ ∥y∥ .

Soit a ∈ E tel que

∥a∥ <
1

4C0

.

1. Justifier l’identité B(x, x)−B(y, y) = 1
2

[
B(x− y, x+ y) +B(x+ y, x− y)

]
.

2. En déduire que, quel que soit r ≥ 0, l’application ϕ : E → E, définie par ϕ(x) = a+B(x, x) est
(2C0r)-lipschitzienne sur la boule Dr := {x ∈ E : ∥x∥ ≤ r}.

3. Résoudre l’inégalité C0r
2 − r + ∥a∥ ≤ 0. Trouver ensuite 0 ≤ r1 < r2 tels que ∀ r ∈ [r1, r2] on a

∥x∥ ≤ r =⇒ ∥a+B(x, x)∥ ≤ r.

4. On note ϕr la restriction de ϕ à Dr. Trouver r ≥ 0 tel que ϕr(Dr) ⊂ Dr et ϕr soit contractante.

5. En déduire que l’équation
x = a+B(x, x)

possède (au moins) une solution dans E.

Fin de la partie A. Partie B au verso.
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Partie B : à composer sur la copie N.2

Question de cours. Démontrer que toute partie compacte d’un espace métrique est fermée.

Exercice 3. Soit f : [0, 1] → R. Le graphe de f est l’ensemble G = {(x, f(x)) ∈ R2 : x ∈ [0, 1]}. On
munit G de la métrique euclidienne induite de R2.

1. Démontrer que si f est continue sur [0, 1], alors G est compact et connexe.

2. On considère l’ensemble C = {(x, f(x)) ∈ R2 : 0 < x ≤ 1}. Démontrer que si f est continue sur
l’intervalle semi-ouvert ]0, 1] et que (0, f(0)) ∈ C, alors G est connexe.

3. En déduire un exemple d’une fonction discontinue dont le graphe est connexe.

4. Démontrer que si G est compact, alors f est continue sur [0, 1].

Exercice 4. Soit E = C([0, 1],R). Soit h : [0, 1] → R la fonction définie par h(0) = 0 et h(x) = 1√
x

si
0 < x ≤ 1. On pose

X := E +Vect(h)

et, pour tout g ∈ X ,

∥g∥1 :=
∫ 1

0

|g| (l’intégrale de Riemann impropre de |g| sur [0, 1]).

1. Vérifier que ∥ · ∥1 définit une norme sur X .

2. Soit fn : [0, 1] → R, la fonction définie par

fn(x) =
1√

x+ 1
n

, où x ∈ [0, 1] et n ∈ N∗.

Démontrer que ∥fn − h∥1 → 0.

3. En déduire que (E, ∥ · ∥1) n’est pas un espace de Banach.

Fin de la partie B.
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Corrigé

Solution de l’exercice 1.
1. Les seuls connexes de R sont les intervalles. Donc R privé d’un point n’est pas connexe.

2. (a) Si a et b ne sont pas colinéaires, le segment [a, b] = {(1− t)a+ tb : 0 ≤ t ≤ 1} ne contient
pas l’origine (sinon, on trouverait t0, 0 ≤ t0 ≤ 1, tel que (1− t0)a+ t0b = 0E et a et b serait
colinéaires). Ce segment fournit un arc de a à b inclus dans E\{0}.

(b) Soit x, y ∈ E\{0}. Montrons que x ∼ y (c’est-à dire, qu’il existe un arc de x à y inclus dans
E\{0}. Par la question précédente, il suffit de considérer le cas où x et y sont colinéaires. On
trouve z ∈ E\{0} tel que z ̸∈ Vect(x) = Vect(y). Par la première question, x ∼ z, z ∼ y. Par
transitivité, x ∼ y.

(c) Si par contradiction il existe ϕ : E → R homéomorphisme, alors la restriction de ϕ à E\{0E}
serait un homéomorphisme de E\{0E} dans R\{ϕ(0E)}. C’est impossible puisque E\{0E}
est connexe et R\{ϕ(0E)} ne l’est pas.

Solution de l’exercice 2.
1. On observe que B(x− y, x+ y) = B(x, x) +B(x, y)−B(y, x)−B(y, y) et

B(x+ y, x− y) = B(x, x)−B(x, y) +B(y, x)−B(y, y) et il suffit ensuite de sommer
terme-à-terme ces deux identités.

2. Pour tout x, y ∈ Dr,

∥ϕ(x)−ϕ(y)∥ ≤ 1

2

(
∥B(x−y, x+y)∥+∥B(x+y, x−y)∥

)
≤ C0∥x+y∥ ∥x−y∥ ≤ 2C0r∥x−y∥.

La fonction ϕ est donc 2C0r-lipschitzienne sur la boule Dr.

3. Considérons le discriminant ∆ = 1− 4C0∥a∥. On a ∆ > 0 par l’hypothèse, donc
C0r

2 − r+ ∥a∥ ≤ 0 si et seulement si r1 ≤ r ≤ r2, avec r1 = 1
2C0

(1−
√
∆) et r2 = 1

2C0
(1+

√
∆).

Mais alors, si r ∈ [r1, r2] et ∥x∥ ≤ r, on obtient ∥a+B(x, x)∥ ≤ ∥a∥+ C0r
2 ≤ r.

4. La condition 2C0r < 1 assure que ϕ soit contractante sur Dr et la condition r ∈ [r1, r2] assure que
ϕ(Dr) ⊂ Dr. Le choix r = r1 (qui est > 0 si a ̸= 0E et égal à 0 si a = 0E) remplit ces deux
conditions. Donc ϕr1 : Dr1 → Dr1 est une contraction.

5. On a Dr1 fermé dans E, qui est complet. Donc Dr1 est complet. Appliquons le théorème des
contractions : Il existe un et un seul point fixe x̄ ∈ Dr1 tel que

x̄ = ϕ(x̄) = a+B(x̄, x̄).

Cette solution est unique dans Dr1 , mais il pourrait y avoir d’autres solutions de l’équation
x = a+B(x, x) dans E\{Dr1}.
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Solution de l’exercice 3
1. Soit I : [0, 1] → R l’application identité, qui est continue. Si f est continue, l’application

(I, f) : [0, 1] → R2 est continue. On a G = (I, f)([0, 1]). Autrement dit, G est l’image par cette
application du compact et connexe [0, 1]. Donc G est compact et connexe.

2. Si f est continue sur ]0, 1], alors C est connexe, puisque C est l’image par (I, f) du connexe
]0, 1]. Si (0, f(0)) ∈ C, alors C ⊂ G ⊂ C et donc G est connexe.

3. La fonction f définie par f(0) = 0 et f(x) = sin(1/x) sur ]0, 1] vérifie les conditions de la
question précédente. (Observons que (0, 0) = limk→+∞( 1

kπ
, f( 1

kπ
)) est bien dans l’adhérence de

C). De plus cette fonction est discontinue.

4. Supposons G compact. Si, par contradiction, f est discontinue en un point a ∈ [0, 1], alors on peut
trouver ϵ > 0 et une suite (xn) de [0, 1], telle que xn → a et |f(xn)− f(a)| ≥ ϵ pour tout n ∈ N.
Considérons la suite ((xn, f(xn)). Par compacité de G, il existe une sous-suite convergente
((xnk

, f(xnk
)) vers un point (α, f(α)) ∈ G. Alors xnk

→ α, donc α = a par unicité de la limite,
et f(xnk

) → f(a). Pour k assez grand, |f(xnk
)− f(a)| < ϵ. Absurde.

Solution de l’exercice 4.
1. Observons que ∥ · ∥1 est bien définie sur X , puisque l’intégrale de Riemann impropre de h

converge et si g := f + λh (avec f ∈ E et λ ∈ R, alors l’intégrale impropre de g converge
absolument par comparaison.
Si g = f + λh ∈ X , avec f ∈ E et λ ∈ R, et si ∥g∥1 = 0, alors pour tout 0 < δ ≤ 1,

∫ 1

δ
|g| = 0 et

g est continue sur [δ, 1] donc g ≡ 0 sur [δ, 1]. Donc g s’annule sur ]0, 1]. En particulier, en calculant
0 = limx→0+ g(x) on trouve λ = 0 et ensuite f ≡ 0 par la continuité de f en 0. Donc g = 0X .

Si g = f + λh ∈ X avec f ∈ E et λ ∈ R et si µ ∈ R, alors
∥µg∥1 =

∫ 1

0
|µf + µλh| = |µ|

∫ 1

0
|f + λh| = |µ| ∥g∥1.

De plus, si g1 = f1 + λ1h et g2 = f2 + λ2h, avec f1, f2 ∈ E et λ1, λ2 ∈ R, on a
∥g1 + g2∥1 ≤

∫ 1

0

(
|f1 + λ1h|+ |f2 + λ2h|

)
≤ ∥g1∥1 + ∥g2∥1.

2. On a

∥fn − h∥1 =
∫ 1

0

|fn − h| =
∫ 1

0

( 1√
x
− 1√

x+ 1
n

)
dx =

∫ 1

0

dx

nx+
√
x
→ 0

La convergence vers zéro de la suite d’intégrales précédente (qui serait immédiate à établir si on
connait le théorème de convergence dominée) peut se démontrer ainsi : on fixe 0 < ϵ ≤ 1 et on
cherche δ > 0 tel que

∫ δ

0
dx

nx+
√
x
≤

∫ δ

0
1√
x
< ϵ

2
. Ensuite |

∫ 1

δ
dx

nx+
√
x
| ≤

∫ 1

δ
dx

nδ+
√
δ
≤ 1−δ

nδ
→ 0. Ici

δ = ϵ/4 convient. Donc il existe n0 ∈ N tel que pour tout n ≥ n0 on a |
∫ 1

0
dx

nx+
√
x
| < ϵ. (Une

démonstration alternative consisterait à effectuer le changement de variable u =
√
x).

3. On a fn → h dans (X, ∥ · ∥1). Donc la suite (fn) est de Cauchy dans X , et aussi dans E, puisque
(fn) ⊂ E. Mais h ̸∈ E et donc (fn) diverge dans (E, ∥ · ∥1). Donc l’espace (E, ∥ · ∥1) n’est pas de
Banach.
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