Construction de \mathbb{R} à partir de \mathbb{Q}

Propriétés de $(\mathbb{R}, +, ., \leq)$

- i) $\forall m_1, m_2, m_3 \in \mathbb{R}, (m_1 + m_2) + m_3 = m_1 + (m_2 + m_3).$
- ii) $\forall m \in \mathbb{R}, m + 0 = 0 + m = m.$
- iii) $\forall m \in \mathbb{R}, m + (-m) = (-m) + m = 0.$
- iv) $\forall m_1, m_2 \in \mathbb{R}, m_1 + m_2 = m_2 + m_1.$
- v) $\forall m_1, m_2, m_3 \in \mathbb{R}, m_1.(m_2.m_3) = (m_1.m_2).m_3.$
- vi) $\forall m_1, m_2, m_3 \in \mathbb{R}, m_1.(m_2 + m_3) = m_1.m_2 + m_1.m_3, (m_1 + m_2).m_3 = m_1.m_3 + m_2.m_3.$
- vii) $\forall m \in \mathbb{R}, m.1 = 1.m = m.$
- viii) $\forall m_1, m_2 \in \mathbb{R}, m_1.m_2 = m_2.m_1.$
- ix) $\forall 0 \neq r \in \mathbb{R}, \exists r^{-1} \in \mathbb{R}, rr^{-1} = 1.$
- x) $\mathbb{Z} \subseteq \mathbb{R}$ et $\forall r \in \mathbb{R}, \exists p \in \mathbb{Z}, \exists 0 \neq q \in \mathbb{Z}, r = pq^{-1}$.
- xi) $\forall m \in \mathbb{R}, m \leq m$.
- xii) $\forall m_1, m_2 \in \mathbb{R}, m_1 \leq m_2 \text{ et } m_2 \leq m_1 \Rightarrow m_1 = m_2.$
- xiii) $\forall m_1, m_2, m_3 \in \mathbb{R}, m_1 \leq m_2 \leq m_3 \Rightarrow m_1 \leq m_3.$
- xiv) $\forall m_1, m_2 \in \mathbb{R}, m_1 \leqslant m_2 \text{ ou } m_2 \leqslant m_1.$
- xv) $\forall m_1 \leq m_2, \ \forall m_3 \in \mathbb{R}, \ m_1 + m_3 \leq m_2 + m_3.$
- xvi) $\forall m_1 \leq m_2, \forall m_3 \in \mathbb{R}, 0 < m_3 \Rightarrow m_1 m_3 \leq m_2 m_3$.
- xvii) Propriété de la borne sup. Toute partie non vide et majorée de $\mathbb R$ admet une borne supérieure. ^a

a. $c-\grave{a}-d$ \forall $\varnothing\neq A\subseteq\mathbb{R},$ si A est majorée, alors il existe $s\in\mathbb{R}$ tel que \forall $a\in A,$ $a\leqslant s$ et si $m\in\mathbb{R},$ $A\leqslant m\Rightarrow s\leqslant m.$

Exercice.

- a) En utilisant les propriétés ci-dessus, montrer que pour tout $0 < x \in \mathbb{R}$, il existe $n \in \mathbb{N}$ tel que $n \ge x$.
- b) En déduire que \mathbb{Q} est dense dans \mathbb{R} c-à-d:

$$\forall x, y \in \mathbb{R}, x < y \Rightarrow \exists r \in \mathbb{Q}, x < r < y.$$

Solution. a) Si $\forall n \in \mathbb{N}, n < x$, soit $x_0 = \inf A$ où $A = \{t \in \mathbb{R} : \forall n \in \mathbb{N}, n < t\}$. Alors $x_0 + 1$ n'est pas un minorant de A donc il existe $t \in A$ tel que $t < x_0 + 1$. Donc

$$\forall n \in \mathbb{N}, n \leq t < x_0 + 1 \Rightarrow \forall n \in \mathbb{N}, n - 1 < x_0 \Rightarrow \forall n \in \mathbb{N}, n < x_0 \Rightarrow x_0 \in A.$$

Mais on a alors

$$\forall n \in \mathbb{N}, n < x_0 \Rightarrow \forall n \in \mathbb{N}, n + 1 < x_0 \Rightarrow \forall n \in \mathbb{N}, n < x_0 - 1 \Rightarrow x_0 - 1 \in A$$

absurde car x_0 est un minorant de A.

b) Si x < y, soit $n \in \mathbb{N}$ tel que $n > \frac{1}{y-x}$ c-à-d $\frac{1}{n} < y - x$. Soit $m = \max\{l \in \mathbb{Z} : \frac{l}{n} \le x\}$. Alors

$$\frac{l}{n} \leqslant x < \frac{l+1}{n}$$
.

Vérifier que $x < \frac{l+1}{n} < y$.

1 Construction de \mathbb{R}

Définition. Soit $(x_n) \in \mathbb{Q}^{\mathbb{N}}$ une suite de rationnels. On dit que c'est une suite de Cauchy si $\forall \epsilon \in \mathbb{Q}_{>0}, \exists N \in \mathbb{N}, \forall m, n \geq N, |x_m - x_n| < \epsilon$.

Exemples. Les suites

$$1 + \frac{1}{1!} + \dots + \frac{1}{n!}$$

$$x_0 = 1, \ x_{n+1} = 1 + \frac{1}{1 + x_n}$$

sont de Cauchy mais n'ont pas de limite dans \mathbb{Q}^{\dagger} .

Exercice. Toute suite de Cauchy est bornée.

Exercice. Toute suite croissante majorée est de Cauchy.

Soit \mathbb{C} l'ensemble des suites de Cauchy de $\mathbb{Q}^{\mathbb{N}}$. On vérifie que si $x = (x_n)_n, y = (y_n)_n \in \mathbb{C}$, alors $x + y = (x_n + y_n)_n$, $xy = (x_n y_n)_n$ aussi.

Soit $\mathcal N$ l'ensemble des suites $x=(x_n)\in\mathbb Q^{\mathbb N}$ qui tendent vers 0. ‡

Si
$$x \in \mathcal{C}$$
, on pose $\overline{x} := x + \mathcal{N} = \{x + u : u \in \mathcal{N}\}.$

On pose $R := \mathcal{C}/\mathcal{N} = \{\overline{x} : x \in \mathcal{C}\}.$

En particulier, si $x, y \in \mathcal{C}$, alors $\overline{x} = \overline{y} \Leftrightarrow \lim x_n - y_n = 0$.

^{†.} la première converge vers e, la deuxième vers $\sqrt{2}$

 $[\]ddagger$. c- \grave{a} - $d \ \forall \ \epsilon \in \mathbb{Q}_{>0}, \ \exists \ N \in \mathbb{N}, \ \forall \ n \geqslant N, \ |x_n| < \epsilon$.

1.1 Inclusion de \mathbb{Q} dans R

Si $r \in \mathbb{Q}$, on note $\mathbf{r} = (r, r, ...)$ la suite constante égale à r.

Proposition 1.1 L'aplication $\mathbb{Q} \to R$, $r \mapsto \overline{r}$ est injective.

Notation. On identifier $r \in \mathbb{Q}$ avec la classe $\overline{r} \in R$.

1.2 Opérations sur R

Si $x, y \in \mathcal{C}$, on pose $\overline{x} + \overline{y} := \overline{x + y}$, $\overline{x} \cdot \overline{y} := \overline{xy}$

Proposition 1.2 Les opérations + et \cdot . sont bien définies et pour ces opérations $(R, +, \cdot)$ est un corps.

 $D\acute{e}mo$. Soit $x \in \mathbb{C}$. Si $x \notin \mathcal{N}$, comme x est de Cauchy, il existe $\epsilon > 0$ et $N \in \mathbb{N}$ tels que $\forall n \geq N, |x_n| \geq \epsilon$. Quitte à ajouter une suite nulle à partir du rang N, on peut supposer que $\forall n \in \mathbb{N}, |x_n| \geq \epsilon$.

On a alors
$$\overline{x}^{-1} = \left(\frac{1}{x_n}\right)_n$$
.

1.3 Relation d'ordre sur R

Si $\overline{x}, \overline{y} \in R$, on note $\overline{x} \leq \overline{y}$ si :

$$\exists u \in \mathcal{N}, \forall n \in \mathbb{N}, x_n + u_n \leq y_n$$
.

Lemme. Soit $x = (x_n)_{n \in \mathbb{N}}$ une suite de Cauchy qui ne tend pas vers 0. Alors il existe $\epsilon > 0$ tel que

$$\exists N \in \mathbb{N}, \forall n \geqslant N, x_n \geqslant \epsilon$$

ou

$$\exists N \in \mathbb{N}, \forall n \geqslant N, x_n \leqslant -\epsilon$$
.

 $D\acute{e}mo$. Il existe $\epsilon > 0$ tel que

$$\forall N \in \mathbb{N}, \exists n \geqslant N, |x_n| \geqslant \epsilon$$
.

Comme x est de Cauchy, il existe $N_1 \in \mathbb{N}$ tel que :

$$\forall m, n \geqslant N_1, |x_m - x_n| < \frac{\epsilon}{2}.$$

Il existe alors $n_1 \ge N_1$ tel que $|x_{n_1}| \ge \epsilon$. Si par exemple, $x_{n_1} \ge \epsilon$, alors

$$\forall n \geqslant n_1, x_n = x_{n_1} + x_n - x_{n_1} \geqslant x_{n_1} - |x_n - x_{n_1}|$$
$$\geqslant \epsilon - \frac{\epsilon}{2} = \frac{\epsilon}{2}.$$

On en déduit que si $x \notin \mathcal{N}$, alors $\overline{x} > 0$ ou $\overline{x} < 0$. D'où la

Proposition 1.3 i) La relation \leq est une relation d'ordre total sur R.

- ii) $(R, +, \cdot, \leq)$ est un corps ordonné archimédien.
- iii) \mathbb{Q} est dense dans R au sens où $\forall \overline{x} < \overline{y}$ dans R, $\exists r \in \mathbb{Q}$, $\overline{x} < r < \overline{y}$.

1.4 Borne supérieure

Définition. Soit (E, \leq) un ensemble totalement ordonné. Soit $A \subseteq E$ on dit que $M \in E$ est un majorant de A, resp. $m \in E$ est un minorant de A, si $\forall a \in A$, $a \leq M$, resp. $\forall a \in A, a \geq m$.

On dit que $s \in E$ est une borne supérieure de A si

- 1) s est un majorant de A et
- 2) pour tout majorant M de A, $s \leq M$. On dit que $i \in E$ est une borne inférieure de A si
- 1) i est un minorant de A et
- 2) pour tout minorant m de A, $i \ge m$.

Notation. S'ils existent, sup A := s, inf A := i.

On dit que (E, \leq) a la propriété de la borne supérieure, resp. la propriété de la borne inférieure, si toute partie non vide majorée de E admet une borne supérieure, resp. si toute partie non vide minorée de E admet une borne inférieure.

Exercice. Si (E, \leq) a la propriété de la borne supérieure, alors il a aussi la propriété de la borne inférieure.

^{†.} Un corps ordonné est un corps $(K,+,\cdot)$ avec un ordre total \leq tel que 1) \forall $z \in K, x \leq y \Rightarrow x + z \leq y + z$; 2) \forall $z \geq 0, x \leq y \Rightarrow xz \leq yz$. Un corps ordonné archimédien est un corps ordonné $(K,+,\cdot,\leq)$ tel que \forall $x \in K, \forall$ $y > 0, \exists$ $n \in \mathbb{N}, ny = \underbrace{y + \ldots + y} \geqslant x$.

Solution. inf $A = \sup\{\min \text{crants de } A\}$. Exemples et contre-exemples.

$$\inf\{\frac{1}{n+1} \ : \ n \in \mathbb{N}\} = 0, \ \sup\{\sum_{k=0}^{n} 2^{-k} \ : \ n \in \mathbb{N}\} = 2$$

Les ensembles

$${x \in \mathbb{Q} : x^2 < 2}, \left\{ \sum_{k=0}^n \frac{1}{k!} : n \in \mathbb{N} \right\}$$

n'ont pas de bornes supérieures dans Q.

1.5 R est complet

Proposition 1.4 L'ensemble ordonné (R, \leq) vérifie la propriété de la borne supérieure et donc aussi la propriété de la borne inférieure.

Démonstration: Soit $\emptyset \neq A \subseteq R$ une partie majorée; Soit $m_0 \in \mathbb{Q}$ un majorant de A. Soit $l_0 \in \mathbb{Q}$ qui n'est pas un majorant de A.

On définit par récurrence :

$$\forall n \in \mathbb{N}, m_{n+1} := \begin{cases} \frac{m_n + l_n}{2} & \text{si } \frac{m_n + l_n}{2} \text{ majore } A \\ m_n & \text{sinon.} \end{cases}$$

et
$$l_{n+1} := \begin{cases} l_n & \text{si } \frac{m_n + l_n}{2} \text{ majore } A \\ \frac{m_n + l_n}{2} & \text{sinon.} \end{cases}$$

On vérifie que $\forall n \in \mathbb{N}, l_n, m_n \in \mathbb{Q}, l_n \leq m_n$ et que la suite (l_n) est croissante et la suite (m_n) décroissante.

Pour tout $n \in \mathbb{N}$, $m_n - l_n = \frac{m_0 - l_0}{2^n}$ donc :

$$\forall n \in \mathbb{N}, l_n \leqslant l_{n+1} \leqslant m_{n+1} \leqslant m_n$$

$$\Rightarrow 0 \leqslant m_n - m_{n+1} \leqslant m_n - l_n = \frac{m_0 - l_0}{2^n}$$
.

D'où:

$$\forall k > n, m_n - m_k \le m_n - l_n = \frac{m_0 - l_0}{2^n}$$
.

Soit $\epsilon > 0$. Comme $\lim_{n \to 0} \frac{m_0 - l_0}{2^n} = 0$, il existe N tel que

$$\forall n \geqslant N, \, \frac{m_0 - l_0}{2^n} < \epsilon \ .$$

alors:

$$\forall k > n \ge N, m_n - m_k < \epsilon$$
.

Donc la suite (m_n) est de Cauchy. De même pour la suite (l_n) .

On a $\overline{m} = \overline{l} \in R$.

Vérifions que \overline{m} est une borne supérieure pour A.

Soit $a \in A$. Alors pour tout $n, m_n \ge a$, car m_n est un majorant de A.

Donc $\overline{m} \ge a$ (exo).

Donc \overline{m} est un majorant de A.

Réciproquement, soit M un majorant de A. Alors pour tout n, $l_n < M$ car l_n n'est pas un majorant de A.

On en déduit que $\overline{l} = \overline{m} \leq M$.

Donc $\overline{l} = \overline{m}$ est bien le plus petit majorant de A.

Q.e.d.

Corollaire. Toute suite croissante majorée dans R converge dans R^{\dagger} . De même, toute suite décroissante minorée dans R converge dans R.

Démonstration: Si $(x_n) \in \mathbb{R}^{\mathbb{N}}$ est une suite croissante majorée, alors $\lim_n x_n = \sup\{x_k : k \in \mathbb{N}\}.$ Q.e.d.

Proposition 1.5 Toute suite de Cauchy ‡ dans R converge.

Démonstration: La suite (x_n) est de Cauchy donc bornée (exo). Pour tout $n \in \mathbb{N}$, soit $\overline{x}_n = \sup\{x_k : k \ge n\}$ et $\underline{x}_n = \inf\{x_k : k \ge n\}$.

†. **Définition.** Si $(x_n) \in \mathbb{R}^{\mathbb{N}}$, on dit que (x_n) converge vers $l \in \mathbb{R}$, noté $\lim_n x_n = l \in \mathbb{R}$, si :

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N, |x_n - l| < \epsilon.$$

‡. **Définition.** Une suite réelle $(x_n) \in \mathbb{R}^{\mathbb{N}}$ est de Cauchy si :

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m, n \geq N, |x_m - x_n| < \epsilon$$
.

La suite (\overline{x}_n) est décroissante et la suite (\underline{x}_n) est croissante (exo). De plus,

$$\forall n, x_n \leqslant x_n \leqslant \overline{x}_n$$
.

Les limites $l_1 = \lim_n \overline{x}_n$ et $l_2 = \lim_n \underline{x}_n$ existent dans R. Soit $\epsilon > 0$. Comme la suite (x_n) est de Cauchy,

$$\exists N \in \mathbb{N}, \forall m, n \geqslant N, |x_m - x_n| < \epsilon$$
.

Donc $\forall m, n \geq N, x_m - x_n < \epsilon \Rightarrow \forall n \geq N, \overline{x}_N - x_n \leq \epsilon \Rightarrow \overline{x}_N - \underline{x}_N \leq \epsilon$. Or, la suite $(\overline{x}_n - \underline{x}_n)$ est décroissante donc :

$$\forall n \geqslant N, \overline{x}_n - \underline{x}_n \leqslant \epsilon \Rightarrow l_1 - l_2 \leqslant \epsilon.$$

C'est vrai pour tout $\epsilon > 0$ donc $0 \le l_1 - l_2 \le 0 \Rightarrow l_1 = l_2$.

Donc $\lim_n x_n = l_1 = l_2$ existe dans R.

Q.e.d.

Dorénavant on notera $\mathbb{R} = R$.