Nombres complexes

Exercice 1

Soient
$$z_1 = 1 + i\sqrt{3}$$
, $z_2 = 1 + i$, $z_3 = \frac{z_1}{z_2}$.

- a) Écrire z_3 sous forme algébrique.
- b) En déduire $\cos \frac{\pi}{12}$, $\sin \frac{\pi}{12}$.
- c) Soit $-1, 0 \neq z = a + ib \in \mathbb{C}, a, b \in \mathbb{R}$. Soient $z = re^{i\theta}$ avec $r > 0, -\pi < \theta < \pi$. Montrer que

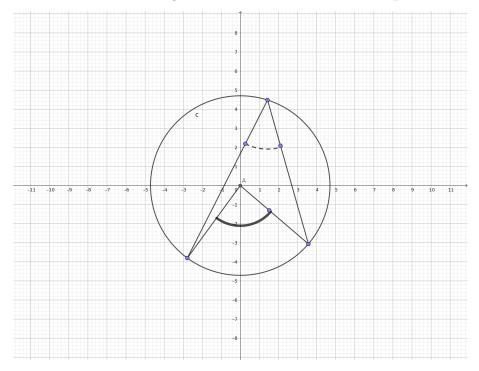
$$r = \sqrt{a^2 + b^2}, \ \theta = 2 \arctan\left(\frac{b}{a + \sqrt{a^2 + b^2}}\right).$$

Exercice 2

Résoudre
$$iz^2 + (4i - 3)z + i - 5 = 0$$
.

Exercice 3

Démontrer le théorème de l'angle inscrit avec des nombres complexes.



Exercice 4

a) Soit $z=e^{\frac{2i\pi}{5}}$. Montrer que $z^{-2}+z^{-1}+1+z+z^2=0$. En déduire que

$$\cos\frac{2\pi}{5} = \frac{-1 + \sqrt{5}}{4}.$$

b) Soit $w=e^{\frac{2i\pi}{7}}$. Montrer que $w^{-3}+w^{-2}+w^{-1}+1+w+w^2+w^3=0$. En déduire que $2\cos\frac{2\pi}{7}$ est une racine du polynôme :

$$x^3 + x^2 - 2x - 1 = 0.$$

c) Calculer $\cos \frac{2\pi}{7}$.

Exercice 5 Définition de l'exponentielle complexe

Si $z \in \mathbb{C}$, $n \ge 1$, on pose $e_n(z) = \left(1 + \frac{z}{n}\right)^n$. Pour tout $0 \le k \le n$, on pose $c_{k,n} = \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{k-1}{n}\right)$.

- a) Montrer que $q > p \ge k \Rightarrow c_{k,q} c_{k,p} > 0$. En déduire que la suite $\left(\left(1 + \frac{z}{n}\right)^n\right)_n$ est de Cauchy.
- b) Montrer qui si $z_n \to z$, alors

$$\lim \left(1 + \frac{z_n}{n}\right)^n = \lim \left(1 + \frac{z}{n}\right)^n.$$