Construction de N

Propriétés de N ou axiomes de Peano

Il existe un ensemble noté $\mathbb N$ avec les propriétés suivantes :

- i) Il existe un élément noté $0 \in \mathbb{N}$.
- ii) Il existe une application $s: \mathbb{N} \to \mathbb{N}$ qui vérifie ce qui suit.
- iii) $0 \notin s(\mathbb{N})$.
- iv) $\forall n, m \in \mathbb{N}, s(n) = s(m) \Rightarrow n = m.$
- v) Récurrence. Si $S \subseteq \mathbb{N}$, si $0 \in S$ et si $n \in S \Rightarrow s(n) \in \mathbb{N}$, alors $S = \mathbb{N}$.

1 Définition de N.

On pose
$$0 = \emptyset$$
, $1 = \{\emptyset\}$, $2 = \{\emptyset\} \cup \{\{\emptyset\}\}\}$, ..., $n + 1 = n \cup \{n\}$, ... $\mathbb{N} = \{0, 1, ...\}$.
On pose $s(n) = n + 1$.

2 Ordre

Si $n, m \in \mathbb{N}$, on pose $n \leq m$ si $n \subseteq m$.

Exercice. La relation $\ll \ll \gg$ est une relation d'ordre total.

3 Addition

On définit par récurrence
$$n + 0 = n$$
, $n + s(m) = s(n + m)$.
Exercice. $\forall n, m \in \mathbb{N}, n + m = m + n, \forall m, n, p \in \mathbb{N}, (n + m) + p = n + (m + p)$.

4 Produit

On définit par récurrence $\forall n \in \mathbb{N}, n.0 = 0, \forall n, m \in \mathbb{N}, n.s(m) = s.m + n.$ Exercice. Les propriétés bien connues sont vérifiées :

$$\forall n, m, p, n.1 = 1.n = n, n.m = m.n, (n.m).p = n.(m.p), n.(m+p) = n.m + n.p$$