CAPES de mathématiques Option Mathématiques—Session 2018

Le sujet est comporte cinq parties.

Notations

 \mathbb{N} désigne l'ensemble des entiers naturels et \mathbb{N}^* l'ensemble des entiers naturels non nuls.

Pour m et n deux entiers naturels, [m; n] désigne l'ensemble des entiers k tels que $m \leq k \leq n$.

 \mathbb{Z} désigne l'ensemble des entiers relatifs.

Q désigne l'ensemble des nombres rationnels.

 \mathbb{R} désigne l'ensemble des nombres réels.

On note e le nombre $\exp(1)$, image de 1 par la fonction exponentielle.

On rappelle que, pour tout nombre réel x, il existe un unique entier relatif E(x) tel que $E(x) \le x < E(x) + 1$. Cet entier E(x) est appelé partie entière de x.

Partie A: suites adjacentes

Étant donné deux suites réelles $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$, on rappelle qu'elle sont dites *adjacentes* si l'une des deux est croissante, l'autre décroissante et si $\lim_{n\to+\infty} (a_n-b_n)=0$.

- I. On suppose dans cette question que la suite $(a_n)_{n\in\mathbb{N}}$ est croissante et que la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante.
 - 1. Montrer que la suite $(a_n b_n)_{n \in \mathbb{N}}$ est monotone et en déduire que pour tout entier naturel $n, a_n \leq b_n$.
 - **2**. Justifier que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont convergentes vers une même limite ℓ vérifiant :

$$\forall n \in \mathbb{N}, \quad a_n \leqslant \ell \leqslant b_n.$$

3. On suppose de plus les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ strictement monotones. Montrer que :

$$\forall n \in \mathbb{N}, \quad a_n < \ell < b_n.$$

- II. Pour tout entier naturel n non nul, on pose $a_n = \sum_{p=0}^n \frac{1}{p!}$ et $b_n = a_n + \frac{1}{n \times n!}$.
 - **1.** Montrer que les suites $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
 - **2.** Démontrer que pour tout entier naturel n non nul, $e a_n = \frac{1}{n!} \int_0^1 (1-t)^n e^t dt$. *Indication*: on pourra procéder par récurrence.
 - **3.** En déduire que pour tout entier naturel n non nul, $0 < e a_n < \frac{1}{n \times n!}$. En déduire la limite de la suite $(a_n)_{n \in \mathbb{N}^*}$. Indication: on pourra étudier les variation de la fonction $t \mapsto (1-t)e^t$.

1

4. En déduire une valeur de n telle que a_n soit une valeur approchée de e à 10^{-5} près.

- On suppose que e est un nombre rationnel.
 - a. Montrer qu'il existe un entier naturel non nul q tel que le nombre e q! soit un entier naturel.
 - **b.** Montrer que $x = q! \left(e \sum_{p=0}^{q} \frac{1}{p!} \right)$ est un entier naturel.
 - c. Montrer que 0 < x < 1.
 - d. Conclure.

3. Pour $x \in [0, 1]$ et $n \in \mathbb{N}$, on pose $S_n(x) = \sum_{k=0}^n (-1)^k \frac{x^{k+1}}{k+1}$.

Démontrer que les deux suites $(S_{2n}(x))_{n\in\mathbb{N}}$ et $(S_{2n+1}(x))_{n\in\mathbb{N}}$ sont adjacentes.

4. Montrer que, pour tout entier naturel n et tout nombre réel x dans l'intervalle [0,1] $\frac{[0,1[}{]}$

$$S_{2n+1}(x) \leqslant \ln(1+x) \leqslant S_{2n}(x)$$

5. En déduire que, pour tout entier naturel n,

$$S_{2n+1}(1) \le \ln(2) \le S_{2n}(1)$$
.

6. Démontrer que $\ln(2) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1}$.

Partie B : écriture d'un entier en base deux

Le but de cette partie est de démontrer que tout entier naturel N supérieur ou égal à 2 s'écrit de manière unique

$$N = \sum_{k=0}^{n-1} d_k 2^k \quad \text{avec} \quad n \geqslant 2 \text{ et } \begin{cases} \forall k \in [\![0 \; ; \; n-2]\!], \quad d_k \in \{0,1\}, \\ d_{n-1} = 1. \end{cases}$$

L'égalité précédente se note $N = \overline{d_{n-1}d_{n-2}\dots d_0}$ (écriture de N en base deux); la suite finie $(d_k)_{0 \leqslant k \leqslant n-1}$ s'appelle la suite des chiffres dans l'écriture de N en base deux.

Dans toute cette partie, N désigne un entier naturel supérieur ou égal 2.

- **IV.** On suppose que $N = \sum_{k=0}^{n-1} d_k 2^k$ avec $\forall k \in [0; n-2]$ $d_k \in \{0,1\}$ et $d_{n-1} = 1$.
 - 1. Montrer que $2^{n-1} \leq N \leq 2^n 1$.
 - **2.** Montrer que d_0 est le reste de la division euclidienne de N par 2.
 - 3. Démontrer que la suite (d_0, \ldots, d_{n-1}) est déterminée de manière unique.
 - **V.** On définit deux suites d'entiers $(y_k)_{k\in\mathbb{N}}$ et $(d_k)_{k\in\mathbb{N}}$ par $y_0 = N$ et pour tout entier naturel k, y_{k+1} et d_k désignent respectivement le quotient et le reste de la division euclidienne de y_k par 2.
 - **1.** On fixe $k \in \mathbb{N}^*$. Exprimer N en fonction de k, d_0, \ldots, d_{k-1} et y_k .
 - **2.** Démontrer que la suite $\underline{(y_k)_{k\in\mathbb{N}}}$ est nulle à partir d'un certain rang et qu'il existe un entier $n\geqslant 1$ tel que $\overline{d_{n-1}d_{n-2}\ldots d_0}$ soit l'écriture de N en base deux.
 - **3.** Écrire un algorithme qui, pour tout entier naturel N supérieur ou égal 2 donné, renvoie la suite $(d_0, d_1, \ldots, d_{n-1})$ des chiffres de son écriture en base deux.
 - 4. Écrire en base deux le nombre qui s'écrit 391 en base dix.
- **VI.** On se propose à présent de calculer le nombre N qui s'écrit $\overline{d_{n-1}d_{n-2}\dots d_0}$ en base deux.
 - 1. Première méthode : méthode « naïve ». On écrit $N=\sum_{k=0}^{n-1}d_k2^k$. Combien d'opérations (additions et multiplications) doiton effectuer a priori pour calculer N avec cette méthode?
 - 2. Deuxième méthode : méthode de Hörner. On écrit $N = ((((d_{n-1} \times 2 + d_{n-2}) \times 2 + d_{n-3}) \times 2 + ...) \times 2 + d_0$. Combien d'opérations (additions et multiplications) doit-on effectuer a priori pour calculer N avec cette méthode?
 - **3.** Écrire un algorithme qui, pour toute suite de chiffres (d_0, \ldots, d_{n-1}) donnée, renvoie la valeur de N calculée à l'aide de cette deuxième méthode.
 - 4. Quel est le nombre dont l'écriture en base deux est $\overline{101001000100001}$?

Partie C: nombres dyadiques

L'ensemble $D_2 = \left\{ \frac{a}{2^p} ; a \in \mathbb{Z}, p \in \mathbb{N} \right\}$ est appelé ensemble des nombres dyadiques. On note D_2^+ l'ensemble des nombres dyadiques positifs ou nuls.

- VII. Montrer que \mathbb{Z} est strictement inclus dans D_2 et que D_2 est strictement inclus dans \mathbb{Q} . Indication : on pourra montrer que $\frac{1}{3} \notin D_2$.
- **VIII.** Soit $x \in D_2^+ \backslash \mathbb{N}$. On se propose de démontrer qu'il existe un unique entier $n \geq 1$ et une unique suite (a_0, a_1, \dots, a_n) avec $a_0 \in \mathbb{N}$ et $(a_1, \dots, a_n) \in \{0, 1\}^n$ tels que

$$x = \sum_{k=0}^{n} a_k 2^{-k}$$
, avec $a_n \neq 0$.

Le membre de droite de cette égalité s'appelle le développement dyadique de x.

1. On suppose qu'une telle suite existe. Montrer que $a_0 = E(x)$ puis montrer que la suite (a_0, a_1, \ldots, a_n) est déterminée de manière unique.

2. On souhaite à présent montrer l'existence d'une telle suite. À l'aide de la partie précédente, montrer l'existence d'un entier a_0 , d'un entier $p \ge 1$ et d'une suite de nombres entiers d_0, \ldots, d_{p-1} égaux à 0 ou 1, non tous nuls, tels que

$$x = a_0 + \sum_{k=0}^{p-1} d_k 2^{k-p}.$$

- 3. Conclure.
- IX. Donner le développement dyadique de $\frac{35}{4}$.

Partie D : développement dyadique illimité

On appelle suite dyadique toute suite $(a_k)_{k\in\mathbb{N}^*}$ où pour tout $k\in\mathbb{N}^*$, a_k est un élément de $\{0,1\}$. De plus :

- une suite dyadique $(a_k)_{k\in\mathbb{N}^*}$ est dite impropre s'il existe un entier $m\in\mathbb{N}^*$ tel que pour tout $k\geqslant m,\ a_k=1$;
- une suite dyadique $(a_k)_{k\in\mathbb{N}^*}$ est dite propre si elle n'est pas impropre.
- **X.** On suppose que $a = (a_k)_{k \in \mathbb{N}^*}$ est une suite dyadique.
 - 1. Démontrer que la série de terme général $a_k 2^{-k}$ est convergente. On note sa somme $s(a) = \sum_{k=1}^{+\infty} a_k 2^{-k}$.
 - **2.** Soit N un entier naturel. Que vaut $\sum_{k=N}^{+\infty} 2^{-k}$?
 - **3.** Vérifier que $s(a) \in [0, 1]$.
 - **4.** Montrer que si a est une suite dyadique propre, alors $s(a) \in [0,1[$.
 - 5. Montrer que si a est une suite dyadique impropre, alors s(a) est un nombre dyadique.
 - **6.** Soit $a = (a_k)_{k \in \mathbb{N}^*}$ la suite définie par

$$a_k = \begin{cases} 0 \text{ si } k \text{ est impair,} \\ 1 \text{ si } k \text{ est pair.} \end{cases}$$

Montrer que $s(a) = \frac{1}{3}$.

- **XI.** Soit x un nombre dyadique compris dans l'intervalle [0,1[.
 - 1. En utilisant les résultats de la partie C, montrer qu'il existe une suite dyadique propre a telle que

$$x = \sum_{k=1}^{+\infty} a_k 2^{-k}.$$

2. Montrer que si x est non nul, alors il existe également une suite dyadique impropre b telle que

$$x = \sum_{k=1}^{+\infty} b_k 2^{-k}.$$

XII. Dans cette question, on considère un nombre réel x appartenant à l'intervalle [0,1[. On lui associe la suite $\alpha(x) = (\alpha_k(x))_{k \in \mathbb{N}^*}$ définie pour tout $k \in \mathbb{N}^*$ par l'égalité

$$\alpha_k(x) = E(2^k x) - 2E(2^{k-1} x).$$

Pour tout $n \in \mathbb{N}^*$, on pose $u_n(x) = \sum_{k=1}^n \alpha_k(x) 2^{-k}$ et $v_n(x) = u_n(x) + 2^{-n}$.

- 1. Démontrer que la suite $(\alpha_k(x))_{k\in\mathbb{N}^*}$ est une suite dyadique.
- **2.** Démontrer que les deux suites $(u_n(x))_{n\in\mathbb{N}^*}$ et $(v_n(x))_{n\in\mathbb{N}^*}$ sont adjacentes et prennent leurs valeurs dans $D_2 \cap [0,1]$.
- 3. Vérifier que $E(2^n x) = 2^n u_n(x)$ et en déduire que pour tout entier naturel $n \ge 1$,

$$u_n(x) \leqslant x < v_n(x).$$

- **4.** Quelle est la limite commune des suites $(u_n(x))_{n\in\mathbb{N}^*}$ et $(v_n(x))_{n\in\mathbb{N}^*}$?
- **5.** Montrer que $(\alpha_k(x))_{k\in\mathbb{N}^*}$ est une suite dyadique propre et que

$$x = \sum_{k=1}^{+\infty} \alpha_k(x) 2^{-k}.$$

6. En déduire que pour tout nombre réel x dans l'intervalle [0, 1[, il existe une unique suite dyadique propre $(a_k)_{k\in\mathbb{N}^*}$ telle que :

$$x = \sum_{k=1}^{+\infty} a_k 2^{-k}.$$

On note alors

$$x = \overline{0, a_1 a_2 a_3 \dots}$$

Cette nouvelle représentation de x est appelée la représentation dyadique propre de x. Si la suite $(a_k)_{k\in\mathbb{N}^*}$ est nulle à partir d'un certain rang, on dit que la représentation dyadique de x est finie.

- 7. Si $d = (d_n)_{n \in \mathbb{N}^*}$ est une suite dyadique propre, on note x = s(d) et $d' = (d_{n+1})_{n \in \mathbb{N}^*}$. Justifier que $d_1 = E(2x)$ et $s(d') = 2x d_1$. En déduire un algorithme qui prend en entrées un nombre réel $x \in [0, 1[$ et un entier $n \in \mathbb{N}^*$ et qui renvoie la liste des n premiers chiffres du développement dyadique propre de x. On admettra l'existence d'une fonction floor qui renvoie la partie entière de son argument.
- **XIII.** Démontrer que $D_2 \cap [0,1]$ est dense dans [0,1]. En déduire que D_2 est dense dans \mathbb{R} .
- **XIV.** Démontrer que $\mathbb{R}\backslash D_2$ est dense dans \mathbb{R} . *Indication :* on pourra utiliser la question VII.
- **XV.** Soit x un nombre réel dans l'intervalle $\in [0,1[$ dont un développement dyadique, propre ou impropre, est $\overline{0,a_1a_2a_3\dots}$
 - 1. Quel est le développement dyadique de 1-x?
 - 2. On suppose que $2x \in [0,1[$. Quel est le développement dyadique de 2x? Plus généralement, quel est le développement dyadique de 2^lx , lorsque l est un entier relatif et que $2^lx \in [0,1[$?
 - 3. Donner le développement dyadique de $\frac{2}{3}$.

Partie E : suite extraite de la suite $(\cos(n\pi\theta))_{n\in\mathbb{N}}$

XVI. Dans cette question, θ désigne un nombre réel strictement positif. On pose

$$c_n = \cos(n\pi\theta),$$
 $s_n = \sin(n\pi\theta).$

1. Vérifier que pour tout entier naturel n,

$$c_{n+1} + c_{n-1} = 2c_n \cos(\pi \theta),$$

 $c_{n+1} - c_{n-1} = -2s_n \sin(\pi \theta),$
 $c_n^2 + s_n^2 = 1.$

2. En déduire que la suite $(c_n)_{n\in\mathbb{N}}$ converge si et seulement si θ est un entier relatif pair.

Indication: on pour raisonner par disjonction de cas, suivant la valeur de $\cos(\pi\theta)$.

XVII. On s'intéresse à présent à la suite $(c_{2^n})_{n\in\mathbb{N}}$ extraite de $(c_n)_{n\in\mathbb{N}}$. Pour tout entier naturel n, on pose :

$$u_n = c_{2^n} = \cos(2^n \pi \theta).$$

- 1. On suppose (dans cette question uniquement) que θ est un nombre dyadique. Quelle est la nature de la suite $(u_n)_{n\in\mathbb{N}}$?
- **2.** On suppose (dans cette question uniquement) qu'il existe un nombre dyadique x tel que $\theta = x + \frac{1}{3}$. Quelle est la nature de la suite $(u_n)_{n \in \mathbb{N}}$?
- **3.** On suppose (dans cette question uniquement) qu'il existe un nombre dyadique x tel que $\theta = x + \frac{2}{3}$. Quelle est la nature de la suite $(u_n)_{n \in \mathbb{N}}$?
- **4.** Justifier que, pour tout entier naturel n, $u_{n+1} = 2u_n^2 1$.
- **5.** Lorsque la suite $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , quelles sont les seules valeurs possibles pour le réel ℓ ?
- 6. Soit $(a_n)_{n\in\mathbb{N}^*}$ la suite définissant le développement dyadique propre de $\theta E(\theta)$. Montrer que, quel que soit l'entier naturel n, il existe un entier relatif k_n et un réel ε_n appartenant à l'intervalle $\left[0,\frac{1}{2}\right]$ tels que :

$$2^n\theta = 2k_n + a_n + \frac{a_{n+1}}{2} + \varepsilon_n.$$

7. Démontrer que :

— si
$$a_n = a_{n+1}$$
, alors $u_n \ge 0$;

— si
$$a_n \neq a_{n+1}$$
, alors $u_n \leq 0$.

Puis que :

— si
$$u_n > 0$$
, alors $a_n = a_{n+1}$;

— si
$$u_n < 0$$
, alors $a_n \neq a_{n+1}$.

- 8. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un nombre réel $\ell > 0$. Montrer qu'à partir d'un certain rang, $a_n = 0$. En déduire que θ est un nombre dyadique.
- 9. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un nombre réel $\ell < 0$. Montrer qu'à partir d'un certain rang, $a_{n+1} \neq a_n$. En déduire que $\theta \frac{1}{3}$ ou $\theta \frac{2}{3}$ est un nombre dyadique.
- **XVIII.** Énoncer et démontrer une condition nécessaire et suffisante pour que la suite $(u_n)_{n\in\mathbb{N}}$ converge. On justifiera ce résultat et on précisera le cas échéant la valeur de sa limite.

6