MAT3175L – Géométrie pour le CAPES – Fiche d'exercice 4 Barycentres, convexité, et courbes de Bézier

1 Barycentres : Définitions et propriétés élémentaires

On se place dans le plan euclidien \mathbb{R}^2 muni de la base canonique (\vec{i}, \vec{j}) , chaque vecteur \vec{u} de ce plan pouvant alors être identifié à ses coordonnées par rapport à cette base. Alternativement, on peut considérer les éléments de \mathbb{R}^2 comme les points d'un plan affine en fixant un repère $(0, \vec{i}, \vec{j})$, où O = (0, 0). Étant donnés deux points M, N de ce plan affine, on définira alors $\overrightarrow{MN} = M - N$ comme le vecteur du plan euclidien associé à ces deux points. On écrira de même $M = N + \overrightarrow{MN}$ et on supposera admis le fait que ces écritures sont cohérentes (ce qui découle de la relation entre coordonnées du vecteur et coordonnées des points). Pour $n \in \mathbb{N}$ fixé, on considère $(\lambda_1, \dots, \lambda_n)$ une famille de scalaires réels de somme non nulle et (P_1, \dots, P_n) une famille de points du plan affine. On appellera les scalaires λ_i les 'poids' des points P_i .

1. Montrez qu'il existe un unique élément $P \in \mathbb{R}^2$ tel que

$$\sum_{i} \lambda_{i} \overrightarrow{PP_{i}} = \overrightarrow{0}.$$

Ce point P est appelé 'barycentre de la famille de points pondérés'. On notera également

$$P = \sum_{i} \lambda_i P_i$$

- 2. Vérifiez que le barycentre d'une famille reste inchangé lorsqu'on multiplie toutes les masses par un même nombre α non nul. Sauf mentions contraires, on supposera dans ce qui suit que le poids total des familles considérées est égal à 1 sans perte de généralité.
- 3. Soit $a, b \in \mathbb{R}^2$. On appelle 'segment' [ab] l'ensemble des barycentres des points a et b affectés de masses positives. Démontrez que :

$$m \in [ab] \iff \exists \alpha \in [0,1], m = \alpha a + (1-\alpha)b.$$

On appelle isobarycentre de plusieurs points P_i l'unique barycentre formé lorsque les poids associés à chacun de ces points sont identiques. L'isobarycentre d'un segment est également appelé son milieu.

4. Soit abc et a'b'c' deux triangles. Montrez qu'ils ont même isobarycentre si et seulement si

$$\overrightarrow{aa'} + \overrightarrow{bb'} + \overrightarrow{cc'} = \vec{0}.$$

- 5. Supposons désormais que a', b', c' soient situés sur les segments [bc], [ac], [ab] respectivement. Exprimez l'isobarycentre de a'b'c' comme un barycentre de abc, et montrez que ces isobarycentres sont contenus dans un hexagone dont on décrira les côtés.
- 6. Montrez que si a', b', c' sont les milieux de [bc], [ac], [ab], alors les triangles abc et a'b'c' ont même isobarycentre.

2 Courbes de Bézier : Définitions et cas élémentaires

Dans ce qui suit, on note L_n l'ensemble des n-uplets de points du plan (et on identifie naturellement L_1 et \mathbb{R}^2). On note également A l'ensemble des courbes paramétrées c de la forme

$$\begin{split} c:[0,1] &\longrightarrow \mathbb{R}^2 \\ t &\mapsto (x(t),y(t)) \end{split}$$

où x, y sont des fonctions continues.

On définit par récurrence une suite $(B_n)_{n\in\mathbb{N}}$ d'applications de L_{n+1} dans A en posant :

$$B_0(P)(t) = P$$

et

$$B_n(P_0, \dots, P_n)(t) = (1-t)B_{n-1}(P_0, \dots, P_{n-1})(t) + tB(P_1, \dots, P(n))(t)$$

La courbe paramétrée $B_n(P_0, \ldots, P_n)$ est appelée 'courbe de Bézier associée aux pôles P_0, \ldots, P_n '. Pour toute famille $F = \{P_0, \ldots, P_n\} \in L_{n+1}$, on notera cette courbe $B_{n,F}$ ou même B_F .

- 1. Soit $F = \{P_0, P_1\} \in L_2$. Quelle est la nature de la courbe paramétrée B_F ?
- 2. Soit $F = \{P_0, P_1, P_2\}$. On note Q_0 le milieu de $[P_0P_1]$, Q_1 celui de $[P_1P_2]$. Exprimez $B_F(t)$ comme barycentre des points P_0, P_1, P_2 , et donnez en particulier la nature géométrique des points $B_F(0), B_F(\frac{1}{2}), B_F(1)$.
- 3. Fixons $P_0 = (0,0), P_1 = (1,0), P_2 = (0,1)$. Calculez $\frac{d^2B_F}{dt^2}$ et déduisez-en la nature de la courbe paramétrée B_F .

3 Convexité

On dit qu'une partie non vide K du plan est convexe si et seulement si :

$$\forall M, N \in K, \forall \lambda \in [0, 1], \lambda M + (1 - \lambda)N \in K.$$

1. Montrez que cette condition est équivalente à la suivante :

$$\forall n \in \mathbb{N}, \forall (M_0, \dots, M_n) \in L_n, \forall (\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}, \sum_i \lambda_i \neq 0 \Rightarrow \sum_i \lambda_i M_i \in K.$$

2. Soit E une partie non vide du plan, et W l'ensemble des parties convexes du plan contenant E. Montrez que

$$\bigcap_{K\in W} K$$

est une partie convexe du plan contenant E.

On note cet ensemble C(E) et on l'appelle 'enveloppe convexe de E'.

3. Soit G, H deux parties non vides du plan, montrez que :

$$G \subset H \Longrightarrow C(G) \subset C(H)$$

- 4. Montrez qu'une partie non vide $E \subset \mathbb{R}^2$ est convexe si et seulement si E = C(E).
- 5. Montrez que C(E) est l'ensemble des barycentres de familles de n points de E, pour tous $n \in \mathbb{N}^*$.

4 Premières applications de ces notions

Soit $n \in \mathbb{N}^*$ et une famille quelconque $F \in L_{n+1}$.

- 1. Démontrez que la trajectoire de la courbe paramétrée $B_{n,F}$ est incluse dans C(F).
- 2. Soit φ une transformation affine du plan. Démontrez que :

$$\forall t \in [0,1], \varphi(B_{n,F}(t)) = B_{n,\varphi(F)}(t).$$

3. Que peut-on dire de la courbe de Bézier associé à un triangle non aplati général à l'aide de la question précédente et du cas particulier traité à la fin de la seconde section?

5 Polynômes de Bernstein

1. Démontrez que, pour tout $n \in \mathbb{N}^*$, il existe n+1 fonctions polynômiales $b_{n,k} : [0,1] \longrightarrow \mathbb{R}$ de degré $k \in \{0,\ldots,n\}$, et telles que pour tout $F \in L_{n+1}$, pour tout $t \in [0,1]$, on ait :

$$B_{n,F}(t) = \sum_{k} b_{n,k}(t) P_k$$

Précisez la relation de récurrence qui lie les polynômes $b_{n+1,k}, b_{n,k}, b_{n,k}$.

- 2. Calculez $b_{3,k}(t)$ pour $k \in 0,1,2$, puis déterminez une expression générale de $b_{n,k}(t)$. On appelle ces fonctions 'polynômes de Bernstein'.
- 3. Que dire de la relation entre les courbes paramétrées $B_{n,F}$ et $B_{n,\tilde{F}}$, où $\tilde{F} = \{P_n, P_{n-1}, \dots, P_0\}$ est la famille obtenue en inversant l'ordre des pôles de la famille initiale?
- 4. En calculant les dérivées de ces polynômes, démontrez que la courbe paramétrée $B_{n,F}$ admet pour tangente en P_0 (resp. P_n) la droite P_0P_1 (resp. $P_{n-1}P_n$).