MAT3175L – Géométrie pour le CAPES – Fiche d'exercice 3

1 Isométries du plan euclidien – Généralités

Soit E un plan euclidien orienté, r une rotation de E et s une symétrie orthogonale de E.

- 1. Déterminez la nature des isométries $s \circ r \circ s$ et $r \circ s \circ r$.
- 2. Sous quelle condition a-t-on $s \circ r = r \circ s$?

2 Isométries du carré (CAPES 2020 – Sujet 1)

Soient $Q = \{A, B, C, D\}$ l'ensemble des sommets consécutifs d'un carré. On se propose de déterminer l'ensemble I(Q) des isométries du plan euclidien P qui conservent globalement l'ensemble Q. Parmi elles, $I^+(Q)$ désigne l'ensemble de celles qui sont directes et $I^-(Q)$ l'ensemble de celles qui sont indirectes. La médiatrice du segment [BC] est notée Δ et s_{Δ} désigne la réflexion d'axe Δ .

- 1. Montrez que I(Q) et $I^+(Q)$ munis de la composition des applications sont des groupes. En est-il de même pour $I^-(Q)$?
- 2. Montrez que l'application

$$F: I^+(Q) \to I^-(Q)$$

 $f \mapsto s_\Delta \circ f$

est bijective.

- 3. Démontrez que $I^+(Q)$ contient exactement 4 éléments. Donnez la liste de ces éléments et la table du groupe $I^+(Q)$.
- 4. Précisez les caractéristiques géométriques de chacune des isométries de I(Q).

3 Isométries de l'ellipse et du cylindre (CAPES 2012 – Sujet 2)

3.1 Isométries de l'ellipse

Considérons le plan euclidien orienté P muni de la base orthonormale usuelle (e_1, e_2) , ainsi que l'ellipse Γ d'équation cartésienne

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

avec 0 < b < a. On cherche à déterminer $I(\Gamma)$, ensemble des isométries du plan stabilisant cette ellipse.

On note A(a,0) et A'(-a,0) les sommets principaux de Γ , s la symétrie centrale de centre O, r_1 la réflexion d'axe e_1 , r_2 la réflexion d'axe e_2 . Il précède de choses similaires à l'exercice précédent (et on le suppose acquis ici) que $I(\{A,A'\}) = \{Id,s,r_1,r_2\}$. Enfin, on note Δ le disque fermé de centre O et de rayon a.

- 1. Montrez que $I(\{A, A'\}) \subset I(\Gamma)$.
- 2. Montrez que $\Gamma \subset \Delta$ et que $\Gamma \cap \Delta = \{A, A'\}$.
- 3. Soient $P, P' \in \Gamma$. Montrez que

$$d(P,P') \leq 2a$$

et que le cas d'égalité n'intervient que lorsque P et P' sont les sommets A et A'.

4. Déduisez-en que $I(\Gamma) = I(\{A, A'\})$.

3.2 Quelques isométries de l'espace

Dans la suite de cet exercice, on se place dans \mathbb{R}^3 l'espace euclidien orienté muni de la base orthonormale usuelle (e_1, e_2, e_3) . On note respectivement A_1, A_2, A_3 les matrices 3×3 diagonales

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

1. Pour tout $\lambda \in \mathbb{R}$, on considère les transformations suivantes de \mathbb{R}^3 (par rapport à la base usuelle):

$$t_{\lambda}: (x, y, z) \mapsto (x, y, z + \lambda)$$

$$v_{\lambda}: (x, y, z) \mapsto A_1(x, y, z) + (0, 0, \lambda)$$

$$s: (x, y, z) \mapsto A_2(x, y, z)$$

$$r: (x, y, z) \mapsto A_3(x, y, z)$$

(on notera également $v=v_0$). Décrivez la nature de ces transformations et leurs éléments caractéristiques.

2. Montrez que

$$v_{\lambda} = v \circ t_{\lambda} = t_{\lambda} \circ v$$

3. Pour tous λ, λ' , montrez que

$$v_{\lambda} \circ v_{\lambda'} = t_{\lambda + \lambda'}, \quad t_{\lambda} \circ v_{\lambda'} = v_{\lambda + \lambda'}.$$

3.3 Isométries du cylindre

Soit $a, b \in \mathbb{R}^+$ tels que a > b. On considère le cylindre \mathscr{C} d'équation cartésienne

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

ainsi que le plan Π d'équation cartésienne z=0 et Γ l'ellipse formée par l'intersection de ce cylindre et de ce plan.

Pour tout $\theta \in \mathbb{R}$ fixé, on considère la droite d_{θ} d'équation paramétrique

$$\begin{cases} x = a\cos\theta \\ y = b\cos\theta \end{cases}$$

On s'intéresse à $I(\mathscr{C})$, ensemble des isométries fixant le cylindre \mathscr{C} .

4. Montrez que:

$$\forall \lambda \in \mathbb{R}, \quad t_{\lambda}, v_{\lambda}, s, r \in I(\mathscr{C}).$$

5. Montrez que

$$\mathscr{C} = \bigcup_{\theta \in \mathbb{R}} d_{\theta}$$

- 6. Soit D une droite non parallèle à d_0 . Donnez un vecteur directeur de d_{ϑ} (pour $\vartheta \in \mathbb{R}$ quelconque), puis montrez que D admet un vecteur directeur \vec{u} de coordonnées (α, β, γ) tel que α et β ne s'annulent pas simultanément. Donnez une équation paramétrique de D dépendant uniquement de \vec{u} et des coordonnées d'un point quelconque $M_0(x_0, y_0, z_0)$. Déduisez-en que D coupe \mathscr{C} en au plus deux points.
- 7. Soit $f \in I(\mathscr{C})$. Montrez que $f(d_0)$ est parallèle à d_0 , que e_3 est un vecteur propre de f, que f stabilise Π , et que la restriction de f à Π est une isométrie de ce plan euclidien.
- 8. A l'aide de la première section de ce problème, donnez la liste des éléments de $I^+(\mathscr{C})$ et vérifiez qu'ils s'écrivent tous de la forme $v^j \circ s^i$, où $i, j \in \{0, 1\}$.