Fiche de TD 3

Exercice 1

- i) Montrer que 7 divise $3^{512} 2^{256}$ et 13 divise $2^{70} + 3^{70}$.
- ii) Quel est le reste de la division euclidienne de $2222^{3333} + 3333^{2222}$ par 5?

Exercice 2

Quel est le dernier chiffre de l'écriture de $7^{7^{7^7}}$ en base 3, en base 7 et en base 10?

Exercice 3

Vérifier que 400 000 000 000 000 000 081 est divisible par 13.

Exercice 4 Soient a, b, c des entiers relatifs.

Vrai ou faux

- si $a^2 = b^2 + c^2$ alors l'un des entiers a,b ou c est un multiple de 5.

[Dresser la liste des carrés modulo 5.]

- si 7 divise $a^3 + b^3 + c^3$, alors 7 divise abc.

[Dresser la liste des cubes modulo 7 et procéder par contraposition.]

Exercice 5

En utilisant des congruences modulo un entier bien choisi, montrer que les équations suivantes n'ont pas de solutions entières:

i)
$$7x - 4y^3 = 1$$
 ii) $x^3 + y^3 + z^3 - 9t = 4$ *iii*) $x^2 + xy + 2y^2 = 7003$

[Pour iii) compléter le carré modulo 7.]

Exercice 6

Résoudre dans Z les équations suivantes:

$$i(i)12x + 14 \equiv 0[8], \qquad i(i)12x + 14 \equiv 0[37].$$

Exercice 7

Résoudre dans ${f Z}$ les équations suivantes:

$$i) x^2 \equiv 4[35],$$
 $ii) \begin{cases} x \equiv 13[19] \\ x \equiv 6[12] \end{cases}$ $iii) \begin{cases} x \equiv 3[17] \\ x \equiv 4[11] \\ x \equiv 5[6] \end{cases}$

Exercice 8 (Extrait du partiel d'automne 2022)

i) Résoudre dans Z

$$\begin{cases} x \equiv 0[4] \\ x \equiv 1[25] \end{cases}$$

ii) En déduire les deux derniers chiffres de 2². (2022 fois) en écriture décimale.

Exercice 9

- i) Faire la liste des inversibles (multiplicatifs) des anneaux ${\bf Z}/5{\bf Z}$ et ${\bf Z}/8{\bf Z}$ et déterminer leurs inverses.
- ii) Quel est l'inverse de $\overline{16}$ dans $\mathbb{Z}/37\mathbb{Z}$?

Exercice 10 (Une preuve du petit théorème de Fermat)

Soit p un nombre premier et $a \in \mathbf{Z}$ non multiple de p.

i) Montrer que l'application

$$\psi: \mathbf{Z}/p\mathbf{Z} \to \mathbf{Z}/p\mathbf{Z}: \overline{x} \mapsto \overline{a}\,\overline{x}$$

est une bijection.

ii) En considérant le produit $\psi(\overline{1})\cdots\psi(\overline{p-1})$ montrer que $a^{p-1}\equiv 1[p]$.

Exercice 11 (Le théorème de Wilson)

Soit p un nombre premier.

i) On considère les polynômes suivants à coefficients dans le corps $\mathbf{Z}/p\mathbf{Z}$:

$$P = (X - \overline{p-1})(X - \overline{p-2}) \cdots (X - \overline{2})(X - \overline{1}) \quad \text{et} \quad Q = X^{p-1} - \overline{1}.$$

Montrer que $\overline{1}, \overline{2}, \dots, \overline{p-1}$ sont racines de Q. En déduire que P=Q.

- ii) En déduire que $(p-1)! \equiv -1[p]$.
- iii) Réciproquement, soit $n \geq 2$ un entier tel que

$$(n-1)! \equiv -1[n].$$

Montrer que n est premier.

Exercice 12 (Diviseurs d'un entier)

On note d(n) le nombre de diviseurs de l'entier n > 0. Montrer que

$$\Pi_{d|n}d = n^{\frac{d(n)}{2}}.$$

[Se servir de la factorisation primaire de n.]

Exercice 13 (Extrait du partiel d'automne 2022)

- i) Faire la liste des nombres premiers $\leq \sqrt{641}$.
- ii) Justifier que 641 est un nombre premier.

Exercice 14 * (Nombres de Fermat)

1. Soit $k \in \mathbf{N}^{\times}$.

Montrer que si $2^k + 1$ est un nombre premier, alors il existe $n \in \mathbb{N}$ tel que $k = 2^n$.

[Ecrire k sous la forme $k=2^n(2m+1)$ et prendre $x=2^{2^n}$ dans la factorisation $x^{2m+1}+1=(x+1)(x^{2m}-x^{2m-1}+\ldots)$.]

On note $F_n = 2^{2^n} + 1, n \in \mathbf{N}$ (les nombres de Fermat).

- 2. Montrer que pour tout $n, m \in \mathbb{N}$, m > 0, F_n divise $F_{m+n} 2$. En déduire pgcd (F_n, F_{n+m}) . [Observer que $F_{n+m} 1 \equiv 1[F_n]$. Ensuite, penser à Bézout.]
- 3. Proposer une preuve de l'assertion Il existe une infinité de nombres premiers -

4

- i) Montrer que F_0, F_1, F_2, F_3 sont premiers.
- ii) Soit p premier tel que $p \mid F_4$, montrer que $p \equiv 1 \mod 32$.

[Commencer par observer ceci: soit $P = \{l \in \mathbf{N}^*, 2^l \equiv 1[p]\}\ et\ n = \min(P)$. Alors, $l \in P \Leftrightarrow n|l$.]

- iii) En déduire que $F_4 = 65537$ est premier.
- iv) Montrer que 641 | F_5 . F_5 n'est donc pas premier.

Exercice 15*

- i) Montrer qu'il y a une infinité de nombres premiers de la forme $4k-1, k \in \mathbf{N}$. [Par l'absurde en se servant de l'entier $n=4p_1\cdots p_N-1$ où p_1,\ldots,p_N sont les nombres premiers congrus à -1 modulo 4.]
- ii)
- Soit p un nombre premier impair. On suppose qu'il existe un entier x tel que $x^2 \equiv -1[p]$. Montrer que $p \equiv 1[4]$.
- Montrer qu'il y a une infinité de nombres premiers de la forme $4k+1, k \in \mathbf{N}$. [Par l'absurde en se servant de l'entier $n=4(p_1\cdots p_N)^2+1$ où p_1,\ldots,p_N sont les nombres premiers congrus à 1 modulo 4.]