Fiche de TD 4

Exercice 1

- 1. Parmi les exemples suivants, quels sont ceux qui sont des groupes?
- i) (S^1, \cdot) où $S^1 = \{z \in \mathbf{C}^{\times}, |z| = 1\}$ est le cercle unité du plan.
- ii) $(\mathcal{C},+)$ et $(\mathcal{C}^{\star},\cdot)$ où $\mathcal{C} = \{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix}, a,b \in \mathbf{R} \}, \mathcal{C}^{\star} = \mathcal{C} \setminus \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \}, + \text{ est l'addition et } \cdot \text{ la multiplication des matrices.}$
- iii) (S, +) et (S^*, \cdot) , où $S = \{ \begin{pmatrix} a & b \\ b & a \end{pmatrix}, a, b \in \mathbf{R} \}, S^* = S \setminus \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \}, + \text{ est l'addition et } \cdot \text{ la multiplication des matrices.}$
- iv) $(Sl_2(\mathbf{C}), \cdot)$ où $Sl_2(\mathbf{C}) = \{A \in Gl_2(\mathbf{C}), det(A) = 1\}$ et \cdot est la multiplication matricielle.
- v) (GA_1, \circ) où GA_1 est l'ensemble des applications $\mathbf{R} \to \mathbf{R} : x \mapsto ax + b, (a, b) \in \mathbf{R}^2, a \neq 0$, et \circ est la composition des applications.
- vi) $(\mathcal{D}, +)$ et $(\mathcal{D} \setminus \{0\}, \cdot)$ où $\mathcal{D} = \{\frac{a}{2^l}, a \in \mathbf{Z}, l \in \mathbf{N}\} \subset \mathbf{Q}$. $(\mathcal{D} \text{ est appel\'e l'ensemble des } rationnels dyadiques.)$
- vii) $(\mathbf{Q}[\sqrt{p}], +)$ et $(\mathbf{Q}[\sqrt{p}] \setminus \{0\}, \cdot)$ où p est un nombre premier et $\mathbf{Q}[\sqrt{p}] = \{a + b\sqrt{p}, a, b \in \mathbf{Q}\}.$
- 2. Soit X un ensemble, $P \subset X$ une partie de X et (S_X, \circ) le groupe des bijections $\sigma : X \to X$. On note G_P (resp. S_P) l'ensemble des $\sigma \in S_X$ telles que $\sigma(P) = P$ (resp. $\sigma(P) \subset P$).
- i) Mq G_P est un sous-groupe de S_X .
- ii) Mq si P est une partie finie, alors S_P est un sous-groupe de S_X .

Est-ce vrai pour toute partie P?

[On pourra prendre pour X le plan réel, pour P le disque unité et pour σ une homothétie de rapport bien choisi.]

Exercice 2

- i) Faire la liste des tables de composition possibles d'un groupe ayant deux éléments $\{e, x\}$ et ayant trois éléments $\{e, x, y\}$. (La lettre e désigne le neutre du groupe.)
- ii) Même question pour un groupe d'ordre 4.
- iii) A notations près, combien y-a-t-il de tables de groupe d'ordre 5?

[Se servir de l'ordre d'un élément $x \neq e$.]

Exercice 3 Soit G un groupe de neutre e. On suppose $x^2 = e$ pour tout $x \in G$.

i) Montrer que G est abélien.

- ii) Soit $n \in \mathbb{N} \setminus \{0\}$. Donner un exemple de G d'ordre 2^n . [Se servir de $\mathbb{Z}/2\mathbb{Z}$ et du produit direct.]
- iii) Donner un exemple de G d'ordre infini. [Penser aux suites.]

Exercice 4 Dans cet exercice, $((\mathbf{Z}/n\mathbf{Z})^*,\cdot)$ désigne le groupe des inversibles multiplicatifs de l'anneau de congruence $(\mathbf{Z}/n\mathbf{Z},+,\cdot)$. On rappelle que pour un entier $a \in \mathbf{Z}$,

 $\overline{a} \in (\mathbf{Z}/n\mathbf{Z})^* \Leftrightarrow \operatorname{pgcd}(a,n) = 1 \Leftrightarrow \overline{a} \text{ est un générateur du groupe cyclique } (\mathbf{Z}/n\mathbf{Z},+).$

- i) Faire la liste des générateurs du groupe cyclique $(\mathbf{Z}/8\mathbf{Z}, +)$.
- ii) Montrer que le groupe $((\mathbf{Z}/8\mathbf{Z})^*,\cdot)$ n'est pas un groupe cyclique.
- iii) Montrer que $((\mathbf{Z}/9\mathbf{Z})^*,\cdot)$ est cyclique. Faire la liste de ses générateurs.
- iv) Montrer que $((\mathbf{Z}/17\mathbf{Z})^*,\cdot)$ est cyclique.

[On pourra éviter certains calculs en se servant du théorème de Lagrange.]

Exercice 5

Montrer que le groupe $H \times K$, produit direct des groupes finis H et K, est un groupe cyclique ssi H et K sont cycliques d'ordres premiers entre eux (i.e. pgcd (|H|, |K|) = 1). [Se servir du calcul de l'ordre d'un élément $(h, k) \in H \times K$.]

Rappel: Soit G un groupe et $P \subset G$ une partie. Le sous-groupe $\langle P \rangle \leq G$ engendré par P est l'intersection de tous les sous-groupes de G contenant P. C'est, pour l'inclusion, le plus petit sous-groupe de G contenant P.

Si $P = \{x\}$, $\langle P \rangle = \langle x \rangle$ (le sous-groupe monogène engendré par x). Dans le groupe $(\mathbf{Z}, +)$, pour tout entier $a, \langle a \rangle = \mathbf{Z}a = \{la, l \in \mathbf{Z}\}.$

Exercice 6 Soient a et b deux nombres réels.

- i) Vérifier que $\mathbf{Z}a + \mathbf{Z}b = \{ka + lb, (k, l) \in \mathbf{Z}^2\}$ est un sous-groupe de $(\mathbf{R}, +)$. Montrer que $\mathbf{Z}a + \mathbf{Z}b = \langle a, b \rangle$.
- ii) On suppose a et b rationnels. Existe-t-il un nombre rationnel c tel que

$$\mathbf{Z}a + \mathbf{Z}b = \mathbf{Z}c$$
?

iii) On suppose a rationnel et b irrationnel. Existe-t-il un nombre réel c tel que

$$\mathbf{Z}a + \mathbf{Z}b = \mathbf{Z}c$$
?

iv) Soient p et q deux nombres premiers. Existe-t-il un nombre réel c tel que

$$\mathbf{Z}\ln(p) + \mathbf{Z}\ln(q) = \mathbf{Z}c$$
?

 $(x \mapsto \ln(x))$ est le logarithme népérien.)

Exercice 7 (Le groupe quaternionique Q_8 .)

Dans $Gl_2(\mathbf{C})$, notons

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

- i) Calculer I^2, J^2, K^2 et IJ, JK, KI.
- ii) En déduire les produits JI, KJ, IK.
- iii) En déduire la liste des éléments du sous-groupe $\langle I, J \rangle$ de $Gl_2(\mathbf{C})$ engendré par I et J. Ce sous-groupe est noté Q_8 .
- iv) Déterminer le centre de Q_8 .
- v) Faire la liste des sous-groupes de Q_8 . Sont-ils tous distingués?

Exercice 8 (Le groupe diédral D_n)

On rappelle que

$$O_2(\mathbf{R}) = \{ A \in M_2(\mathbf{R}), {}^t A A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \}$$

est l'ensemble (des matrices dans la base canonique) des isométries linéaires du plan \mathbf{R}^2 . $O_2(\mathbf{R})$ est un sous-groupe de $Gl_2(\mathbf{R})$ appelé le groupe orthogonal.

Si $A \in O_2(\mathbf{R}), det(A) = \pm 1.$

Si det(A) = 1, $A = \begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix} = R(\theta)$ est la matrice d'une rotation d'angle $\theta \in \mathbf{R}$.

Si det(A) = -1, $A = \begin{pmatrix} cos\theta & sin\theta \\ sin\theta & -cos\theta \end{pmatrix} = S(\theta)$ est la matrice d'une réflexion de droite fixe D_{θ} passant par (0,0) et $(cos\frac{\theta}{2}, sin\frac{\theta}{2})$.

Soit maintenant $n \geq 3$ et soit C_n le polygone régulier à n côtés de centre (0,0) et dont l'un des sommets est (1,0). (Les sommets de C_n sont les racines n-ièmes de l'unité dans $\mathbf{C} \simeq \mathbf{R}^2$.) On se propose ici de décrire le groupe D_n des isométries du plan qui conservent l'ensemble des sommets de C_n . Ce groupe D_n est appelé le groupe diédral.

- i) Faire la liste (des matrices) des rotations de D_n . Montrer que celles-ci constituent un sous-groupe cyclique $\langle R \rangle \leq D_n$ dont on précisera un générateur R. (Ce générateur n'est pas unique.)
- ii) Expliciter la matrice S d'une réflexion (au choix) de D_n . En se servant du rappel, montrer que toute matrice de réflexion S' de D_n s'écrit S' = SR' avec $R' \in \langle R \rangle$.
- iii) Conclure que $D_n = \langle R \rangle \bigcup S \langle R \rangle$ et que $|D_n| = 2n$.
- iv) Montrer que le sous-groupe $\langle R \rangle$ est distingué dans D_n .
- v) Soit $P = \{R, S\}$. Identifier le sous-groupe $\langle P \rangle \leq Gl_2(\mathbf{R})$.
- vi) A titre d'exemple, faire la liste des six matrices de D_3 et des huit matrices de D_4 .

Exercice 9 Soient H et K deux groupes finis (de neutres respectifs e_H et e_K) et $\varphi: H \to K$ un morphisme de groupes.

i) Montrer que $\varphi(e_H) = e_K$ et pour tout entier $n \geq 0$ et $h \in H$, $\varphi(h^n) = (\varphi(h))^n$.

- ii) Montrer que pour tout $h \in H$, $\varphi(h)^{\operatorname{ord}(h)} = e_K$. En déduire que l'ordre de $\varphi(h)$ divise l'ordre de h.
- iii) On suppose φ injectif. Calculer $\varphi(h^{\operatorname{ord}(\varphi(h))})$ et en déduire que l'ordre de h divise l'ordre de $\varphi(h)$.
- iv) Soit $d \in \mathbb{N} \setminus \{0\}$. Que peut-on conclure sur les éléments d'ordre d de deux groupes finis H et K isomorphes?
- v) Soit p un nombre premier.
- Que peut-on dire d'un groupe d'ordre p?
- Donner deux groupes abéliens d'ordre p^2 non isomorphes.
- Donner trois groupes abéliens d'ordre p^3 non isomorphes.

[Se servir du produit direct.]

Exercice 10 Expliquer pourquoi il y a au moins cinq groupes d'ordre 8 deux à deux non isomorphes.

[Utiliser l'exercice 9 et les groupes D_4 et Q_8 .]

Exercice 11 Soient deux anneaux $(A, +, \cdot)$ et $(B, +, \cdot)$ d'unités respectives 1_A et 1_B .

i) Confirmer que $A \times B$ est un anneau pour les lois

$$(a,b) + (a',b') = (a+a',b+b'), \quad (a,b) \cdot (a',b') = (aa',bb').$$

ii) Confirmer que le groupe $(A \times B)^*$ des inversibles multiplicatifs de l'anneau produit $A \times B$ est égal au produit direct $A^* \times B^*$ des groupes des inversibles multiplicatifs de A et de B.

On dit que $\psi: A \to B$ est un morphisme d'anneaux si 1) ψ est un morphisme de groupes de (A, +) vers (B, +), 2) $\psi(1_A) = 1_B$ et 3) pour tout $(a, a') \in A^2, \psi(aa') = \psi(a)\psi(a')$.

- iii) Soit $\psi:A\to B$ un morphisme d'anneaux.
- Montrer que $\psi(A^*)$ est un sous-groupe de B^* .
- On suppose ψ bijectif. Montrer que $\psi^{-1}: B \to A$ est aussi un morphisme d'anneaux et que $\psi(A^*) = B^*$.

Exercice 12 (Les restes chinois (bis))

Soient $m, n \in \mathbb{N} \setminus \{0\}$ premiers entre eux. On considère l'anneau produit $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ (défini dans l'exercice 11).

i) Montrer que l'application

$$\psi: \mathbf{Z} \to \mathbf{Z}/m\mathbf{Z} \times \mathbf{Z}/n\mathbf{Z}: x \mapsto (\overline{x}_m, \overline{x}_n)$$

est un morphisme d'anneaux.

ii) En vous servant du théorème des restes chinois montrer que ψ est surjective.

iii) Confirmer que ψ est constante sur les classes de congruence modulo mn et en déduire que ψ induit une application

$$\overline{\psi}: \mathbf{Z}/mn\mathbf{Z} \to \mathbf{Z}/m\mathbf{Z} \times \mathbf{Z}/n\mathbf{Z}.$$

- iv) Montrer que $\overline{\psi}$ est un isomorphisme d'anneaux.
- v) En prenant la restriction de $\overline{\psi}$ aux inversibles multiplicatifs, montrer que $\varphi(mn) = \varphi(m)\varphi(n)$. (φ est l'indicatrice d'Euler.)
- vi) Soit p un nombre premier et $l \in \mathbb{N} \setminus \{0\}$. Calculer $\varphi(p^l)$. En se servant de la factorisation primaire, en déduire une expression de $\varphi(n)$ pour tout entier naturel n > 0. Que vaut $\varphi(1000)$?

[Terminologie: une application $\phi: \mathbf{N}^* \to \mathbf{N}^*$ telle que $\phi(ab) = \phi(a)\phi(b)$ pour tout a et b premiers entre eux est dite arithmétiquement multiplicative.]