Fiche de TD 2

Exercice 1 Soit $1 = d_1 < d_2 < \cdots < d_k = n$ la liste des diviseurs positifs de l'entier naturel $n \ge 2$. Montrer que

$$n^k = (\prod_{i=1}^k d_i)^2.$$

[Commencer par quelques exemples. Ensuite dresser la liste des diviseurs de n en observant que si $d \mid n$ alors $\frac{n}{d} \mid n$]

Exercice 2 (Nombres harmoniques)

Pour $n \in \mathbf{N}^{\times}$, on pose $H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$.

Une étude analytique de la suite harmonique $(H_n)_{n \in \mathbf{N}^{\times}}$ figure dans l'Ecrit 1 2021.

On se propose ici de montrer que pour $n \geq 2$, H_n n'est pas un nombre entier. On se sert pour cela d'un argument de parité.

- 1. On suppose les entiers q_1, \ldots, q_r impairs. Quelle est la parité du produit $\prod_{i=1}^r q_i$?
- 2. On souhaite montrer l'assertion

 \mathcal{H}_n : - Il existe un entier P_n impair et un entier Q_n pair tels que $H_n = \frac{P_n}{Q_n}$ - pour tout $n \geq 2$.

i) Montrer $\mathcal{H}_n \Rightarrow \mathcal{H}_{2n} \Rightarrow \mathcal{H}_{2n+1}$ pour tout $n \geq 2$.

[Commencer par séparer la somme sur les entiers pairs de la somme sur les entiers impairs de H_{2n} . Ensuite observer les numérateurs et les dénominateurs.]

- ii) Etablir \mathcal{H}_n par récurrence sur $n \geq 2$ en supposant \mathcal{H}_k pour tout k entre 2 et n et en traitant \mathcal{H}_{n+1} selon la parité de n+1.
- 3. En déduire que si $n \geq 2$, H_n n'est pas un nombre entier.

Exercice 3 (Points entiers sur un cercle)

Pour $k \in \mathbf{N}$, on se propose d'étudier les solutions $(a,b) \in \mathbf{N}^{\times 2}$ de l'équation

$$2^k = a^2 + b^2 \qquad (E_k)$$

- 1. Montrer que si $4 \mid a^2 + b^2$, alors a et b sont des entiers pairs. [Tester suivant la parité de a et de b.]
- 2. Le cas pair: k = 2n.

Montrer que l'équation (E_{2n}) n'admet pas de solution $(a,b) \in \mathbf{N}^{\times 2}$.

[Vérifier pour n = 0 et n = 1. Ensuite procéder par l'absurde: prendre pour n le plus petit entier pour lequel une solution (a,b) de (E_{2n}) existe et relire la question 1.]

- 3. Le cas impair: k = 2n + 1.
- i) Donner une solution $(a,b) \in \mathbb{N}^{\times 2}$ de l'équation (E_{2n+1}) .
- ii) Montrer l'assertion: pour tout $n \geq 0$, l'équation (E_{2n+1}) admet une solution unique $(a,b) \in \mathbb{N}^{\times^2}$ par récurrence sur l'entier $n \geq 0$.

[Après l'initialisation, supposer acquise l'unicité de la solution de (E_{2n+1}) et se servir de la question 1 pour obtenir l'unicité de la solution de $(E_{2(n+1)+1})$.]

Division euclidienne, pqcd, identité de Bézout, lemme de Gauss, théorème d'Euclide.

Exercice 4 Le capitaine Crochet a cinq matelots entre lesquels il doit partager équitablement un trésor. Une fois qu'il a pris sa part, il reste 1723 pièces d'or pour son équipage, qu'il distribue ainsi: chaque matelot est associé à un doigt de sa main droite; du crochet de la main gauche, il désigne ses doigts dans l'ordre: pouce, index, majeur, annulaire, auriculaire, annulaire, majeur, index, pouce, index, etc.; à chaque doigt désigné le matelot correspondant prend une pièce. Sur quel doigt le capitaine va-t-il terminer son décompte?

[Observer par exemple ce qui se passe sur le pouce.]

Exercice 5 Un jeu: n allumettes sont disposées sur une table et deux joueurs en retirent chacun à leur tour une, deux, ou trois, le perdant étant celui qui retire la dernière allumette.

Notons n_k le nombre d'alumettes restantes après k tirages et r_k le reste de la division euclidienne de n_k par 4.

- i) On suppose $n_k \geq 4$. Montrer que si $r_k = 1$, alors après le tirage suivant $r_{k+1} \neq 1$, et que si $r_k \neq 1$, alors au tirage suivant on peut faire en sorte que $r_{k+1} = 1$.
- ii) En déduire une stratégie gagnante. [Observer la fin de partie.]

Exercice 6 i) Calculer pgcd(123, 45) par l'algorithme d'Euclide.

ii) Soit $n \in \mathbb{N}$. Montrer que pgcd $(n^3 + n + 1, n^2 + n + 1) \in \{1, 3\}$.

Exercice 7 Calculer $d = \operatorname{pgcd}(210, 48)$. Résoudre dans \mathbb{Z}^2 l'équation 210x + 48y = d.

Exercice 8

1. Montrer qu'il existe une suite de couples d'entiers $(a_n, b_n) \in \mathbf{N}^2$ telle que pour tout $n \in \mathbf{N}$,

$$(1+\sqrt{2})^n = a_n + b_n \sqrt{2}.$$

Montrer que pgcd $(a_n, b_n) = 1$.

2. Soit $A = \{a + b\sqrt{2}, (a, b) \in \mathbf{Z}^2\}$ et c l'application

$$c: A \to A: a + b\sqrt{2} \mapsto a - b\sqrt{2}.$$

- i) Vérifier que pour tout $(\zeta, \eta) \in A^2$, $c(\zeta + \eta) = c(\zeta) + c(\eta)$ et $c(\zeta \eta) = c(\zeta)c(\eta)$.
- ii) Calculer $c((1+\sqrt{2})^n)$ de deux manières différentes. En déduire une preuve directe de pgcd $(a_n,b_n)=1,n\in \mathbb{N},$ basée sur une relation de Bézout.

[Pour Bézout, penser à l'identité remarquable $a^2 - b^2 = (a+b)(a-b)$.]

Exercice 9 (Ecriture d'un entier en base b. Extrait de l'Ecrit 1 2018.)

Soit $b \ge 2$ un entier naturel. Pour $N \in \mathbf{N}^{\times}$, on se propose de montrer qu'il existe $n \in \mathbf{N}^{\times}$ et une suite $(d_k)_{0 \le k \le n-1}$, $d_k \in \{0, 1, \dots, b-1\}$, $d_{n-1} \ne 0$, uniques tels que

$$N = \sum_{k=0}^{n-1} d_k b^k.$$

Le développement en base b de l'entier N est noté $N = \overline{d_{n-1}d_{n-2}\cdots d_1d_0}^b$ ou $d_{n-1}d_{n-2}\cdots d_1d_0$ si la base b est évidente.

- 1. (Unicité) On suppose $N = \sum_{k=0}^{n-1} d_k b^k$.
- i) Montrer que $b^{n-1} \leq N \leq b^n 1$.
- ii) Dire pourquoi l'entier n est déterminé par N.
- iii) Démontrer que la suite (d_0, \ldots, d_{n-1}) est déterminée par N. [Récurrence sur $i \leq n-1$ en se servant de l'unicité de la division euclidienne.]
- 2. (Existence). On définit deux suites d'entiers $(q_k)_{k \in \mathbb{N}}$ et $(d_k)_{k \in \mathbb{N}}$ par $q_0 = N$ et pour tout entier naturel k, q_{k+1} et d_k désignent respectivement le quotient et le reste de la division euclidienne de q_k par b: $q_k = q_{k+1}b + d_k$.
- i) On fixe un entier $k \ge 1$. Exprimer N en fonction de k, d_0, \ldots, d_{k-1} et q_k . [Cela commence par $N = d_0 + bq_1 = d_0 + b(bq_2 + d_1) = \ldots$]
- ii) Démontrer que la suite $(q_k)_{k \in \mathbb{N}}$ est nulle à partir d'un certain rang et qu'il existe un entier $n \geq 1$ tel que $N = \sum_{k=0}^{n-1} d_k b^k$.
- iii) Ecrire en base deux le nombre qui s'écrit 391 en base dix.

Exercice 10 (critères de divisibilité en base 10)

Soit $N = \sum_{k=0}^{n-1} d_k 10^k$ l'écriture de $N \in \mathbf{N}^{\times}$ en base 10 et $S(N) = \sum_{k=0}^{n-1} d_k$.

- i) Confirmer que N est divisible par 2 ou 5 ssi d_0 l'est.
- ii) Démontrer que N est divisible par 9 ou par 3 ssi S(N) l'est.

Vrai ou faux (Ecrit 2024): si S(N) est un multiple de 3, alors N est-il un multiple 9.

iii) Comment adapter le critère du ii) à la divisibilité par 11?

[Se servir de congruences.]

iv) On dit que N est un nombre palindrome en base 10 s'il se lit indifféremment de gauche a droite ou de droite à gauche. Par exemple 11011 est un nombre palindrome.

Vrai ou faux: Tout nombre palindrome dont l'écriture en base 10 a un nombre pair de chiffres est un multiple de 11.

Même question si son écriture a un nombre impair de chiffres.

Exercice 11 (L'ensemble des parties finies de N est dénombrable)

Pour $A \subset \mathbf{N}$ on désigne par $\mathbf{1}_A$ la fonction indicatrice de A: $\mathbf{1}_A(n) = 1$ si $n \in A$ et $\mathbf{1}_A(n) = 0$ si $n \notin A$.

Soit $P_f(\mathbf{N})$ l'ensemble des parties finies de \mathbf{N} . Montrer que l'application

$$P_f(\mathbf{N}) \to \mathbf{N} : A \mapsto \sum_{n \in \mathbf{N}} \mathbf{1}_A(n) 2^n$$

est une bijection. [Se servir de l'exercice 9.]

Exercice 12* Soit $a, m, n \in \mathbb{N}^*$ avec n > m.

Démontrer l'égalité

$$pgcd(a^{n} - 1, a^{m} - 1) = a^{pgcd(n,m)} - 1.$$

[On pourra écrire $a^n - 1$ en fonction de $a^m - 1$ et $a^{n-m} - 1$, montrer successivement pgcd $(a^n - 1, a^m - 1)$ = pgcd $(a^{n-m} - 1, a^m - 1)$ = pgcd $(a^r - 1, a^m - 1)$ où r est le reste de la division euclidienne de n par m et conclure en se servant de l'algorithme d'Euclide.]

Exercice 13

- i) Montrer que si l'entier n est multiple de 33 et de 77 alors il est multiple de 231.
- ii) Montrer que pour tout entier n, n(n+1)(n+2)(n+3)(n+4) est divisible par 120.

Exercice 14 Soient a, b et $(x_j)_{j \in [n]}$ des entiers naturels non nuls.

- i) Démontrer: $\forall j \in [n]$, pgcd $(a, x_j) = 1 \Leftrightarrow \operatorname{pgcd}(a, \Pi_{j \in [n]} x_j) = 1$.
- ii) En déduire: $\forall k, l \in \mathbf{N}^*$, pgcd $(a, b) = 1 \Leftrightarrow$, pgcd $(a^k, b^l) = 1$.

Exercice 15 (Test des racines rationnelles)

Soit $P(X) = \sum_{k=0}^{n} a_k X^k$ un polynôme à coefficients entiers.

- i) Supposons que $r = \frac{p}{q}$ soit une racine rationnelle de P (p,q des entiers étrangers). Montrer que p divise a_0 et q divise a_n .
- ii) Exemple: soient $n \in \mathbb{N}^*$ et $k \in \mathbb{N}^*$ tels que $n^{\frac{1}{k}}$ soit rationnel. Montrer que $n^{\frac{1}{k}}$ est un entier.

Exercice 16

Montrer que pour tout $n \in \mathbf{N}^{\star}$, $\sqrt{\frac{n}{n+1}}$ n'est pas un nombre rationnel. [Procéder par l'absurde.]

Exercice 17

Soit x un réel. On suppose qu'il existe un entier naturel n tel que x^n et x^{n+1} sont entiers. Montrer que x est un entier.