FEUILLE D'EXERCICES 6 : NORMES DE MATRICES, CONDITIONNEMENT

Dans tout ce qui suit, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , $n \in \mathbb{N}^*$.

Exercice 1. (Norme de Frobenius)

On rappelle que la norme de Frobenius d'une matrice $A = (A_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ est

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |A_{i,j}|^2}$$

- (1) Montrer que la norme de Frobenius est une norme matricielle et qu'elle vérifie $||A||_F^2 = \operatorname{tr}(A^*A)$ pour tout $A \in \mathcal{M}_n(\mathbb{K})$.
- (2) Montrer que la norme de Frobenius n'est pas une norme subordonnée.
- (3) Montrer que si $U \in \mathcal{M}_n(\mathbb{K})$ est unitaire et $A \in \mathcal{M}_n(\mathbb{K})$ alors

$$||UA||_F = ||AU||_F = ||A||_F.$$

(4) Montrer que si A est une matrice normale, de valeurs propres $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$, alors

$$||A||_F = \left(\sum_{i=1}^n |\lambda_i|^2\right)^{1/2}.$$

Exercice 2. (Normes subordonnées $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$) On rappelle la définition des normes ℓ^{∞} et ℓ^{1}

sur
$$\mathbb{K}^n \approx \mathcal{M}_{n,1}(\mathbb{K})$$
: pour tout $x = (x_1 \cdots, x_n) \in \mathbb{K}^n$, $\|x\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$, $\|x\|_1 = \sum_{i=1}^n |x_i|$.

On note $\|\cdot\|_{\infty}$ et $\|\cdot\|_1$ les normes subordonnées sur $\mathcal{M}_n(\mathbb{K})$: pour tout $A \in \mathcal{M}_n(\mathbb{K})$,

$$|\!|\!|\!| A |\!|\!|_{\infty} = \max_{x \in \mathbb{K}^n, x \neq 0} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} \qquad \text{et} \qquad |\!|\!| A |\!|\!|_{1} = \max_{x \in \mathbb{K}^n, x \neq 0} \frac{\|Ax\|_{1}}{\|x\|_{1}}$$

Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{K})$,

$$|\!|\!|\!| A |\!|\!|\!|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |A_{i,j}| \qquad \text{et} \qquad |\!|\!|\!| A |\!|\!|\!|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^n |A_{i,j}|.$$

En déduire que, pour tout $A \in \mathcal{M}_n(\mathbb{K})$, $||A||_1 = ||A^*||_{\infty}$.

Exercice 3. (Norme subordonnée à la norme 2)

On rappelle la définition du produit scalaire canonique sur \mathbb{K}^n et de la norme associée :

pour tout
$$x = (x_1 \cdots, x_n), y = (y_1 \cdots, y_n) \in \mathbb{K}^n, \langle x, y \rangle = \sum_{i=1}^n \overline{x_i} y_i$$
 et $||x||_2 = \sqrt{\langle x, x \rangle} = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$.

On note $\|\cdot\|_2$ la norme subordonnée sur $\mathcal{M}_n(\mathbb{K})$: pour tout $A \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_2 = \max_{x \in \mathbb{K}^n, x \neq 0} \frac{||Ax||_2}{||x||_2}$$

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (1) Montrer que la norme 2 sur \mathbb{K}^n est invariante par transformation unitaire : si U est tel que $U^*U=\mathrm{I}_n$ alors, pour tout $x\in\mathbb{K}^n, \|Ux\|_2=\|x\|_2=\|U^*x\|_2$.
- (2) Montrer que la norme 2 subordonnée est invariante par transformation unitaire : si U est tel que $U^*U = I_n$, alors

$$|||A||_2 = |||UA||_2 = |||AU||_2 = |||U^*AU||_2.$$

- (3) Montrer que si A est une matrice normale, alors $||A||_2 = \rho(A)$, où $\rho(\cdot)$ désigne le rayon spectral.
- (4) Montrer que $||A||_2 = \sqrt{||A^*A||_2}$.
- (5) Montrer que

$$|||A||_2 = \sqrt{\rho(A^*A)} = \sqrt{\rho(AA^*)} = |||A^*||_2.$$

(6) Conditionnement associé à la norme 2.

On suppose A inversible et on considère la quantité $\operatorname{cond}_2(A) = ||A||_2 ||A^{-1}||_2$ appelée conditionnement de A associé à la norme 2. On note $0 < \mu_1(A) \le \ldots \le \mu_n(A)$ les racines carrées ordonnées des valeurs propres de A^*A , i.e. les valeurs singulières de A.

- (a) Montrer que $\operatorname{cond}_2(A) = \frac{\mu_n(A)}{\mu_1(A)}$.
- (b) On suppose de plus que A est une matrice normale et on note $\sigma(A)$ son spectre.

Montrer que
$$\operatorname{cond}_2(A) = \frac{\max\limits_{\lambda \in \sigma(A)} |\lambda|}{\min\limits_{\lambda \in \sigma(A)} |\lambda|}.$$

Exercice 4. (Équivalence des normes et des conditionnements)

(1) Montrer que si deux normes vectorielles $\|\cdot\|_*$ et $\|\cdot\|_\#$ vérifient $C_1\|\cdot\|_* \le \|\cdot\|_\# \le C_2\|\cdot\|_*$ pour un couple (C_1,C_2) de réels strictement positifs alors les normes subordonnées vérifient

$$\frac{C_1}{C_2} |\!|\!| \cdot |\!|\!|_* \leq |\!|\!|\!| \cdot |\!|\!|_\# \leq \frac{C_2}{C_1} |\!|\!|\!| \cdot |\!|\!|\!|_*.$$

- (2) En utilisant les formules démontrées aux exercices précédents, montrer les relations suivantes pour tout $A \in \mathcal{M}_n(\mathbb{K})$. Quand c'est possible, donner les inégalités associées pour les conditionnements.
 - (a) $||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2$.
 - (b) $\max_{1 \le i,j \le n} |A_{i,j}| \le |||A|||_2 \le n \left(\max_{1 \le i,j \le n} |A_{i,j}| \right).$
 - (c) $\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_2 \le \sqrt{n} \|A\|_{\infty}.$
 - (d) $\frac{1}{\sqrt{n}} \|A\|_1 \le \|A\|_2 \le \sqrt{n} \|A\|_1$.
 - (e) $||A||_2 \le \sqrt{||A||_\infty ||A||_1}$.
 - (f) $\frac{1}{\sqrt{n}} ||A||_p \le ||A||_F \le \sqrt{n} ||A||_p \text{ pour } p = 1 \text{ et } p = \infty.$

Exercice 5. (Norme et inversibilité) Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible, $\|\cdot\|$ une norme sur \mathbb{K}^n et $\|\cdot\|$ la norme subordonnée associée sur $\mathcal{M}_n(\mathbb{K})$.

- (1) Montrer que, pour tout $x \in \mathbb{K}^n$, $||Ax|| \ge \frac{||x||}{||A^{-1}||}$
- (2) Soit $E \in \mathcal{M}_n(\mathbb{K})$ une matrice telle que $||E||| < \frac{1}{||A^{-1}||}$. Montrer que, pour tout $x \in \mathbb{K}^n$,

$$||Ax + Ex|| \ge \left(\frac{1}{||A^{-1}||} - ||E||\right) ||x||.$$

En déduire que A + E est inversible.

(3) Comment s'énonce le résultat qu'on vient de montrer si $A = I_n$?

Exercice 6. (Interprétations du conditionnement) Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible.

(1) (a) Soit $b \in \mathbb{K}^n$ non nul et $\Delta b \in \mathbb{K}^n$. Soit $x, \Delta x \in \mathbb{K}^n$ définis par Ax = b et $A(x + \Delta x) = b + \Delta b$. Étant donné une norme subordonnée $\|\cdot\|$ sur $\mathcal{M}_n(\mathbb{K})$, on rappelle que le conditionnement de A est défini par $\operatorname{cond}(A) = \|A\| \|A^{-1}\|$. Montrer que

$$\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

- (b) Déterminer deux vecteurs b et Δb tels qu'on ait égalité entre les deux membres de l'inégalité précédente.
- (c) Montrer de même que si Ax = b et $(A + \Delta A)(x + \Delta x) = b$, alors

$$\frac{\|\Delta x\|}{\|x + \Delta x\|} \le \operatorname{cond}(A) \frac{\|\!\!|\!| \Delta A \|\!\!|\!|}{\|\!\!|\!|\!|\!| A \|\!\!|\!|},$$

puis que l'on peut trouver un vecteur b non nul, une matrice ΔA et un vecteur Δx vérifiant les relations ci-dessus et tels qu'on ait égalité entre les deux membres de l'inégalité précédente.

(2) (a) Montrer à l'aide de l'exercice précédent que, pour toute matrice singulière B, on a

$$\frac{1}{\operatorname{cond}(A)} \le \frac{|\!|\!| A - B |\!|\!|}{|\!|\!| A |\!|\!|}.$$

(b) Soit $u \in \mathbb{K}^n$ tel que $||u||_2 = 1$ et $||A^{-1}u||_2 = |||A^{-1}|||_2$. On pose $B_0 = A - \frac{u(A^{-1}u)^*}{|||A^{-1}||_2^2}$.

Montrer que $||A - B_0||_2 = \frac{1}{\|A^{-1}\|_2}$ et en déduire que

$$\frac{1}{\operatorname{cond}_2(A)} = \min \left\{ \frac{\|A - B\|_2}{\|A\|_2} \ \middle| \ B \text{ singulière} \right\}.$$

Autrement dit, plus une matrice est mal conditionnée, plus elle est proche d'être singulière donc difficile à inverser numériquement, et réciproquement.

(3) (Application : estimation du conditionnement) On note pour $\varepsilon > 0$ suffisamment petit

$$A_{\varepsilon} = \begin{pmatrix} 1 & 1 \\ 1 & 1 + \varepsilon \end{pmatrix}.$$

- (a) Résoudre le système $A_{\varepsilon}x=b$ pour $b=\begin{pmatrix}2\\2\end{pmatrix}$ puis pour $b=\begin{pmatrix}2\\2+\varepsilon\end{pmatrix}$
- (b) Donner à l'aide de la question (1) un minorant de $\operatorname{cond}_1(A_{\varepsilon})$ et comparer à sa valeur exacte.