FEUILLE D'EXERCICES 5 : ESPACES HERMITIENS

Exercice 1. Dans chacun des cas suivants, dire si $\langle \cdot, \cdot \rangle$ est un produit scalaire hermitien sur l'espace vectoriel complexe E. Si c'est le cas, préciser la norme associée.

(1) dans $E = \mathbb{C}_n[X]$ $(n \in \mathbb{N}^*)$, pour tous $P, Q \in E$,

(a)
$$\langle P, Q \rangle = \int_0^1 P(x)Q(x) dx$$

(c)
$$\langle P, Q \rangle = \sum_{k=0}^{n} P(k)Q(k)$$

(b)
$$\langle P, Q \rangle = \int_0^1 \overline{P(x)} Q(x) dx$$

(d)
$$\langle P, Q \rangle = \sum_{k=0}^{n} \overline{P(k)} Q(k)$$

(2) dans $E = M_n(\mathbb{C})$ $(n \in \mathbb{N}^*)$, pour tous $A, B \in E$,

(a)
$$\langle A, B \rangle = \operatorname{tr}(A^t B)$$

(b)
$$\langle A, B \rangle = \operatorname{tr}(A^*B)$$

Exercice 2. On munit \mathbb{C}^3 de son produit scalaire hermitien canonique. On note

$$F = \{x = (x_1, x_2, x_3) \in \mathbb{C}^3 \mid x_1 - x_2 + ix_3 = 0\}$$

- (1) Montrer que F est un sous-espace vectoriel de \mathbb{C}^3 et déterminer sa dimension.
- (2) Calculer une base orthonormale de F.
- (3) Déterminer l'orthogonal de F.
- (4) On note $p_F : \mathbb{C}^3 \to \mathbb{C}^3$ la projection orthogonale sur F. Déterminer la matrice de p_F dans la base canonique.

Exercice 3. Sur $E = \mathbb{C}_n[X]$ $(n \in \mathbb{N}^*)$, on définit pour tous $P, Q \in E$,

$$\langle P, Q \rangle = \frac{1}{2\pi} \int_0^{2\pi} \overline{P(e^{it})} Q(e^{it}) dt$$

- (1) Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire hermitien sur E.
- (2) Montrer que la base $(1, X, \dots, X^n)$ est orthonormée pour $\langle \cdot, \cdot \rangle$.
- (3) Pour $P = \sum_{k=0}^{n} a_k X^k \in E$, exprimer ||P|| en fonction des coefficients (a_0, \dots, a_n) .

Exercice 4. On considère l'application $q: \mathbb{C}^3 \to \mathbb{C}$ définie dans la base canonique de \mathbb{C}^3 par : pour tout $x = (x_1, x_2, x_3) \in \mathbb{C}^3$,

$$q(x) = |x_1|^2 + 5|x_2|^2 + 3|x_3|^2 + ix_1\overline{x_2} - i\overline{x_1}x_2 + x_1\overline{x_3} + \overline{x_1}x_3 - 3ix_2\overline{x_3} + 3i\overline{x_2}x_3$$

- (1) Montrer qu'il existe une forme hermitienne (c'est-à-dire une forme sesquilinéaire à symétrie hermitienne) $f: \mathbb{C}^3 \times \mathbb{C}^3 \to \mathbb{C}$ telle que pour tout $x \in \mathbb{C}^3$, f(x,x) = q(x).
- (2) Calculer la matrice de f dans la base canonique de \mathbb{C}^3 .
- (3) Montrer que q est définie positive en utilisant la méthode de Gauss.
- (4) Déterminer une base de \mathbb{C}^3 orthonormée pour f.

Exercice 5. Soit E un espace hermitien de dimension $n \ge 1$ muni d'un produit scalaire hermitien $\langle \cdot, \cdot \rangle$ et de la norme associée $\| \cdot \|$. On note $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormale de E. Soit $f \in \mathcal{L}(E)$. On suppose que pour tout $x \in E$, $\langle f(x), x \rangle = 0$.

- (1) Montrer que pour tous $x, y \in E$, $\langle f(x), y \rangle = 0$. Indication. On pourra développer $\langle f(x+y), x+y \rangle$ et $\langle f(x+iy), x+iy \rangle$.
- (2) Que peut-on en déduire sur f?
- (3) Le résultat est-il encore valide dans le cas d'un espace euclidien?

Exercice 6. Soit $n \in \mathbb{N}^*$. On note $H = \{M \in \mathcal{M}_n(\mathbb{C}) \mid M^* = M\}$ l'ensemble des matrices hermitiennes de taille n.

- (1) Dans cette question, on considère $\mathcal{M}_n(\mathbb{C})$ comme un \mathbb{C} -espace vectoriel. L'ensemble H est-il un sous-espace vectoriel complexe de $\mathcal{M}_n(\mathbb{C})$?
- (2) Dans cette question, on considère $\mathcal{M}_n(\mathbb{C})$ comme un \mathbb{R} -espace vectoriel.
 - (a) Quelle est la dimension de $\mathcal{M}_n(\mathbb{C})$?
 - (b) Montrer que H est un sous-espace vectoriel réel de $\mathcal{M}_n(\mathbb{C})$. Quelle est sa dimension?
 - (c) On note $A = \{M \in \mathcal{M}_n(\mathbb{C}) \mid M^* = -M\}$ l'ensemble des matrices antihermitiennes de taille n. Montrer que $\mathcal{M}_n(\mathbb{C}) = H \oplus A$.

Exercice 7. Soit E un espace hermitien de dimension $n \ge 1$ muni d'un produit scalaire hermitien $\langle \cdot, \cdot \rangle$. Soit $f \in \mathcal{L}(E)$, et $\lambda \in \mathbb{C}$ une valeur propre de f.

- (1) On suppose que $f^* = f^{-1}$. Montrer que $|\lambda| = 1$.
- (2) On suppose que $f^* = f$. Montrer que $\lambda \in \mathbb{R}$.
- (3) On suppose que $f^* = -f$. Montrer que $\lambda \in i\mathbb{R}$.

Exercice 8. Soit E un espace hermitien de dimension $n \ge 1$ muni d'un produit scalaire hermitien $\langle \cdot, \cdot \rangle$. Soit $u \in \mathcal{L}(E)$.

- (1) Montrer que $(\operatorname{Im} u)^{\perp} = \operatorname{Ker}(u^*)$.
- (2) On suppose de plus que u est un endomorphisme normal. Montrer que $(\operatorname{Im} u)^{\perp} = \operatorname{Ker}(u)$.

Exercice 9. Soit $A \in \mathcal{M}_n(\mathbb{R})$ avec $n \geq 1$ une matrice antisymétrique.

- (1) Montrer que B = iA est hermitienne; en déduire que toutes les valeurs propres de A sont imaginaires pures.
- (2) Montrer que le rang de A est pair.

Exercice 10 (Racine carrée et décomposition polaire).

On considère \mathbb{C}^n muni du produit scalaire hermitien canonique.

- (1) Racine carrée. Soit A ∈ M_n(C) une matrice hermitienne et définie positive, c'est-à-dire que pour tout x ∈ Cⁿ non nul, ⟨x, Ax⟩ > 0. Montrer qu'il existe une unique matrice hermitienne et définie positive H telle que A = H². On dit que H est la racine carrée positive de A.
- (2) Décomposition polaire. Soit $M \in GL_n(\mathbb{C})$ une matrice inversible.
 - (a) Justifier que M^*M est hermitien et défini positif. On note H sa racine carrée positive.
 - (b) On pose $U = MH^{-1}$. Montrer que U est une matrice unitaire.
 - (c) En déduire que M s'écrit de manière unique sous la forme

M = HU avec U unitaire et H hermitienne définie positive

(3) Énoncer et démontrer un résultat de décomposition polaire pour les matrices à coefficients réels.