FEUILLE D'EXERCICES 4 : ESPACES EUCLIDIENS

Exercice 1. Dans chacun des cas suivants, dire si $\langle \cdot, \cdot \rangle$ est un produit scalaire sur l'espace vectoriel réel E. Si c'est le cas, préciser la norme associée et écrire l'inégalité de Cauchy-Schwarz.

(1) dans $E = \mathbb{R}_n[X]$ $(n \in \mathbb{N}^*)$, pour tout $P, Q \in E$,

(a)
$$\langle P, Q \rangle = \int_0^1 P(x)Q(x) dx$$
 (d) $\langle P, Q \rangle = \int_{\mathbb{R}} P(x)Q(x) e^{-x^2} dx$

(b)
$$\langle P, Q \rangle = \int_0^1 P'(x)Q'(x) dx$$
 (e) $\langle P, Q \rangle = \sum_{k=1}^n P(k)Q(k)$

(c)
$$\langle P, Q \rangle = P(0)Q(0) + \int_0^1 P'(x)Q'(x) dx$$
 (f) $\langle P, Q \rangle = \sum_{k=0}^n P(k)Q(k)$

(2) dans $E = M_n(\mathbb{R})$ $(n \in \mathbb{N}^* \text{ avec } n \geq 2)$, pour tout $A, B \in E$,

(a)
$$\langle A, B \rangle = \operatorname{tr}(A^t B)$$
 (b) $\langle A, B \rangle = \det(A^t B)$

Exercice 2. Soit E un espace euclidien, A et B deux parties de E, F et G deux sous-espaces vectoriels de E. Montrer les propriétés suivantes :

$$(1) \ A \subset B \Rightarrow B^{\perp} \subset A^{\perp} \\ (2) \ (A \cup B)^{\perp} = A^{\perp} \cap B^{\perp} \\ (4) \ F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$$

$$(2) (A \cup B)^{\perp} = A^{\perp} \cap B^{\perp} \qquad (4) F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$$

Exercice 3. Soit E un espace euclidien de dimension $n \ge 1$ muni d'un produit scalaire $\langle \cdot, \cdot \rangle$ et de la norme associée $\|\cdot\|$. On note $\mathcal{B}=(e_1,\ldots,e_n)$ une base orthonormée de E. Soit $f \in \mathcal{L}(E)$. On suppose que f est injectif et préserve l'orthogonalité : pour tout $x, y \in E$, si $\langle x, y \rangle = 0$ alors $\langle f(x), f(y) \rangle = 0$.

- (1) Montrer que pour tout $i \neq j$, $\langle f(e_i) + f(e_j), f(e_i) f(e_j) \rangle = 0$.
- (2) En déduire que pour tout $i \neq j$, $||f(e_i)|| = ||f(e_j)||$. On note λ cette valeur commune. Justifier que λ est non nul.
- (3) Montrer que pour tout $x \in E$, $||f(x)|| = \lambda ||x||$. On dit que f est une similitude.

Exercice 4.

On munit $\mathbb{R}_2[X]$ du produit scalaire suivant : pour tous $P, Q \in \mathbb{R}_2[X]$, $\langle P, Q \rangle = \int_{-1}^1 P(x)Q(x) dx$. À partir de la base canonique de $\mathbb{R}_2[X]$ et en utilisant le procédé d'orthonormalisation de Gram-Schmidt, déterminer une base orthonormée de $\mathbb{R}_2[X]$ pour ce produit scalaire.

2

Exercice 5.

- (1) Soit E un espace euclidien muni d'un produit scalaire $\langle \cdot, \cdot \rangle$. Soit $p \in \mathcal{L}(E)$ un projecteur. Montrer que p est un projecteur orthogonal si, et seulement si, p est symétrique.
- (2) Un exemple. Montrer que la matrice $A = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}$ est la matrice d'un projecteur orthogonal p dans la base canonique de \mathbb{R}^3 . Préciser le noyau et l'image de p.

Exercice 6. Soit $A \in \mathcal{M}_n(\mathbb{R})$ $(n \in \mathbb{N}^*)$. On munit \mathbb{R}^n de son produit scalaire canonique.

- (1) Montrer que $(\operatorname{Ker} A)^{\perp} = \operatorname{Im}(A^t)$ et $(\operatorname{Im} A)^{\perp} = \operatorname{Ker}(A^t)$.
- (2) Montrer que A et A^t ont même rang.
- (3) Montrer que $Ker(A^tA) = Ker A$.
- (4) Montrer que $\operatorname{Im}(A^t A) = \operatorname{Im}(A^t)$.

Exercice 7. On munit \mathbb{R}^4 du produit scalaire canonique et de la norme associée. On considère le sous-espace vectoriel

$$G = \{x \in \mathbb{R}^4 \mid x_1 + x_2 = 0 \text{ et } x_3 + x_4 = 0\}$$

- (1) Déterminer la dimension et une base orthonormée de ${\cal G}.$
- (2) Pour tout $x \in \mathbb{R}^4$, donner une expression explicite de la distance de x à G, définie par

$$d(x,G) = \inf\{\|x - y\|, y \in G\}.$$

Exercice 8. On considère l'espace vectoriel $E = \mathcal{M}_2(\mathbb{R})$ muni du produit scalaire $(M, N) \in E^2 \mapsto \langle M, N \rangle = \operatorname{tr}(M^t N)$. On considère le sous-espace vectoriel

$$F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \; ; \; a, b \in \mathbb{R} \right\}.$$

- (1) Déterminer une base orthonormée de F.
- (2) Calculer le projeté orthogonal de $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur F^{\perp} .

Exercice 9. On veut calculer la quantité suivante, en s'assurant d'abord qu'elle est bien définie :

$$\delta = \inf_{a,b \in \mathbb{R}} \int_0^1 (x^2 - ax - b)^2 dx.$$

- (1) Déterminer un espace euclidien $(E, \langle \cdot, \cdot \rangle)$, un sous-espace vectoriel F et un élément u de E tels que $\delta = d(u, F)^2$ où $d(u, F) = \inf\{\|u v\|, v \in F\}$.
- (2) Calculer δ .

Exercice 10. Soit $n \in \mathbb{N}^*$.

(1) Montrer qu'il existe un unique $H_n \in \mathbb{R}_n[X]$ tel que pour tout $P \in \mathbb{R}_n[X]$,

$$\int_{0}^{1} H_{n}(x)P(x) \, dx = P'(1)$$

(2) Calculer H_2 .

Exercice 11. Soit E un espace euclidien de dimension n muni d'un produit scalaire $\langle \cdot, \cdot \rangle$. Soit u_1, \ldots, u_p des endomorphismes symétriques de E tels que

- $\operatorname{rg} u_1 + \ldots + \operatorname{rg} u_p = n$
- pour tout $x \in E$, $\langle u_1(x), x \rangle + \ldots + \langle u_p(x), x \rangle = \langle x, x \rangle$.
- (1) Montrer que $E = \operatorname{Im} u_1 \oplus \ldots \oplus \operatorname{Im} u_p$.
- (2) Montrer que, pour tout k = 1, ..., p, u_k est un projecteur orthogonal.
- (3) Montre que les $\operatorname{Im} u_k$ sont deux à deux orthogonaux.

Exercice 12. Soit E un espace euclidien muni d'un produit scalaire $\langle \cdot, \cdot \rangle$ et de la norme associée $\|\cdot\|$. Soit $p \in \mathcal{L}(E)$ un projecteur.

- (1) Montrer que p est un projecteur orthogonal si, et seulement si, pour tout $x \in E$, $||p(x)|| \le ||x||$.
- (2) Si p n'est pas un projecteur orthogonal, construire un $x_0 \in E$ tel que $||p(x_0)|| > ||x_0||$.

Exercice 13. On munit \mathbb{R}^n du produit scalaire canonique et de la norme euclidienne associée. On note $S = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$. Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on définit la fonction suivante :

$$f_A \colon \mathbb{R}^n \to \mathbb{R}, \ x \mapsto \langle Ax, x \rangle$$

- (1) (a) On note $S_n(\mathbb{R})$ le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices symétriques et $\mathcal{A}_n(\mathbb{R})$ le sous-espace vectoriel constitué des matrices antisymétriques. Montrer que $\mathcal{M}_n(\mathbb{R}) = S_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$ et écrire la décomposition correspondante de toute matrice $A \in \mathcal{M}_n(\mathbb{R})$.
 - (b) Soit $A \in \mathcal{M}_n(\mathbb{R})$, on note S_A sa partie symétrique. Montrer que $f_A = f_{S_A}$.
- (2) Dans la suite de l'exercice, on fixe A une matrice symétrique.
 - (a) Montrer que f_A est bornée sur S et atteint ses bornes sur S.
 - (b) On note λ_{min} et λ_{max} la plus petite et la plus grande valeur propre de A. Montrer que

$$\lambda_{min} = \min_{x \in S} f_A(x)$$
 et $\lambda_{max} = \max_{x \in S} f_A(x)$

- (3) Dans cette question, on suppose de plus que A est définie positive, c'est-à-dire que pour tout $x \in \mathbb{R}^n$ non nul, $\langle Ax, x \rangle > 0$.
 - (a) Montrer que $\lim_{\|x\|\to+\infty} f_A(x) = +\infty$.
 - (b) On note $\Sigma_A = \{x \in \mathbb{R}^n \mid f_A(x) = 1\}$. Montrer que Σ_A est non vide, fermé et borné dans $(\mathbb{R}^n, \|\cdot\|)$.
- (4) Une application. On définit $h: \mathbb{R}^n \to \mathbb{R}, \ x \mapsto x_1x_2 + x_2x_3 + \ldots + x_nx_1$ et on note $V = \{x \in \mathbb{R}^n \mid ||x|| = 1 \text{ et } x_1 + \ldots + x_n = 0\}.$
 - (a) Soit M la matrice dont les coefficients $(1,2), (2,3), \ldots, (n-1,n), (n,1)$ valent 1 et les autres valent 0. Montrer que $h = f_M$, que $M^n = I_n$ et que $M^t = M^{n-1} = M^{-1}$.
 - (b) Montrer que M est diagonalisable sur \mathbb{C} et calculer ses valeurs propres. On note (v_1, \ldots, v_n) une base (dans \mathbb{C}^n) de vecteurs propres de M.
 - (c) Montrer que pour tout k = 1, ..., n, le vecteur de \mathbb{R}^n obtenu en prenant la partie réelle de v_k est un vecteur propre de $\frac{M+M^t}{2}$, et donner la valeur propre associée.
 - (d) Montrer que h est majorée sur V, qu'elle atteint son maximum sur V et calculer ce maximum.