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Introduction
Ce cours de Mathématiques 3 est destiné aux étudiants de niveau licence 2
de la filière PCSI (Physique-Chimie et Sciences de l’ingénieur).
Trois chapitres sont développés dans ce cours

Algèbre linéaire ( Espaces vectoriels, Applications linéaires, Matrices,
Déterminants, Systèmes linéaires, Réduction des endomorphismes,
Espace vectoriel muni d’un produit scalaire : Diagonalisation des
matrices symétriques et hermitiennes),
Suites et Séries numériques et de fonctions : Suites et séries
numériques, Séries entières.
Séries entières – Équations différentielles.

Les notions seront présentées dans un esprit pratique sans développement
théorique.

L’UE compte pour 6 crédits. Un contrôle partiel (45% de la note) et
un contrôle terminal (55% de la note) sont prévus.
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Page de l’UE

https://licence-math.univ-lyon1.fr/doku.php?id=a25:
s3_maths3:page

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 3 / 51

https://licence-math.univ-lyon1.fr/doku.php?id=a25:s3_maths3:page 
https://licence-math.univ-lyon1.fr/doku.php?id=a25:s3_maths3:page 


Espaces vectoriels

Dans la suite, K désigne le corps des nombres réels ou le corps des
nombres complexes. Les éléments de K sont appelés des scalaires.

Espace vectoriel
Un espace vectoriel est un ensemble d’éléments, appelés vecteurs, qu’on
peut additionner et multiplier par des scalaires.

Pour que ceci ait un sens, l’addition et la multiplication par des scalaires
doivent satisfaire certaines propriétés.
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Définition 1
Soit E un ensemble non vide muni d’une loi de composition interne,
autrement dit d’une application

E × E → E
(~u, ~v) 7→ ~u + ~v

et d’une loi de composition externe, autrement dit d’une application

K× E → E
(λ,~u) 7→ λ · ~u
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On dit que E , muni de ces opérations, est un K-espace vectoriel si :
(1) (E ,+) est un groupe commutatif, autrement dit :

commutativité : ~u + ~v = ~v + ~u ; (pour tous ~u, ~v ∈ E ) ;
associativité : ~u + (~v + ~w) = (~u + ~v) + ~w (pour tous ~u, ~v , ~w ∈ E ) ;
il existe un élément ~0E ∈ E , appelé élément neutre, tel que
~0E + ~u = ~u +~0E = ~u (pour tout ~u ∈ E ) ;
pour tout ~u ∈ E , il existe ~u∗ ∈ E vérifiant ~u + ~u∗ = ~0E ; l’élément ~u∗
est appelé le symétrique ou l’opposé de u et est noté −~u.

(2) Pour tous ~u, ~v ∈ E , pour tous λ, µ ∈ K :
λ · (~u + ~v) = λ · ~u + λ · ~v ;
(λ+ µ) · ~u = λ · ~u + µ · ~u ;
λ · (µ · ~u) = (λµ) · ~u ;
1 · ~u = ~u.
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On appelle :
Addition la loi de composition interne

E × E → E
(~u, ~v) 7→ ~u + ~v

et multiplication par des scalaires la loi de composition externe

K× E → E
(λ,~u) 7→ λ · ~u

Vecteurs les éléments de E ;
Scalaires les éléments de K ;
Vecteur nul le vecteur ~0E .

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 7 / 51



Exemple 1
Sur R2, on définit l’addition par(

x
y

)
+
(

x ′
y ′

)
=
(

x + x ′
y + y ′

)

et la multiplication par des scalaires λ ∈ R par

λ

(
x
y

)
=
(
λx
λy

)
.

Alors R2, muni de ces deux opérations, est un R-espace vectoriel.
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Exemple 2
Plus généralement, sur Rn, on définit l’addition par

x1
x2
...

xn

+


y1
y2
...

yn

 =


x1 + y1
x2 + y2

...
xn + yn


et la multiplication par des scalaires λ ∈ R par

λ


x1
x2
...

xn

 =


λx1
λx2
...
λxn

 .

Alors Rn, muni de ces deux opérations, est un R-espace vectoriel.
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De même, sur Cn, on définit l’addition par
x1
x2
...

xn

+


y1
y2
...

yn

 =


x1 + y1
x2 + y2

...
xn + yn


et la multiplication par des scalaires λ ∈ C par

λ


x1
x2
...

xn

 =


λx1
λx2
...
λxn

 .

Alors Cn, muni de ces deux opérations, est un C-espace vectoriel.
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Exemple 3
Soit E = Rn[X ] l’ensemble des polynômes de degré inférieur ou égal à n à
coefficients réels. On munit Rn[X ] de l’addition des polynômes

Rn[X ]× Rn[X ] → Rn[X ]
(P,Q) 7→ P + Q où (P + Q)(X ) = P(X ) + Q(X )

et de la multiplication par des scalaires λ ∈ R

R× Rn[X ] → Rn[X ]
(λ,P) 7→ λP où (λP)(X ) = λP(X ).

Alors Rn[X ] est un R-espace vectoriel.
Son vecteur nul est le polynôme nul.

De même, l’ensemble Cn[X ] des polynômes de degré inférieur ou égal à n
à coefficients complexes est un C-espace vectoriel.
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Propriétés (Règles de calcul)
Soit E un K-espace vectoriel. Pour tous ~u, ~v ∈ E et pour tous λ, µ ∈ K, on
a :

λ · ~u = ~0E ⇔ (λ = 0 ou ~u = ~0E ) ;
λ · (~u − ~v) = λ · ~u − λ · ~v ;
(λ− µ) · ~u = λ · ~u − µ · ~u ;
(−λ) · (−~u) = λ · ~u.

Propriété Importante
λ · ~u = ~0E si et seulement si λ = 0 ou ~u = ~0E
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Sous-espaces vectoriels

Soit E un K-espace vectoriel et soit F ⊆ E .
On peut se poser la question de savoir quand est-ce que F , quand il est
muni par l’addition de E et la multiplication par des scalaires, est
lui-même un espace vectoriel.
Il s’avère qu’il suffit que F soit stable par l’addition et la multiplication par
les scalaires.
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Définition 2
Soit E un K-espace vectoriel et F un sous-ensemble non vide de E . On dit
que F est un sous-espace vectoriel de E si

pour tous ~u, ~v ∈ F , ~u + ~v ∈ F ;
pour tout ~u ∈ F et pour tout λ ∈ K, λ~u ∈ F .

Dans ce cas F , muni de l’addition et de la multiplication par des scalaires,

F × F → F
(~u, ~v) 7→ ~u + ~v

K× F → F
(λ,~u) 7→ λ~u

est lui-même un K-espace vectoriel.

Abréviation
Sous-espace vectoriel= s.e.v
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Proposition 1
Soit E un K-espace vectoriel et F un sous-ensemble de E . Alors F est un
sous-espace vectoriel de E si et seulement si ces deux propriétés sont
satisfaites

~0 ∈ F ;
pour tous ~u, ~v ∈ F et pour tout λ ∈ K, λ~u + ~v ∈ F .

Preuve
Supposons que F soit un s.e.v de E . Alors comme F n’est pas vide, il
contient un vecteur ~u. Alors −~u ∈ F et ~u − ~u = ~0 ∈ F .
Pour la seconde propriété, soient ~u, ~v ∈ F et λ ∈ K. Alors λ~u ∈ F et donc
λ~u + ~v ∈ F .
Exercice : montrer l’implication réciproque.

Exemples immédiats : E et {~0} sont des s.e.v de E .
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Exemple 1
Dans R2, toute droite passant par l’origine est un s.e.v. En effet toute
droite passant par l’origine a comme équation ax + by = 0 où a, b ∈ R et
on vérifie aisement qu’il s’agit bien d’un s.e.v (exercice).
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Exemple 2
Dans R3, tout plan passant par l’origine est un s.e.v. Un plan P passant
par l’origine est donné par une équation de la forme

ax + by + cz = 0 où a, b, c ∈ R.

Vérifions que P est un s.e.v de R3. Comme P passe par l’origine, on a

~0 ∈ P. Soient ~u =

 x
y
z

 ∈ P, ~v =

 x ′
y ′
z ′

 ∈ P et λ ∈ R. On doit

montrer que λ~u + ~v ∈ P. On a

λ~u + ~v =

 λx + x ′
λy + y ′
λz + z ′

 et ax + by + cz = 0, ax ′ + by ′ + cz ′ = 0.

D’où a(λx + x ′) + b(λy + y ′) + c(λz + z ′) = 0. Donc λ~u + ~v ∈ P.
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Exercice
Soit F(R) l’ensemble des applications de R à valeurs dans R. On définit
l’addition et la multiplication par les scalaires par
(f + g)(x) = f (x) + g(x); (λf )(x) = λf (x).

1 Vérifier que F(R) est un R-espace vectoriel.

Soit C1(R) le sous-ensemble de F(R) des applications de classe C1

C1(R) = {f ∈ F(R) | f est dérivable et f ′ est continue}.

2 Montrer que C1(R) est un s.e.v de F(R).
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Notation
Soit E un K-espace vectoriel et (Fi)i∈I une famille de s.e.v de E . Alors
l’intersection

⋂
i∈I Fi est définie par⋂
i∈I

Fi = {x ∈ E | x ∈ Fi , pour tout i ∈ I}.

Par exemple, si F1,F2, . . . ,Fn sont des sous-ensembles de E , alors leur
intersection F1 ∩ F2 ∩ · · · ∩ Fn est l’ensemble des éléments x ∈ E tel que
x ∈ Fk pour tout k ∈ {1, . . . , n}.
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Proposition 2
Soit E un K-espace vectoriel et (Fi)i∈I une famille de s.e.v de E . Alors
l’intersection

F =
⋂
i∈I

Fi = {x ∈ E | x ∈ Fi , pour tout i ∈ I}

est un s.e.v de E .

Preuve
(Pour tout i ∈ I, ~0 ∈ Fi) =⇒ ~0 ∈

⋂
i∈I Fi ;

Soient ~u, ~v ∈ F et λ ∈ K. Alors pour tout i ∈ I, λ~u + ~v ∈ Fi . Donc
λ~u + ~v ∈ F .
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Corollaire 1
Si F et G sont des s.e.v, alors leur intersection F ∩ G est un s.e.v.
Si F1,F2, . . . ,Fn sont des s.e.v, alors leur intersection
F1 ∩ F2 ∩ · · · ∩ Fn est un s.e.v.
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Exemple
Soient P1 et P2 deux plans de R3 passants par l’origine. Alors leur
intersection P1 ∩ P2, qui est une droite, est un s.e.v de R3.
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Définition 3
Soient U et V deux s.e.v du K-e.v E .

On appelle somme de U et V l’ensemble défini par

U + V = {~u + ~v | ~u ∈ U, ~v ∈ V }.

On dit que la somme U + V est directe si U ∩ V = {~0}.
On dit du s.e.v F qu’il est la somme directe de U et V si

F = U + V ;
U ∩ V = {~0}.

On écrit F = U ⊕ V .
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Exemple
Considérons dans R2 deux vecteurs ~u, ~v non nuls et non colinéaires. Soient

U = {λ~u | λ ∈ R}, V = {λ~v | λ ∈ R}.

(U est la droite vectorielle dirigée par ~u, V est la droite vectorielle dirigée
par ~v .)
Alors U et V sont des s.e.v de R2 et R2 = U ⊕ V (exercice).
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Familles génératrices, familles libres, bases

Soient E un K-espace vectoriel et ~u, ~v deux vecteurs de E . Alors on peut
fabriquer de nouveaux vecteurs en combinant les deux vecteurs ~u, ~v

α~u + β~v

où α, β ∈ K.
Un tel nouveau vecteur est appelé une combinaison linéaire de ~u et ~v .
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Plus généralement ...

Définition 4
Soient ~u1, · · · , ~un des vecteurs d’un K-espace vectoriel E . Tout vecteur de
E de la forme

λ1~u1 + · · ·+ λn~un

où λ1, · · · , λn ∈ K, est appelé une combinaison linéaire des vecteurs
~u1, · · · , ~un.
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Exemple 1
Dans R2 le vecteur

~w =
(
−1
16

)
est bien une combinaison linéaire des deux vecteurs

~u =
(
−1
2

)
, ~v =

(
1
5

)

car ~w = 3~u + 2~v .
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Exemple 2
Dans R3, soient

~e1 =

 1
0
0

 , ~e2 =

 0
1
0

 , ~e3 =

 0
0
1

 .

Un vecteur quelconque ~u =

 x
y
z

 de R3 s’écrit

~u =

 x
0
0

+

 0
y
0

+

 0
0
z

 = x

 1
0
0

+ y

 0
1
0

+ z

 0
0
1


= x~e1 + y~e2 + z~e3.

Donc ~u est une combinaison linéaire de ~e1,~e2,~e3.
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Proposition 2
Soit E un K-e.v et A ⊆ E . Il existe un plus petit s.e.v de E contenant A. Il
est unique et on l’appelle le sous-espace vectoriel engendré par A. On le
note Vect(A).

Preuve
E est un s.e.v de E contenant A. Donc il existe des s.e.v de E qui
contiennent A. L’intersection F de ces s.e.v est un s.e.v de E contenant A.
Il est le plus petit s.e.v qui contient A. En effet, si A ⊆ H, où H est un
s.e.v de E , alors F ⊆ H.
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Proposition 3
Soit E un K-e.v et A ⊆ E , A 6= ∅. Alors Vect(A) est l’ensemble des
combinaisons linéaires des vecteurs de A, autrement dit

Vect(A) =
{ n∑

i=1
λi~ui | n ∈ N, λ1, . . . , λn ∈ K, ~u1, . . . , ~un ∈ A

}
.

Remarque
Donc un vecteur ~u ∈ E est dans Vect(A), si et seulement si, il existe
n ∈ N, il existe ~u1, . . . , ~un ∈ A et des scalaires λ1, . . . , λn ∈ K tels que
~u = λ1~u1 + · · ·+ λn~un.
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Exemple
Considérons dans R2 deux vecteurs ~u, ~v non nuls et non colinéaires. Soient

U = {λ~u | λ ∈ R}, V = {λ~v | λ ∈ R}.

Alors U = Vect({~u}) et V = Vect({~v}).

Exercice
Montrer que U + V = Vect(U ∪ V ).
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Définition 5
Soit F un s.e.v du K-e.v E et S ⊆ E .

On dit que S est une partie génératrice de F si

F = Vect(S).

On dit que S est libre, ou que les vecteurs de S sont linéairement
indépendants, si

pour tous λ1, . . . , λn ∈ K, pour tous ~u1, . . . , ~un ∈ S,

λ1~u1 + · · ·+ λ2~un = ~0⇒ λ1 = λ2 = · · · = λn = 0.

On dit que S est une base de E , si elle est génératrice et libre.
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Exemples
Dans R2, l’espace vectoriel F engendré par les deux vecteurs

~u =
(

1
2

)
, ~v =

(
2
4

)

vérifie Vect(~u, ~v) = Vect(~u, 2~u) = Vect(~u) et donc la famille {~u} est
génératrice de F .
Dans R2, la famille {~u, ~v} est libre où

~u =
(
−1
2

)
, ~v =

(
1
5

)
.

R3 = Vect(~e1,~e2,~e3).
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Théorème 1
Tout K-espace vectoriel non nul admet une base. Toutes les bases ont la
même cardinalité : si B1 et B2 sont deux bases, alors il existe une bijection
entre B1 et B2.

Définition 6
On dit d’un K-e.v E qu’il est de dimension finie s’il admet une base finie.
Le cardinal (le nombre d’éléments) d’une base est appelé la dimension de
E et est noté dim(E ).
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Exemple 1
Dans Rn, considérons la famille B = {~e1, . . . ,~en} où pour 1 ≤ i ≤ n

~ei =



0
...
1
...
0


.

Alors B est une base de Rn appelée la base canonique de Rn. On a donc
dim(Rn) = n.
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Exemple 2
Dans Rn[X ], le R-e.v des polynômes de degré inférieur ou égal à n, la
famille des polynômes

P0(X ) = 1,P1(X ) = X ,P2(X ) = X 2, . . . ,Pn(X ) = Xn

forme une base. Donc dim(Rn[X ]) = n + 1.
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Théorème de la base incomplète
Soit E un K-espace vectoriel. Soient L une partie libre et G une partie
génératrice de E . Alors on peut compléter L par des éléments de G pour
former une base de E .
Autrement dit, il existe F ⊆ G \ L tel que L ∪ F soit une base de E .

Théorème de la base incomplète(version en dimension finie)
Soit E un K-espace vectoriel de dimension finie. Soit U = {~u1, · · · , ~un} une
famille libre de E et soit G = {~g1, · · · , ~gm} une famille génératrice de E .
Alors il existe ~gi1 , · · · , ~gip de G telle que la famille {~u1, · · · , ~un, ~gi1 , · · · , ~gip}
forme une base de E .
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Proposition 4
Soit E un K-e.v de dimension finie n. Alors :

Toute famille libre de E a au plus n éléments.
Toute famille génératrice de E a au moins n éléments.
Toute famille libre peut être complétée en une base de E .
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Proposition 5
Soit B une famille de vecteurs d’un K-e.v E de dimension finie n. Les
propriétés suivantes sont équivalentes :

B est une base de E ;
B est une famille libre à n éléments ;
B est une famille génératrice à n éléments.
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Exemple récapitulatif sur la base incomplète

Exemple récapitulatif
Considérons dans R3 la famille U des deux vecteurs

~u =

 2
1
−1

 , ~v =

 3
−1
1

 .
Alors U est une famille libre. En effet, soient α, β ∈ R tels que
α~u + β~v = ~0. Alors

α~u + β~v = ~0⇔ α

 2
1
−1

+ β

 3
−1
1

 =

 0
0
0

⇔


2α+ 3β = 0
α− β = 0
−α+ β = 0

Donc α = β et 5α = 0. Par conséquent α = β = 0.
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Exemple récapitulatif sur la base incomplète

suite de l’exemple
On peut compléter la famille libre U par des éléments de la base canonique
{~e1,~e2,~e3} de R3 pour former une base de E .
On peut choisir par exemple ~e1. Vérifions si {~u, ~v ,~e1} est libre. Soient
α, β, γ ∈ R tels que α~u + β~v + γ~e1 = ~0. On obtient 2α+ 3β + γ = 0 et
α = β. Donc γ = −5α et α = β. Par conséquent la famille {~u, ~v ,~e1} n’est
pas libre.
Choisisons ~e2. Vérifions si {~u, ~v ,~e2} est libre. Soient α, β, γ ∈ R tels que
α~u + β~v + γ~e2 = ~0. On obtient 2α+ 3β = 0, α− β + γ = 0 et α = β.
Donc α = β = γ = 0, par conséquent la famille {~u, ~v ,~e2} est libre.
Comme dim(R3) = 3 et comme {~u, ~v ,~e2} est une famille libre constituée
de trois vecteurs, elle forme une base.
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Définition 7
Si B = (~e1, . . . ,~en) est une base d’un K-espace vectoriel E , alors pour tout
~u ∈ E , il existe des uniques scalaires λ1, . . . , λn ∈ K tels que

~u = λ1~u1 + · · ·+ λn~un

qui sont appelés les composantes de ~u dans la base B.
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Proposition 6 (Formule de Grassmann)
Soient F et G deux s.e.v d’un K-e.v de dimension finie. On a

dim(F + G) = dim(F ) + dim(G)− dim(F ∩ G).

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 43 / 51



Applications linéaires

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 44 / 51



Applications linéaires : Définitions, propriétés

Définition 8
Soient E et F deux K-e.v et f : E → F une application. On dit que f est
linéaire si

f (~0E ) = ~0F ;
Pour tous ~u, ~v ∈ E , pour tout λ ∈ K, f (λ~u + ~v) = λf (~u) + f (~v).
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Applications linéaires : Exemples

Exemple 1
Soit α ∈ K et f : E → E l’homothétie de rapport α

~u 7→ f (~u) = α~u.

Alors f est linéaire. En effet :
f (~0) = α ·~0 = ~0.
Soient ~u, ~v ∈ E et λ ∈ K. Alors

f (λ~u + ~v) = α(λ~u + ~v)

= λα~u + α~v

= λf (~u) + f (~v).
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Applications linéaires : Exemples

Exemple 2
Soit f : R2 → R2 définie par

f (x , y) = (x − y , x + y).

Alors f est linéaire. En effet, pour tous ~u, ~v ∈ R2, pour tout λ ∈ R, on a :

f (λ~u+~v) = f (λx+x ′, λy+y ′) =
(
(λx+x ′)−(λy+y ′), (λx+x ′)+(λy+y ′)

)
(λx − λy , λx + λy) + (x ′ − y ′, x ′ + y ′) = λf (~u) + f (~v).
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Applications linéaires : Exemples

Exemple 3
Soit E l’espace vectoriel des applications de R dans R de classe C∞.
L’application

D : E → E , D(f ) = f ′

est une application linéaire. En effet :
D(~0) = ~0.
Soient f , g ∈ E et λ ∈ R. Alors

D(λf + g) = (λf + g)′

= λf ′ + g ′

= λD(f ) + D(g).
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Applications linéaires : Exemples

Exemple 4
Une rotation R d’un angle θ autour de l’origine dans R2 est une
application linéaire. En effet, on a

pour ~u =
(

x
y

)
, R(~u) =

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

et donc

R(~u + ~v) = R(
(

x
y

)
+
(

x ′
y ′

)
) =

(
(x + x ′) cos θ − (y + y ′) sin θ
(x + x ′) sin θ + (y + y ′) cos θ

)
(

x cos θ − y sin θ
x sin θ + y cos θ

)
+
(

x ′ cos θ − y ′ sin θ
x ′ sin θ + y ′ cos θ

)
= R(~u) + R(~v).

De même on a R(λ~u) = λR(~u).
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Applications linéaires

Proposition 7
Soient E et F deux K-e.v. Alors l’ensemble des applications linéaires de E
dans F , noté L(E ,F ), munit des opérations

(f , g) 7→ (f + g)(x) = f (x) + g(x); (λ, f ) 7→ (λf )(x) = λf (x)

est un K-e.v.
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Applications linéaires

Définition 9
Une application linéaire de E dans E est appelé un endomporphisme.
Le K-e.v L(E ,E ) est noté L(E ).
Une application linéaire bijective est appelée un isomorphisme.
Un endomorphisme bijective est appelé un automorphisme.
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