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Introduction
Ce cours de Mathématiques 3 est destiné aux étudiants de niveau licence 2
de la filière PCSI (Physique-Chimie et Sciences de l’ingénieur).
Trois chapitres sont développés dans ce cours

Algèbre linéaire ( Espaces vectoriels, Applications linéaires, Matrices,
Déterminants, Systèmes linéaires, Réduction des endomorphismes,
Espace vectoriel muni d’un produit scalaire : Diagonalisation des
matrices symétriques et hermitiennes),
Suites et Séries numériques et de fonctions : Suites et séries
numériques, Séries entières.
Séries entières – Équations différentielles.

Les notions seront présentées dans un esprit pratique sans développement
théorique.

L’UE compte pour 6 crédits. Un contrôle partiel (45% de la note) et
un contrôle terminal (55% de la note) sont prévus.
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Page de l’UE

https://licence-math.univ-lyon1.fr/doku.php?id=a25:
s3_maths3:page
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Espaces vectoriels

Dans la suite, K désigne le corps des nombres réels ou le corps des
nombres complexes. Les éléments de K sont appelés des scalaires.

Espace vectoriel
Un espace vectoriel est un ensemble d’éléments, appelés vecteurs, qu’on
peut additionner et multiplier par des scalaires.

Pour que ceci ait un sens, l’addition et la multiplication par des scalaires
doivent satisfaire certaines propriétés.
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Définition 1
Soit E un ensemble non vide muni d’une loi de composition interne,
autrement dit d’une application

E × E → E
(~u, ~v) 7→ ~u + ~v

et d’une loi de composition externe, autrement dit d’une application

K× E → E
(λ,~u) 7→ λ · ~u
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On dit que E , muni de ces opérations, est un K-espace vectoriel si :
(1) (E ,+) est un groupe commutatif, autrement dit :

commutativité : ~u + ~v = ~v + ~u ; (pour tous ~u, ~v ∈ E ) ;
associativité : ~u + (~v + ~w) = (~u + ~v) + ~w (pour tous ~u, ~v , ~w ∈ E ) ;
il existe un élément ~0E ∈ E , appelé élément neutre, tel que
~0E + ~u = ~u +~0E = ~u (pour tout ~u ∈ E ) ;
pour tout ~u ∈ E , il existe ~u∗ ∈ E vérifiant ~u + ~u∗ = ~0E ; l’élément ~u∗
est appelé le symétrique ou l’opposé de u et est noté −~u.

(2) Pour tous ~u, ~v ∈ E , pour tous λ, µ ∈ K :
λ · (~u + ~v) = λ · ~u + λ · ~v ;
(λ+ µ) · ~u = λ · ~u + µ · ~u ;
λ · (µ · ~u) = (λµ) · ~u ;
1 · ~u = ~u.
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On appelle :
Addition la loi de composition interne

E × E → E
(~u, ~v) 7→ ~u + ~v

et multiplication par des scalaires la loi de composition externe

K× E → E
(λ,~u) 7→ λ · ~u

Vecteurs les éléments de E ;
Scalaires les éléments de K ;
Vecteur nul le vecteur ~0E .
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Exemple 1
Sur R2, on définit l’addition par(

x
y

)
+
(

x ′
y ′

)
=
(

x + x ′
y + y ′

)

et la multiplication par des scalaires λ ∈ R par

λ

(
x
y

)
=
(
λx
λy

)
.

Alors R2, muni de ces deux opérations, est un R-espace vectoriel.
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Exemple 2
Plus généralement, sur Rn, on définit l’addition par

x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn


et la multiplication par des scalaires λ ∈ R par

λ


x1
x2
...
xn

 =


λx1
λx2
...
λxn

 .

Alors Rn, muni de ces deux opérations, est un R-espace vectoriel.
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De même, sur Cn, on définit l’addition par
x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn


et la multiplication par des scalaires λ ∈ C par

λ


x1
x2
...
xn

 =


λx1
λx2
...
λxn

 .

Alors Cn, muni de ces deux opérations, est un C-espace vectoriel.
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Exemple 3
Soit E = Rn[X ] l’ensemble des polynômes de degré inférieur ou égal à n à
coefficients réels. On munit Rn[X ] de l’addition des polynômes

Rn[X ]× Rn[X ] → Rn[X ]
(P,Q) 7→ P + Q où (P + Q)(X ) = P(X ) + Q(X )

et de la multiplication par des scalaires λ ∈ R

R× Rn[X ] → Rn[X ]
(λ,P) 7→ λP où (λP)(X ) = λP(X ).

Alors Rn[X ] est un R-espace vectoriel.
Son vecteur nul est le polynôme nul.

De même, l’ensemble Cn[X ] des polynômes de degré inférieur ou égal à n
à coefficients complexes est un C-espace vectoriel.
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Propriétés (Règles de calcul)
Soit E un K-espace vectoriel. Pour tous ~u, ~v ∈ E et pour tous λ, µ ∈ K, on
a :

λ · ~u = ~0E ⇔ (λ = 0 ou ~u = ~0E ) ;
λ · (~u − ~v) = λ · ~u − λ · ~v ;
(λ− µ) · ~u = λ · ~u − µ · ~u ;
(−λ) · (−~u) = λ · ~u.

Propriété Importante
λ · ~u = ~0E si et seulement si λ = 0 ou ~u = ~0E
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Sous-espaces vectoriels

Soit E un K-espace vectoriel et soit F ⊆ E .
On peut se poser la question de savoir quand est-ce que F , quand il est
muni par l’addition de E et la multiplication par des scalaires, est
lui-même un espace vectoriel.
Il s’avère qu’il suffit que F soit stable par l’addition et la multiplication par
les scalaires.
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Définition 2
Soit E un K-espace vectoriel et F un sous-ensemble non vide de E . On dit
que F est un sous-espace vectoriel de E si

pour tous ~u, ~v ∈ F , ~u + ~v ∈ F ;
pour tout ~u ∈ F et pour tout λ ∈ K, λ~u ∈ F .

Dans ce cas F , muni de l’addition et de la multiplication par des scalaires,

F × F → F
(~u, ~v) 7→ ~u + ~v

K× F → F
(λ,~u) 7→ λ~u

est lui-même un K-espace vectoriel.

Abréviation
Sous-espace vectoriel= s.e.v
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Proposition 1
Soit E un K-espace vectoriel et F un sous-ensemble de E . Alors F est un
sous-espace vectoriel de E si et seulement si ces deux propriétés sont
satisfaites

~0 ∈ F ;
pour tous ~u, ~v ∈ F et pour tout λ ∈ K, λ~u + ~v ∈ F .

Preuve
Supposons que F soit un s.e.v de E . Alors comme F n’est pas vide, il
contient un vecteur ~u. Alors −~u ∈ F et ~u − ~u = ~0 ∈ F .
Pour la seconde propriété, soient ~u, ~v ∈ F et λ ∈ K. Alors λ~u ∈ F et donc
λ~u + ~v ∈ F .
Exercice : montrer l’implication réciproque.

Exemples immédiats : E et {~0} sont des s.e.v de E .
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Exemple 1
Dans R2, toute droite passant par l’origine est un s.e.v. En effet toute
droite passant par l’origine a comme équation ax + by = 0 où a, b ∈ R et
on vérifie aisement qu’il s’agit bien d’un s.e.v (exercice).
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Exemple 2
Dans R3, tout plan passant par l’origine est un s.e.v. Un plan P passant
par l’origine est donné par une équation de la forme

ax + by + cz = 0 où a, b, c ∈ R.

Vérifions que P est un s.e.v de R3. Comme P passe par l’origine, on a

~0 ∈ P. Soient ~u =

 x
y
z

 ∈ P, ~v =

 x ′
y ′
z ′

 ∈ P et λ ∈ R. On doit

montrer que λ~u + ~v ∈ P. On a

λ~u + ~v =

 λx + x ′
λy + y ′
λz + z ′

 et ax + by + cz = 0, ax ′ + by ′ + cz ′ = 0.

D’où a(λx + x ′) + b(λy + y ′) + c(λz + z ′) = 0. Donc λ~u + ~v ∈ P.
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Exercice
Soit F(R) l’ensemble des applications de R à valeurs dans R. On définit
l’addition et la multiplication par les scalaires par
(f + g)(x) = f (x) + g(x); (λf )(x) = λf (x).

1 Vérifier que F(R) est un R-espace vectoriel.

Soit C1(R) le sous-ensemble de F(R) des applications de classe C1

C1(R) = {f ∈ F(R) | f est dérivable et f ′ est continue}.

2 Montrer que C1(R) est un s.e.v de F(R).
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Notation
Soit E un K-espace vectoriel et (Fi )i∈I une famille de s.e.v de E . Alors
l’intersection

⋂
i∈I Fi est définie par⋂
i∈I

Fi = {x ∈ E | x ∈ Fi , pour tout i ∈ I}.

Par exemple, si F1,F2, . . . ,Fn sont des sous-ensembles de E , alors leur
intersection F1 ∩ F2 ∩ · · · ∩ Fn est l’ensemble des éléments x ∈ E tel que
x ∈ Fk pour tout k ∈ {1, . . . , n}.
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Proposition 2
Soit E un K-espace vectoriel et (Fi )i∈I une famille de s.e.v de E . Alors
l’intersection

F =
⋂
i∈I

Fi = {x ∈ E | x ∈ Fi , pour tout i ∈ I}

est un s.e.v de E .

Preuve
(Pour tout i ∈ I, ~0 ∈ Fi) =⇒ ~0 ∈

⋂
i∈I Fi ;

Soient ~u, ~v ∈ F et λ ∈ K. Alors pour tout i ∈ I, λ~u + ~v ∈ Fi . Donc
λ~u + ~v ∈ F .
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Corollaire 1
Si F et G sont des s.e.v, alors leur intersection F ∩ G est un s.e.v.
Si F1,F2, . . . ,Fn sont des s.e.v, alors leur intersection
F1 ∩ F2 ∩ · · · ∩ Fn est un s.e.v.
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Exemple
Soient P1 et P2 deux plans de R3 passants par l’origine. Alors leur
intersection P1 ∩ P2, qui est une droite, est un s.e.v de R3.
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Définition 3
Soient U et V deux s.e.v du K-e.v E .

On appelle somme de U et V l’ensemble défini par

U + V = {~u + ~v | ~u ∈ U, ~v ∈ V }.

On dit que la somme U + V est directe si U ∩ V = {~0}.
On dit du s.e.v F qu’il est la somme directe de U et V si

F = U + V ;
U ∩ V = {~0}.

On écrit F = U ⊕ V .
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Exemple
Considérons dans R2 deux vecteurs ~u, ~v non nuls et non colinéaires. Soient

U = {λ~u | λ ∈ R}, V = {λ~v | λ ∈ R}.

(U est la droite vectorielle dirigée par ~u, V est la droite vectorielle dirigée
par ~v .)
Alors U et V sont des s.e.v de R2 et R2 = U ⊕ V (exercice).
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Familles génératrices, familles libres, bases

Soient E un K-espace vectoriel et ~u, ~v deux vecteurs de E . Alors on peut
fabriquer de nouveaux vecteurs en combinant les deux vecteurs ~u, ~v

α~u + β~v

où α, β ∈ K.
Un tel nouveau vecteur est appelé une combinaison linéaire de ~u et ~v .
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Plus généralement ...

Définition 4
Soient ~u1, · · · , ~un des vecteurs d’un K-espace vectoriel E . Tout vecteur de
E de la forme

λ1~u1 + · · ·+ λn~un

où λ1, · · · , λn ∈ K, est appelé une combinaison linéaire des vecteurs
~u1, · · · , ~un.
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Exemple 1
Dans R2 le vecteur

~w =
(
−1
16

)
est bien une combinaison linéaire des deux vecteurs

~u =
(
−1
2

)
, ~v =

(
1
5

)

car ~w = 3~u + 2~v .
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Exemple 2
Dans R3, soient

~e1 =

 1
0
0

 , ~e2 =

 0
1
0

 , ~e3 =

 0
0
1

 .

Un vecteur quelconque ~u =

 x
y
z

 de R3 s’écrit

~u =

 x
0
0

+

 0
y
0

+

 0
0
z

 = x

 1
0
0

+ y

 0
1
0

+ z

 0
0
1


= x~e1 + y~e2 + z~e3.

Donc ~u est une combinaison linéaire de ~e1,~e2,~e3.
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Proposition 2
Soit E un K-e.v et A ⊆ E . Il existe un plus petit s.e.v de E contenant A. Il
est unique et on l’appelle le sous-espace vectoriel engendré par A. On le
note Vect(A).

Preuve
E est un s.e.v de E contenant A. Donc il existe des s.e.v de E qui
contiennent A. L’intersection F de ces s.e.v est un s.e.v de E contenant A.
Il est le plus petit s.e.v qui contient A. En effet, si A ⊆ H, où H est un
s.e.v de E , alors F ⊆ H.
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Proposition 3
Soit E un K-e.v et A ⊆ E , A 6= ∅. Alors Vect(A) est l’ensemble des
combinaisons linéaires des vecteurs de A, autrement dit

Vect(A) =
{ n∑

i=1
λi~ui | n ∈ N, λ1, . . . , λn ∈ K, ~u1, . . . , ~un ∈ A

}
.

Remarque
Donc un vecteur ~u ∈ E est dans Vect(A), si et seulement si, il existe
n ∈ N, il existe ~u1, . . . , ~un ∈ A et des scalaires λ1, . . . , λn ∈ K tels que
~u = λ1~u1 + · · ·+ λn~un.
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Exemple
Considérons dans R2 deux vecteurs ~u, ~v non nuls et non colinéaires. Soient

U = {λ~u | λ ∈ R}, V = {λ~v | λ ∈ R}.

Alors U = Vect({~u}) et V = Vect({~v}).

Exercice
Montrer que U + V = Vect(U ∪ V ).
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Définition 5
Soit F un s.e.v du K-e.v E et S ⊆ E .

On dit que S est une partie génératrice de F si

F = Vect(S).

On dit que S est libre, ou que les vecteurs de S sont linéairement
indépendants, si

pour tous λ1, . . . , λn ∈ K, pour tous ~u1, . . . , ~un ∈ S,

λ1~u1 + · · ·+ λ2~un = ~0⇒ λ1 = λ2 = · · · = λn = 0.

On dit que S est une base de E , si elle est génératrice et libre.
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Exemples
Dans R2, l’espace vectoriel F engendré par les deux vecteurs

~u =
(

1
2

)
, ~v =

(
2
4

)

vérifie Vect(~u, ~v) = Vect(~u, 2~u) = Vect(~u) et donc la famille {~u} est
génératrice de F .
Dans R2, la famille {~u, ~v} est libre où

~u =
(
−1
2

)
, ~v =

(
1
5

)
.

R3 = Vect(~e1,~e2,~e3).
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Théorème 1
Tout K-espace vectoriel non nul admet une base. Toutes les bases ont la
même cardinalité : si B1 et B2 sont deux bases, alors il existe une bijection
entre B1 et B2.

Définition 6
On dit d’un K-e.v E qu’il est de dimension finie s’il admet une base finie.
Le cardinal (le nombre d’éléments) d’une base est appelé la dimension de
E et est noté dim(E ).
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Exemple 1
Dans Rn, considérons la famille B = {~e1, . . . ,~en} où pour 1 ≤ i ≤ n

~ei =



0
...
1
...
0


.

Alors B est une base de Rn appelée la base canonique de Rn. On a donc
dim(Rn) = n.
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Exemple 2
Dans Rn[X ], le R-e.v des polynômes de degré inférieur ou égal à n, la
famille des polynômes

P0(X ) = 1,P1(X ) = X ,P2(X ) = X 2, . . . ,Pn(X ) = Xn

forme une base. Donc dim(Rn[X ]) = n + 1.
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Théorème de la base incomplète
Soit E un K-espace vectoriel. Soient L une partie libre et G une partie
génératrice de E . Alors on peut compléter L par des éléments de G pour
former une base de E .
Autrement dit, il existe F ⊆ G \ L tel que L ∪ F soit une base de E .

Théorème de la base incomplète(version en dimension finie)
Soit E un K-espace vectoriel de dimension finie. Soit U = {~u1, · · · , ~un} une
famille libre de E et soit G = {~g1, · · · , ~gm} une famille génératrice de E .
Alors il existe ~gi1 , · · · , ~gip de G telle que la famille {~u1, · · · , ~un, ~gi1 , · · · , ~gip}
forme une base de E .
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Proposition 4
Soit E un K-e.v de dimension finie n. Alors :

Toute famille libre de E a au plus n éléments.
Toute famille génératrice de E a au moins n éléments.
Toute famille libre peut être complétée en une base de E .
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Proposition 5
Soit B une famille de vecteurs d’un K-e.v E de dimension finie n. Les
propriétés suivantes sont équivalentes :

B est une base de E ;
B est une famille libre à n éléments ;
B est une famille génératrice à n éléments.
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Exemple récapitulatif sur la base incomplète

Exemple récapitulatif
Considérons dans R3 la famille U des deux vecteurs

~u =

 2
1
−1

 , ~v =

 3
−1
1

 .
Alors U est une famille libre. En effet, soient α, β ∈ R tels que
α~u + β~v = ~0. Alors

α~u + β~v = ~0⇔ α

 2
1
−1

+ β

 3
−1
1

 =

 0
0
0

⇔


2α + 3β = 0
α− β = 0
−α + β = 0

Donc α = β et 5α = 0. Par conséquent α = β = 0.
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Exemple récapitulatif sur la base incomplète

suite de l’exemple
On peut compléter la famille libre U par des éléments de la base canonique
{~e1,~e2,~e3} de R3 pour former une base de E .
On peut choisir par exemple ~e1. Vérifions si {~u, ~v ,~e1} est libre. Soient
α, β, γ ∈ R tels que α~u + β~v + γ~e1 = ~0. On obtient 2α + 3β + γ = 0 et
α = β. Donc γ = −5α et α = β. Par conséquent la famille {~u, ~v ,~e1} n’est
pas libre.
Choisisons ~e2. Vérifions si {~u, ~v ,~e2} est libre. Soient α, β, γ ∈ R tels que
α~u + β~v + γ~e2 = ~0. On obtient 2α + 3β = 0, α− β + γ = 0 et α = β.
Donc α = β = γ = 0, par conséquent la famille {~u, ~v ,~e2} est libre.
Comme dim(R3) = 3 et comme {~u, ~v ,~e2} est une famille libre constituée
de trois vecteurs, elle forme une base.
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Définition 7
Si B = (~e1, . . . ,~en) est une base d’un K-espace vectoriel E , alors pour tout
~u ∈ E , il existe des uniques scalaires λ1, . . . , λn ∈ K tels que

~u = λ1~u1 + · · ·+ λn~un

qui sont appelés les composantes de ~u dans la base B.
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Proposition 6 (Formule de Grassmann)
Soient F et G deux s.e.v d’un K-e.v de dimension finie. On a

dim(F + G) = dim(F ) + dim(G)− dim(F ∩ G).
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Applications linéaires
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Applications linéaires : Définitions, propriétés

Définition 8
Soient E et F deux K-e.v et f : E → F une application. On dit que f est
linéaire si

f (~0E ) = ~0F ;
Pour tous ~u, ~v ∈ E , pour tout λ ∈ K, f (λ~u + ~v) = λf (~u) + f (~v).
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Applications linéaires : Exemples

Exemple 1
Soit α ∈ K et f : E → E l’homothétie de rapport α

~u 7→ f (~u) = α~u.

Alors f est linéaire. En effet :
f (~0) = α ·~0 = ~0.
Soient ~u, ~v ∈ E et λ ∈ K. Alors

f (λ~u + ~v) = α(λ~u + ~v)

= λα~u + α~v

= λf (~u) + f (~v).
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Applications linéaires : Exemples

Exemple 2
Soit f : R2 → R2 définie par

f (x , y) = (x − y , x + y).

Alors f est linéaire. En effet, pour tous ~u, ~v ∈ R2, pour tout λ ∈ R, on a :

f (λ~u+~v) = f (λx+x ′, λy+y ′) =
(

(λx+x ′)−(λy+y ′), (λx+x ′)+(λy+y ′)
)

(λx − λy , λx + λy) + (x ′ − y ′, x ′ + y ′) = λf (~u) + f (~v).
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Applications linéaires : Exemples

Exemple 3
Soit E l’espace vectoriel des applications de R dans R de classe C∞.
L’application

D : E → E , D(f ) = f ′

est une application linéaire. En effet :
D(~0) = ~0.
Soient f , g ∈ E et λ ∈ R. Alors

D(λf + g) = (λf + g)′

= λf ′ + g ′

= λD(f ) + D(g).
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Applications linéaires : Exemples

Exemple 4
Une rotation R d’un angle θ autour de l’origine dans R2 est une
application linéaire. En effet, on a

pour ~u =
(

x
y

)
, R(~u) =

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

et donc

R(~u + ~v) = R(
(

x
y

)
+
(

x ′
y ′

)
) =

(
(x + x ′) cos θ − (y + y ′) sin θ
(x + x ′) sin θ + (y + y ′) cos θ

)
(

x cos θ − y sin θ
x sin θ + y cos θ

)
+
(

x ′ cos θ − y ′ sin θ
x ′ sin θ + y ′ cos θ

)
= R(~u) + R(~v).

De même on a R(λ~u) = λR(~u).
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Applications linéaires

Proposition 7
Soient E et F deux K-e.v. Alors l’ensemble des applications linéaires de E
dans F , noté L(E ,F ), munit des opérations

(f , g) 7→ (f + g)(x) = f (x) + g(x); (λ, f ) 7→ (λf )(x) = λf (x)

est un K-e.v.
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Applications linéaires

Définition 9
Une application linéaire de E dans E est appelé un endomporphisme.
Le K-e.v L(E ,E ) est noté L(E ).
Une application linéaire bijective est appelée un isomorphisme.
Un endomorphisme bijective est appelé un automorphisme.
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Applications linéaires : Image et noyau

Rappel
Soit f : E → F une application.

L’image directe par f d’une partie A ⊆ E est :

f (A) = {f (x) | x ∈ A}.

L’image réciproque d’une partie B ⊆ F est :

f −1(B) = {x ∈ E | f (x) ∈ B}.
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Applications linéaires : Image et noyau

Proposition 8
Soit f : E → F une application linéaire.

Si H est un s.e.v de E , alors f (H) est un s.e.v de F .
Si G est un s.e.v de F , alors f −1(G) est un s.e.v de E .
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Applications linéaires : Image et noyau

Définition 10
Soit f : E → F une application linéaire.
On appelle :

Image de f , le s.e.v de E :

Im(f ) = f (E ) = {f (x) | x ∈ E}

Noyau de f , le s.e.v de E :

Ker(f ) = f −1(~0) = {~u ∈ E | f (~u) = ~0}
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Applications linéaires : Image et noyau

Exemple
Soit f : R2 → R2 définie par

f (x , y) = (x − y , x + y).

Alors f est linéaire (Exercice). On a Ker(f ) = {~0} et Im(f ) = R2. En
effet :

~u =
(

x
y

)
∈ Ker(f )⇔ f (~u) = ~0⇔ x − y = 0 et x + y = 0⇔ x =

y = 0.

~v =
(

x
y

)
∈ Im(f )⇔ ∃(a, b) ∈ R2 tels que x − y = a et x + y =

b ⇔ x = a+b
2 et y = b−a

2 .
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Applications linéaires : Image et noyau

Propriété
Soit f ∈ L(E ,F ). Soit B = (~u1, · · · , ~un) une base de E . Alors
Im(f ) = Vect(f (~u1), · · · , f (~un)).
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Applications linéaires : Image et noyau

Proposition 10
Soit f ∈ L(E ,F ).
Les propriétés suivantes sont équivalentes :

f est injective ;
Ker(f ) = {~0} ;
Pour tout ~u ∈ E , f (~u) = ~0⇒ ~u = ~0.

Les propriétés suivantes sont équivalentes :
f est surjective ;
Im(f)=F.
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Applications linéaires : Image et noyau

Définition 11
Soient E et F deux K-e.v et f ∈ L(E ,F ). La dimension de Im(f) est
appelée le rang de f et est notée rg(f ).

Théorème (Théorème du rang)
Soient E et F deux K-e.v de dimension finie et f ∈ L(E ,F ). On a

dim(E ) = rg(f ) + dim(Kerf (f )).
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Applications linéaires : Rappel terminologie

Terminologie à retenir
Une application linéaire de E dans E est appelée un endomorphisme.
Le K-e.v L(E ,E ) est noté L(E ).
Une application linéaire bijective est appelée un isomorphisme.
Un endomorphisme bijectif est appelé un automorphisme.
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Les matrices

Matrices
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Les matrices

Définition
On appelle matrice tout tableau de la forme

a11 a12 · · · a1m
a21 a22 · · · a2m
... . . .

...
...

an1 an2 · · · anm


où aij sont des scalaires (des éléments de K).

On note
M = (aij)1≤i≤n;1≤j≤m,

aij est le coefficient : intersection de la i-ème ligne et de la j-ème
colonne.
M est dite de taille n ×m (elle a n lignes et m colonnes).

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 61 / 315



Les matrices

Exemples

A =

 1 3 2
1 5 7
13 10 8

 ; B =

 i 3
25 1 + i
21 11

 ; C =

 1
2
6

 .
A est une matrice à coefficients dans R (mais dans C aussi) ; B est une
matrice à coefficients dans C.
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Les matrices

Définition
On dit que M est une matrice

colonne si elle a une seule colonne (m = 1).
ligne si elle a une seule ligne (n = 1).
carrée si elle a le même nombre de lignes que de colonnes (n = m).

Exemples

A =

 1 3 2
1 5 7
13 10 8

 ; B =
(

i 3 5
)

; C =

 1
2
6

 .
A est une matrice carrée
B est une matrice ligne
C est une matrice colonne
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Les matrices

Remarques & notations
Une matrice à n lignes et m colonnes est aussi appelée matrice de
type (n,m) ou encore matrice n ×m.
On noteMn,m(K) l’ensemble des matrices n ×m.
On noteMn(K) l’ensemble des matrices carrées n × n.
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Les matrices

Remarques & notations
La matrice identité In ∈Mn(K) est la matrice carrée dont tous les
coefficients diagonaux valent 1 et les autres coefficients valent 0.
Exemple :

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
La matrice nulle On,m ∈Mn,m(K) est la matrice dont tous les
coefficients sont nuls.
Exemple :

O3,2 =

 0 0
0 0
0 0


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Opérations sur les matrices

Définition 6 (Somme de deux matrices)
Soient A,B ∈Mn,m(K), A = (aij)1≤i≤n;1≤j≤m, B = (bij)1≤i≤n;1≤j≤m

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
... . . .

...
...

an1 an2 · · · anm

 ; B =


b11 b12 · · · b1m
b21 b22 · · · b2m
... . . .

...
...

bn1 bn2 · · · bnm


On définit la somme A + B, une matrice deMn,m(K), par

A + B = (aij + bij)1≤i≤n;1≤j≤m

A + B =


a11 + b11 a12 + b12 · · · a1m + b1m
a21 + b21 a22 + b22 · · · a2m + b2m

... . . .
...

...
an1 + bn1 an2 + bn2 · · · anm + bnm


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Opérations sur les matrices

Exemple

A =
(

1 2
3 4

)
; B =

(
5 6
7 8

)

A + B =
(

1 + 5 2 + 6
3 + 7 4 + 8

)
=
(

6 8
10 12

)
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Opérations sur les matrices

Remarque
On ne somme que des matrices de même taille.
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Opérations sur les matrices

Définition (Multiplication par un scalaire)
Soient A ∈Mn,m(K), A = (aij)1≤i≤n;1≤j≤m et λ ∈ K,

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
... . . .

...
...

an1 an2 · · · anm

 .

On définit la matrice λA, une matrice deMn,m(K), par

λA = (λaij)1≤i≤n;1≤j≤m

λA =


λa11 λa12 · · · λa1m
λa21 λa22 · · · λa2m
... . . .

...
...

λan1 λan2 · · · λanm


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Opérations sur les matrices

Exemples

A =
(

1 2
3 4

)
; B =

(
5 6
7 8

)

2A =
(

2 4
6 8

)
; πB =

(
5π 6π
7π 8π

)
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Opérations sur les matrices

Proposition 4
L’ensembleMn,m(K) muni de l’addition des matrices (A,B) 7→ A + B et
de la multiplication par des scalaires (λ,A) 7→ λA est un K-espace vectoriel
de dimension finie n ×m.
Le vecteur nul de cet espace est la matrice nulle On,m.
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Opérations sur les matrices

Exemple & exercice
DansM2(K) on considère la famille B = (A1,A2,A3,A4)

A1 =
(

1 0
0 0

)
; A2 =

(
0 1
0 0

)
; A3 =

(
0 0
1 0

)
; A4 =

(
0 0
0 1

)
.

Montrer que B est une base deM2(K).
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Opérations sur les matrices

Définition (Produit de deux matrices)
Soient A = (aij)1≤i≤n,1≤j≤p une matrice n × p et B = (bij)1≤i≤p,1≤j≤m
une matrice p × m.
Le produit de A et B est la matrice n ×m, notée A · B, dont les
coefficients cij sont définis par : cij est le produit scalaire de la ième ligne
de A par la jème colonne de B

cij =
(

ai1 ai2 · · · aip
)


b1j
b2j
...
bpj

 = ai1b1j + ai2b2j + · · ·+ aipbpj
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Opérations sur les matrices

Exemple

(
1 2 3

) 4
5
6

 = (1× 4 + 2× 5 + 3× 6) = (32).
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Opérations sur les matrices

Exemple

(
0 2
1 2

)
 1 2

3 4
5 6


 1× 0 + 2× 1 1× 2 + 2× 2

3× 0 + 4× 1 3× 2 + 4× 2
5× 0 + 6× 1 5× 2 + 6× 2

 =

 2 6
4 14
6 22


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Opérations sur les matrices

Remarques
(1) Pour que le produit de A par B ait un sens if faut que le nombre de
colonnes de A soit le même que le nombre de lignes de B.
(2) Le produit d’une matrice de type (n, p) par une matrice de type (p,m)
est une matrice de type (n,m).
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Opérations sur les matrices

Remarques
(1) On a (

1 0
0 0

)(
0 1
0 0

)
=
(

0 1
0 0

)
(

0 1
0 0

)(
1 0
0 0

)
=
(

0 0
0 0

)
Ce qui prouve qu’en général A · B 6= B · A et A · B = O n’implique pas
forcément A = O ou B = O (O désigne la matrice nulle).
(2) Pour tout A ∈Mn(K) on a (exercice)

A · In = In · A = A.
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Opérations sur les matrices

Propriétés
Les propriétés suivantes sont vraies sous hypothèse que les produits
considérés ont un sens :

(A · B) · C = A · (B · C) ;
(A + B) · C = A · C + B · C ;
A · (B + C) = A · B + A · C ;
λ(A · B) = (λA) · B = A · (λB).
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Opérations sur les matrices

Notations & conventions
Pour tout A ∈Mn(K)

A0 = In, A1 = A, An = A · A · · ·A︸ ︷︷ ︸
n fois

.
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Opérations sur les matrices

Remarque
On a

(A + B)2 = A2 + AB + BA + B2

et si AB 6= BA alors

(A + B)2 6= A2 + 2AB + B2.

Proposition 5 (Formule du binôme pour les matrices)
Soient A,B ∈Mn(K) tels que AB = BA.
Alors pour tout n ≥ 0 on a

(A + B)n =
k=n∑
k=0

(
n
k

)
An−kBk

où
(n

k
)
est le coefficient binomial :

(n
k
)

= Ck
n = n!

k!(n−k)!
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Matrice de passage

Matrice de passage
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Matrice de passage

Définition
Soit E un K-e.v de dimension finie n et soit B1 = (~e1, . . . ,~en) une base de
E . Soit ~u ∈ E ayant comme composantes dans la base B, (λ1, . . . , λn).
(Donc ~u = λ1~e1 + · · ·+ λn~en).
On appelle matrice des composantes du vecteur ~u dans la base B, la
matrice colonne  λ1

...
λn


On écrit

MB(~u) =

 λ1
...
λn

 ou ~u =

 λ1
...
λn


B
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Matrice de passage

Définition (suite)
Plus généralement, soit (~u1, . . . , ~um) une famille de vecteurs de E .
On appelle matrice des composantes de la famille (~u1, . . . , ~um) dans la
base B, la matrice n ×m dont les colonnes sont MB(~u1), . . . ,MB(~um).
Elle est notée MB(~u1, . . . , ~um).
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Matrice de passage

Exemple
Soit B = (~e1, . . . ,~en) la base canonique de Rn. Alors

MB(~e1, . . . ,~en) =


1 0 · · · 0
0 1 · · · 0
... . . .

...
...

0 0 · · · 1

 = In.
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Matrice de passage

Définition
Soit E un K-e.v de dimension finie n. Soient B1 = (~e1, . . . ,~en) et
B2 = (~f1, . . . ,~fn) deux bases de E .

On appelle matrice de passage de la base B1 à la base B2, la matrice
carrée n × n, MB1(~f1, . . . ,~fn).
Elle est notée PB1,B2 .

Donc c’est la matrice dont la jème colonne est formée des composantes de
~fj dans la base B1.
C’est donc la matrice carrée n × n, A = (aij)1≤i≤n,1≤j≤n tel que pour tout
j ∈ {1, . . . , n}

~fj = a1j~e1 + · · ·+ anj~en.
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Matrice de passage

Exemple
Dans R2 considérons les deux bases B1 = (~u, ~v) et B2 = (~w ,~r) où

~u =
(

2
3

)
, ~v =

(
4
5

)
, ~w =

(
3
4

)
, ~r =

(
2
2

)
.

Calculons la matrice PB1,B2 . Les composantes de ~w et ~r dans B1 sont
(exercice)

~w = 1
2
~u + 1

2
~v ; ~r = −~u + ~v .

Donc

MB1(~w) =
(

1
2
1
2

)
, MB1(~r) =

(
−1
1

)
, PB1,B2 =

(
1
2 −1
1
2 1

)
.
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Matrice de passage

Proposition
Soit E un K-e.v de dimension finie et soient B1 et B2 deux bases de E .
Alors pour tout ~u ∈ E

MB1(~u) = PB1,B2 ·MB2(~u).
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Matrice de passage

Exemple
Reprenons l’exemple précédent : B1 = (~u, ~v), B2 = (~w ,~r)

~u =
(

2
3

)
, ~v =

(
4
5

)
, ~w =

(
3
4

)
, ~r =

(
2
2

)
.

On avait trouvé
PB1,B2 =

(
1/2 −1
1/2 1

)
.

Soit ~f = ~w +~r et calculons ses composantes dans la base B1. On a

MB2(~f ) =
(

1
1

)
, MB1(~f ) =

(
1/2 −1
1/2 1

)
·
(

1
1

)
=
(
−1/2
3/2

)
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Matrice d’une application linéaire

Matrice d’une application linéaire
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Matrice d’une application linéaire

Définition
Soient E et F des K-e.v munis respectivement des bases B = (~u1, . . . , ~un)
et C = (~v1, . . . , ~vp). Soit f ∈ L(E ,F ) une application linéaire.
On appelle matrice de f , par rapport aux bases B et C, la matrice

MC(f (~u1), . . . , f (~un)).

Elle est notée MB,C(f ).

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 90 / 315



Matrice d’une application linéaire

Exemple
On munit R3 de la base canonique, notée ici B = (~u1, ~u2, ~u3) et R2 de la
base canonique, notée ici C = (~v1, ~v2). Soit f : R3 → R2 l’application
linéaire définie par

f (x , y , z) = (x + 2y − z , x − y).

On a
f (~u1) = (1, 1) = ~v1 + ~v2, f (~u2) = (2,−1) = 2~v1 − ~v2,

f (~u3) = (−1, 0) = −~v1 + 0 · ~v2.

Donc
MB,C(f ) =

(
1 2 −1
1 −1 0

)
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Matrice d’une application linéaire

Proposition
Soient E et F des K-e.v (de dimension finie) munis respectivement des
bases B et C. Soit f ∈ L(E ,F ) une application linéaire. Alors pour tout
~u ∈ E

MC(f (~u)) = MB,C(f ) ·MB(~u).

Remarque
Autrement dit, si Y désigne la matrice colonne des composantes de f (~u)
dans la base C et X désigne la matrice colonne des composantes de ~u dans
la base B, alors

Y = AX , où A = MB,C(f ).
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Matrice d’une application linéaire

Exemple
En reprenant l’exemple précédent, par rapport aux bases canoniques,

f (x , y , z) = (x + 2y − z , x − y), MB,C(f ) =
(

1 2 −1
1 −1 0

)
,

on a (
x + 2y − z

x − y

)
=
(

1 2 −1
1 −1 0

)
·

 x
y
z


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Matrice d’une application linéaire

Définition
Soient E et F deux K-e.v de dimension respectives n et m. Soient
B = (~e1, . . . ,~en) une base de E et C = (~f1, . . . ,~fm) une base de F .
Soit A = (aij)1≤i≤m,1≤j≤n ∈Mm,n(K). L’application linéaire associée à A,
relative aux bases B et C, est l’application définie par : au vecteur ~u ∈ E
de composantes (x1, · · · , xn) dans B, elle associé le vecteur ~v dont les
composantes (y1, · · · , ym) dans la base C sont données par

yi = ai1x1 + ai2x2 + · · ·+ ainxn

Autrement dit
y1
...
...
ym

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
... . . .

...
...

am1 am2 · · · amn

 ·


x1
...
...
xn


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Matrice d’une application linéaire

Exemple
Soit

A =
(

1 2
3 4

)
.

L’application linéaire associée à A, relativement à la base canonique de R2,
f : R2 → R2 est

f (x , y) = A ·
(

x
y

)
=
(

1 2
3 4

)
·
(

x
y

)
=
(

x + 2y
3x + 4y

)
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Matrice d’une application linéaire

Théorème
Soit E (respectivement F ) un K-e.v de dimension finie n (respectivement
m), muni d’une base B (respectivement C). L’application

M : L(E ,F )→Mm,n(K); f 7→ M(f ) = MB,C(f )

est un isomorphisme de K-e.v.

Remarque
Donc fondamentalement en dimension finie, une fois que les bases sont
fixées, il n’existe pas de différence réelle entre applications linéaires et
matrices.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 96 / 315



Matrice d’une application linéaire

Proposition
Soient E ,F ,G trois K-e.v de dimension finie, munis respectivement des
bases B, C,D. Pour tout f ∈ L(E ,F ) et g ∈ L(F ,G), on a

MB,D(g ◦ f ) = MC,D(g) ·MB,C(f ).
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Matrices inversibles

Matrices inversibles
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Matrices inversibles

Définition
Une matrice carrée A ∈Mn(K) est dite inversible s’il existe une matrice
B ∈Mn(K) vérifiant A · B = B · A = In.
Cette matrice est alors unique, est appelée l’inverse de A et est notée A−1.

Exemple
On a (

1 3
0 2

)
×
(

1 −3
2

0 1
2

)
=
(

1 0
0 1

)
= I2

et donc A =
(

1 3
0 2

)
est inversible, d’inverse

A−1 =
(

1 −3
2

0 1
2

)
.
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Matrices inversibles

Proposition
Soient A,B ∈Mn(K).

Si A et B sont inversibles, il en de même de A · B et on a

(A · B)−1 = B−1 · A−1.

Si A est inversible, alors A−1 est inversible et (A−1)−1 = A.
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Matrices inversibles et bases

Matrices inversibles et bases

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 101 / 315



Matrices inversibles et bases

Proposition
Soit E un K-e.v de dimension finie n muni d’une base B.

Une famille de vecteurs (~u1, . . . , ~un) est une base de E si et seulement si
MB(~u1, . . . , ~un) est inversible.
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Matrices inversibles et bases

Exemple
Soit Can = (~e1,~e2,~e3) la base canonique de R3.

Considérons la famille B = (~u, ~v , ~w) où

~u = ~e1 +~e2, ~v = ~e2, ~w = ~e1 +~e3.

La famille B est libre car la matrice

MCan(~u, ~v , ~w) =

 1 0 1
1 1 0
0 0 1


est inversible (exercice).
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Matrices inversibles et matrices de passage

Matrices inversibles et matrices de passage
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Matrices inversibles et matrices de passage

Proposition
Si B1 et B2 deux bases d’un K-e.v de dimension finie, alors la matrice de
passage PB1,B2 est inversible et son inverse est la matrice de passage
PB2,B1 ; autrement dit

P−1
B1,B2

= PB2,B1 .
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Matrices inversibles et matrices de passage

Exemple
Considérons les deux bases B1 = (~u, ~v) et B2 = (~w ,~r) de R2 où

~u =
(

2
3

)
, ~v =

(
4
5

)
, ~w =

(
3
4

)
, ~r =

(
2
2

)
.

Nous avons déjà calculé :

MB1(~w) =
(

1
2
1
2

)
, MB1(~r) =

(
−1
1

)
, PB1,B2 =

(
1
2 −1
1
2 1

)
.

Alors PB1,B2 est inversible et

P−1
B1,B2

= PB2,B1 =
(

1 1
−1

2
1
2

)
.
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Matrices inversibles et applications linéaires

Matrices inversibles et applications linéaires
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Matrices inversibles et applications linéaires

Proposition
Soient E et F deux K-e.v de dimension finie, B1 une base de E et B2 une
base de F .

Une application linéaire f ∈ L(E ,F ) est bijective si et seulement si
MB1,B2(f ) est inversible.

On a alors
MB1,B2(f )−1 = MB2,B1(f −1).
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Matrices inversibles et applications linéaires

Exemple
Soit f : R2 → R2 définie par f (x , y) = (x − y , x + y).
Sa matrice par rapport à la base canonique de R2 est

A =
(

1 −1
1 1

)
.

On a

f (x , y) = (a, b) si et seulement si x = a + b
2 , y = b − a

2

et donc f −1(a, b) = (a+b
2 , b−a

2 ),

A−1 =
(

1/2 1/2
−1/2 1/2

)
.
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Matrices inversibles et applications linéaires

Proposition
Soit E un K-e.v de dimension finie et soit f un endomorphisme de E .
Soient B et C deux bases de E . Alors

MB,B(f ) = PB,C ·MC,C(f ) · PC,B.
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Déterminants

Définition
Soit A ∈M2(K)

A =
(

a b
c d

)
.

Alors le déterminant de A est la quantité

ad − bc.

On note
det(A) =

∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad − bc.
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Déterminants

Exemple

A =
(

8 5
1 2

)
.

Alors
det(A) =

∣∣∣∣∣ 8 5
1 2

∣∣∣∣∣ = 8× 2− 1× 5 = 11.
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Déterminants

Proposition & Définition
Supposons avoir défini le déterminants des matrices carrées B ∈Mm(K)
avec m ≤ n − 1. Soit A = (aij)1≤i≤n,1≤j≤n ∈Mn(K). Soit ∆ij le
déterminant de la matrice extraite de A obtenue en supprimant la ième
ligne et la jème colonne. Alors :

(Développement suivant une colonne) : pour tout j ∈ {1, . . . , n}, on a

det(A) =
n∑

i=1
aij(−1)i+j∆ij .

(Développement suivant une ligne) : pour tout i ∈ {1, . . . , n}, on a

det(A) =
n∑

j=1
aij(−1)i+j∆ij .
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Déterminants

Développement suivant la première colonne :∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣ = a11

∣∣∣∣∣ a22 a23
a32 a33

∣∣∣∣∣− a21

∣∣∣∣∣ a12 a13
a32 a33

∣∣∣∣∣+ a31

∣∣∣∣∣ a12 a13
a22 a23

∣∣∣∣∣ .
Développement suivant la première ligne :∣∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣ = a11

∣∣∣∣∣ a22 a23
a32 a33

∣∣∣∣∣− a12

∣∣∣∣∣ a21 a23
a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣ a21 a22
a31 a32

∣∣∣∣∣
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Déterminants

Exemple
En développant suivant la première colonne∣∣∣∣∣∣∣
1 2 0
3 1 2
0 4 5

∣∣∣∣∣∣∣ = 1 ·
∣∣∣∣∣ 1 2
4 5

∣∣∣∣∣−3 ·
∣∣∣∣∣ 2 0
4 5

∣∣∣∣∣+0 ·
∣∣∣∣∣ 2 0
1 2

∣∣∣∣∣ = −3−30+0 = −33.
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Déterminants

Définition
Soit E un K-e.v de dimension finie n et B une base de E . Soit (~u1, . . . , ~un)
une famille de n vecteurs de E . On définit

det(~u1, . . . , ~un) = det(MB(~u1, . . . , ~un)).

Proposition
Soit E un K-e.v de dimension finie n et B une base de E .
Soit (~u1, . . . , ~un) une famille de n vecteurs de E .
Les propriétés suivantes sont équivalentes :

(~u1, . . . , ~un) est une base de E .
det(~u1, . . . , ~un) 6= 0.
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Déterminants

Exemple
Dans R2 considérons

~u =
(

1
3

)
, ~v =

(
2
5

)
.

Alors
det(~u, ~v) =

∣∣∣∣∣ 1 2
3 5

∣∣∣∣∣ = −1

et donc (~u, ~v) est une base de R2.
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Déterminants

Proposition
Soit A ∈Mn(K). Alors A est inversible si et seulement si det(A) 6= 0. On
a alors

det(A−1) = 1
det(A) .
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Déterminants

Quelques propriétés des déterminants
Un déterminant qui a deux colonnes (resp. deux lignes) identiques est
nul.
La permutation de deux colonnes (resp. de deux lignes) multiplie le
déterminant par −1.
Un déterminant dont une colonne (resp. une ligne) est combinaison
linéaire des autres colonnes (resp. des autres lignes) est nul.
Un déterminant dont une colonne (resp. une ligne) est formée de 0
est nul.
La valeur d’un déterminant est inchangé si l’on ajoute à une colonne
(resp. une ligne) une combinaison linéaire des autres colonnes (resp.
des autres lignes).
Si l’on multiplie une colonne (resp. une ligne) d’un déterminant par
un scalaire λ, le déterminant est multiplié par λ.
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Systèmes d’équations linéaires

Systèmes d’équations linéaires
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Systèmes d’équations linéaires

Les systèmes linéaires interviennent dans diverses branches des
mathématiques, ainsi que dans la résolution de nombreux problèmes issus
des autres domaines, comme la physique, la mécanique, l’économie, le
traitement du signal, ...

Ils peuvent être considérés comme la "base calculatoire" de l’algèbre
linéaire. Ils sont au coeur du traitement d’une grande partie des problèmes
issus de l’algèbre linéaire en dimension finie. Par exemple, ils permettent
de déterminer le noyau et l’image d’une application linéaire, de déterminer
si une famille de vecteurs est libre ou non, ....
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Systèmes d’équations linéaires

Exemples de la géométrie euclidienne
Dans le plan (Oxy), l’équation d’une droite s’écrit

ax + by = c,

où a, b et c sont des réels.
Considérons deux droites : D1 d’équation ax + by = c et D2
d’équation dx + ey = f . Alors un point (x , y) appartient à
l’intersection D1 ∩ D2, si et seulement si, il est solution du système
linéaire :

(S)
{

ax + by = c
dx + ey = f

Remarquons que trois cas se présentent :
D1 et D2 s’intersectent en un seul point : (S) a une unique solution
D1 et D2 sont parallèles : (S) n’a pas de solution
D1 et D2 sont confondues : (S) a une infinité de solutions.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 123 / 315



Systèmes d’équations linéaires

Dans l’espace (Oxyz), l’intersection de deux plans P1 et P2 est l’ensemble
des solutions du système

(S)
{

ax + by + cz = d
a′x + b′y + c ′z = d ′

Trois cas se présentent :
P1 et P2 s’intersectent en une droite : (S) a une infinité de solutions
P1 et P2 sont parallèles : (S) n’a pas de solution
P1 et P2 sont confondues : (S) a une infinité de solutions.
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Systèmes d’équations linéaires

On appelle système linéaire de n équations et à m inconnues x1, . . . , xm,
tout système de la forme

(S)



a11x1 + a12x2 + · · · + a1mxm = b1
...

...
...

...
...

ai1x1 + ai2x2 + · · · + aimxm = bi
...

...
...

...
...

an1x1 + an2x2 + · · · + anmxm = bn

où (aij)1≤i≤n,1≤j≤m et b1, . . . , bn sont des éléments de K.

Les nombres aij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, sont les coefficients du
système (S).
Le n-uplet (b1, . . . , bn) est le second membre du système (S).
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Systèmes d’équations linéaires

Exemples
(1) Pour n = 1, on obtient une équation linéaire

a1x1 + a2x2 + · · ·+ amxm = b.

(2) Équation d’une droite dans le plan : ax + by = c.
(3) Systèmes à 2 équations et 2 inconnues :{

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

,

{
ax + by = c
a′x + b′y = c ′ ,

{
2x + 3y = 4
9x + 6y = 3

(4) Le système

(S)


x1 − x2 = 1
x2 − x3 = 1
x2 − x1 = 1

a comme second membre (1, 1, 1).
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Systèmes d’équations linéaires

(1) La matrice A = (aij)1≤i≤n,1≤j≤m est appelée la matrice du système
(S). Elle sera notée AS .
(2) Si le second membre du système est nul, autrement dit
b1 = b2 = · · · = bn = 0, on dit que le système (S) est homogène.
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Systèmes d’équations linéaires

Exemples
(1) Soit (S) le système

(S)
{

x1 + 2x2 = 6
3x1 + 5x2 = 10

Alors la matrice associée à (S) est

AS =
(

1 2
3 5

)

et le second membre est (6, 10).
(2) Le système

(S)
{

x1 + 2x2 = 0
3x1 + 5x2 = 0

est homogène.
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Systèmes d’équations linéaires

Écriture matricielle
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Systèmes d’équations linéaires
Soit (S) un système linéaire

(S)



a11x1 + a12x2 + · · ·+ a1mxm = b1,
...

ai1x1 + ai2x2 + · · ·+ aimxm = bi ,
...

an1x1 + an2x2 + · · ·+ anmxm = bn,

A = AS = (aij)1≤i≤n,1≤j≤m sa matrice et (b1, . . . , bn) son second membre.
En posant

X =

 x1
...
xm

 , B =

 b1
...
bm


on peut écrire le système (S) sous la forme matricielle

A · X = B.
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Systèmes d’équations linéaires

Exemple

Soit (S) le système (S)
{

x1 + 2x2 = 6,
3x1 + 5x2 = 10.

Alors la matrice associée à (S) est

AS =
(

1 2
3 5

)

et le second membre est (6, 10). L’écriture matricielle de (S) est(
1 2
3 5

)(
x1
x2

)
=
(

6
10

)
.
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Systèmes d’équations linéaires

Exemple

Considérons le système (S)


2x + 7y + 5z = 1,
3x + 2y − 6z = 11,
x − y + 9z = 0.

Alors la matrice associée à (S) est

AS =

 2 7 5
3 2 −6
1 −1 9


et le second membre est (1, 11, 0). L’écriture matricielle de (S) est 2 7 5

3 2 −6
1 −1 9


 x

y
z

 =

 1
11
0

 .
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Systèmes d’équations linéaires

Exemple

Considérons le système (S)


2x + 9y = 1,
3x − 2y = 3,
x − y = 1.

Alors la matrice associée à (S) est

AS =

 2 9
3 −2
1 −1


et le second membre est (1, 3, 1). L’écriture matricielle de (S) est 2 9

3 −2
1 −1

( x
y

)
=

 1
3
1

 .
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Systèmes d’équations linéaires : Interprétation à l’aide
d’une application linéaire
Soient Km et Kn munis respectivement des bases canoniques.

Soit (S) un système linéaire de n équations et m inconnues de matrice A.

Alors on peut associer canoniquement une application linéaire f à (S)
définie sur Km à valeurs dans Kn : c’est l’application linéaire associée à A
(relativement aux bases canoniques)

f (x1, . . . , xm) = A ·

 x1
...
xm



En posant ~x =

 x1
...
xm

 et ~b =

 b1
...
bn

, (S) est équivalent à

f (~x) = ~b.
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Systèmes d’équations linéaires : Ensemble des solutions

Définition
Soit (S) un système linéaire de n équations et à m inconnues.

Une solution de (S) est un m-uplet (s1, . . . , sm) tels que si l’on
substitue s1 pour x1, s2 pour x2, · · · , sn pour xn, dans (S) on obtient
une égalité.
L’ensemble des solutions de (S) est l’ensemble de toutes les solutions
de (S).
On dit que (S) est compatible si (S) admet des solutions.
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Systèmes d’équations linéaires : Ensemble des solutions

Proposition
Soit (S) un système linéaire homogène de n équations à m inconnues.
L’ensemble des solutions de (S) est un sous-espace vectoriel de Km.

Preuve
En utilisant l’application linéaire f associée à (S), on a

(s1, . . . , sm) est une solution de (S) si et seulement si f (s1, . . . , sm) = ~0

si et seulement si (s1, . . . , sm) ∈ Ker(f ).

Donc l’ensemble des solutions de (S) est le noyau de f . Comme ce dernier
est un K-e.v., il en est de même de l’ensemble des solutions de (S).
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Systèmes d’équations linéaires : Ensemble des solutions

Proposition
Soit (S) un système linéaire de n équations à m inconnues. Si ~s est une
solution particulière de (S), alors l’ensemble des solutions de (S) est

~s + Ker(f ) = {~s + ~h | ~h ∈ Ker(f )},

où f est l’application linéaire associée à (S).

Preuve
Soit ~x une solution de (S). Alors f (~x) = ~b, où ~b est le vecteur représenté
par le second membre de (S). On a f (~x −~s) = f (~x)− f (~s) = ~b − ~b = ~0 et
donc ~x −~s ∈ Ker(f ). D’où ~x = ~s + (~x −~s) ∈ ~s + Ker(f ). Inversement, si
~x = ~s +~h, avec ~h ∈ Ker(f ), alors f (~x) = f (~s +~h) = ~b + f (~h) = ~b et donc
~x est solution de (S).
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Systèmes d’équations linéaires : Ensemble des solutions

Proposition
Tout système d’équations linéaires possède ou bien aucune solution, ou
bien une seule solution, ou bien une infinité de solutions.

Preuve
Soit f (~x) = ~b l’interprétation à l’aide d’une application linéaire de (S). Un
des cas suivants se présentent :

~b 6∈ Im(f ) : (S) n’a pas de solutions
~b ∈ Im(f ) et Kerf (f ) = {~0} : (S) a une unique solution
~b ∈ Im(f ) et Kerf (f ) 6= {~0} : (S) a une infinité de solutions
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Systèmes d’équations linéaires : Existence des solutions

Définition
Soit A ∈Mm,n(K) une matrice. On appelle rang de la matrice A la
dimension du sous-espace vectoriel (de Km) engendré par ses vecteurs
colonnes.

Propriété
Le rang d’une matrice A ∈Mm,n(K) est égal au rang de l’application
linéaire qui lui est associée. En effet, si f est l’application linéaire associée
à A

rg(f ) = dim(Im(f )) = dim(Vect(f (~e1), . . . , f (~em)))

or on vérifie que

f (~ei ) = A ·~ei = la ième colonne de A.
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Systèmes d’équations linéaires : Existence des solutions

Définition
Soit A une matrice de type (m, n). On appelle matrice extraite de A,
toute matrice obtenue en supprimant un certain nombre de lignes et
un certain nombre de colonnes de A.
On appelle déterminant extrait de A, tout déterminant d’une matrice
carrée extraite de A.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 140 / 315



Systèmes d’équations linéaires : Existence des solutions

Théorème (Calcul pratique du rang d’une matrice)
Soit A ∈Mm,n(K). Alors le rang de A est le plus grand entier r tel que
l’on puisse extraire de A au moins une matrice carrée inversible de type
(r , r).
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Systèmes d’équations linéaires : Existence des solutions

Exemples

(1) Soit A =

 1 1 1
0 2 3
0 3 2

 . Le déterminant de A est

det(A) = 1
∣∣∣∣∣ 2 3
3 2

∣∣∣∣∣ = −5 6= 0. Donc on peut extraire une matrice d’ordre

3 inversible ; d’où rg(A) = 3.

(2) Soit A =

 1 1/2 0
0 3 4
−1 1 2

 . Le déterminant de A est

det(A) =
∣∣∣∣∣ 3 4
1 2

∣∣∣∣∣−
∣∣∣∣∣ 1/2 0

3 4

∣∣∣∣∣ = 0. Donc on ne peut pas extraire une

matrice d’ordre 3 inversible. Par contre la matrice
(

3 4
1 2

)
extraite de A

possède un déterminant non nul ; d’où rg(A) = 2.
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Systèmes d’équations linéaires : Existence des solutions

Définition
Soit (S) un système de n équations à m inconnues de matrice
A = (aij)1≤i≤m,1≤j≤m et de second membre ~b.

Le rang de (S) est par définition le rang de sa matrice :

rg(S) = rg(A).

La matrice augmentée de (S) est la matrice, notée [A|~b], définie par :

[A|~b] =


a11 a12 · · · a1m b1
a21 a22 · · · a2m b2
... . . .

...
...

...
an1 an2 · · · anm bn


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Systèmes d’équations linéaires : Existence des solutions

Remarque
Pour bien distinguer le second membre ~b de A et pour des raisons
pratiques de calculs, on écrit [A|~b] sous la forme

a11 a12 · · · a1m b1
a21 a22 · · · a2m b2
... . . .

...
...

...
an1 an2 · · · anm bn


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Systèmes d’équations linéaires : Existence des solutions

Exemple

Considérons le système (S)


2x + 7y + 5z = 1,
3x + 2y − 6z = 11,
x − y + 9z = 0.

Alors la matrice du système (S) est

A =

 2 7 5
3 2 −6
1 −1 9


et le second membre est (1, 11, 0). Donc [A|~b] est 2 7 5 1

3 2 −6 11
1 −1 9 0


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Systèmes d’équations linéaires : Existence des solutions

Proposition (CNS pour l’existence des solutions)
Soit (S) un système d’équations linéaires, de matrice A et de second
membre ~b. Alors (S) est compatible, si et seulement si, rg(A) = rg([A|~b]).
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Systèmes d’équations linéaires : Existence des solutions

Exemple

Soit (S)


x + y + z = 2
2y + 3z = 0
3y + 2z = 1

Alors la matrice du système est

A =

 1 1 1
0 2 3
0 3 2

 . Le déterminant de A est

det(A) = 1
∣∣∣∣∣ 2 3
3 2

∣∣∣∣∣ = −5 6= 0. Donc on peut extraire une matrice d’ordre

3 inversible ; d’où rg(A) = 3. La matrice augmentée de (S) est

[A|~b] =

 1 1 1 2
0 2 3 0
0 3 2 1

 . Son rang ne peut être 4 et comme A est une

matrice extraite de rang 3 ; rg([A|~b]) = 3. Donc (S) est compatible (admet
des solutions).
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Systèmes d’équations linéaires : Méthodes de résolution

Méthode du pivot de Gauss
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

La méthode de pivot de Gauss consiste à transformer un système, en
utilisant des "opérations élémentaires", à un système échelonné réduit. Il
se trouve que les systèmes échelonnés réduits sont plus faciles à résoudre.
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Définition 9
Les opérations suivantes sur les équations d’un système linéaire (ou sur les
lignes de sa matrice) sont appelées des opérations élémentaires :

Li ← λLi , λ ∈ K∗ : multiplier l’équation Li par le scalaire non nul λ.
Li ← Li + λLj , λ ∈ K, i 6= j : rajouter à l’équation Li , l’équation Lj
multipliée par le scalaire λ.
Li ↔ Lj : permuter les deux équations Li et Lj .

Propriété
Les opérations élémentaires ne changent pas l’ensemble des solutions d’un
système. Ils transforment un système linéaire en un autre système ayant le
même ensemble de solutions.
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Mise en pratique

Étape 1 : échelonnement
Il faut d’abord que le premier coefficient de la première ligne soit non
nul. Si ce n’est pas le cas, on permute la ligne L1 par la première ligne
dont le premier coefficient est non nul : L1 ↔ Lj .

Si le premier coefficient de la première ligne est différent de 1, on
multiplie L1 par 1/a11 : L1 ← 1/a11L1. Nous avons un pivot en
position (1, 1).
Le pivot sert à éliminer tous les autres termes sur la même colonne :
pour 2 ≤ i ≤ n, on remplace l’équation Li par Li − ai1L1, on élimine
ainsi x1 dans l’équation Li .
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss
On obtient un système avec une équation L1 contenant x1 et les autres
équations ne contenant pas de x1 :

(S ′)


x1 + a′12x2 + · · · + a′1mxm = b′1
0 + a′22x2 + · · · + a′imxm = b′2
...

...
...

...
...

0 + a′n2x2 + · · · + a′nmxm = b′n

On aboutit ainsi à un nouveau système, on recommence les étapes
ci-dessus pour éliminer x2 :

(H)


a′22x2 + · · · + a′imxm = b′2
...

...
...

...
a′n2x2 + · · · + a′nmxm = b′n
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Exemple

Soit

(S)


2x + y + z = 1
x + y + 3z = 4
x − y + 2z = 1

On effectue les opérations élémentaires directement sur la matrice
augmentée :  2 1 1 1

1 1 3 4
1 −1 2 1


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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Exemple  2 1 1 1
1 1 3 4
1 −1 2 1

 L1← 1
2 L1−−−−−→

 1 1/2 1/2 1/2
1 1 3 4
1 −1 2 1



L2←L2−L1−−−−−−→
L3←L3−L1

 1 1/2 1/2 1/2
0 1/2 5/2 7/2
0 −3/2 3/2 1/2

 L2←2L2−−−−−→

 1 1/2 1/2 1/2
0 1 5 7
0 −3/2 3/2 1/2


L3←L3+ 3

2 L2−−−−−−−→

 1 1/2 1/2 1/2
0 1 5 7
0 0 9 11

 L3← 1
9 L3−−−−−→

 1 1/2 1/2 1/2
0 1 5 7
0 0 1 11/9


La matrice est maintenant échelonnée.
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Étape 2 : réduction
En partant de la dernière ligne et en utilisant le premier coefficient non nul
comme pivot, on applique la même méthode que celle de l’étape
d’échelonnement, en allant du bas à droite vers le haut à gauche.
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Exemple
Continuons l’exemple précédent avec la matrice échelonnée obtenue. 1 1/2 1/2 1/2

0 1 5 7
0 0 1 11/9

 L1←L1− 1
2 L3−−−−−−−→

L2←L2−5L3

 1 1/2 0 −1/9
0 1 0 8/9
0 0 1 11/9


L1←L1− 1

2 L2−−−−−−−→

 1 0 0 −5/9
0 1 0 8/9
0 0 1 11/9


La matrice est maintenant échelonnée et réduite.
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Étape 3 : resolution
Maintenant le système est échelonné et réduit, sa résolution est plus
simple.
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Exemple
Continuons l’exemple précédent avec la matrice échelonnée réduite
obtenue.  1 0 0 −5/9

0 1 0 8/9
0 0 1 11/9


Le système devient 

x = −5/9
y = 8/9
z = 11/9

et la solution, dans ce cas, est évidente.
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Exemple 2
Considérons le système

(S)


−y + 2z + 13t = 5

x − 2y + 3z + 17t = 4
−x + 3y − 3z − 20t = −1

La matrice augmentée du système est 0 −1 2 13 5
1 −2 3 17 4
−1 3 −3 −20 −1



Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 159 / 315



Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Exemple 2 0 −1 2 13 5
1 −2 3 17 4
−1 3 −3 −20 −1

 L1↔L2−−−−→

 1 −2 3 17 4
0 −1 2 13 5
−1 3 −3 −20 −1


 1 −2 3 17 4

0 −1 2 13 5
−1 3 −3 −20 −1

 L3←L3+L1−−−−−−→

 1 −2 3 17 4
0 −1 2 13 5
0 1 0 −3 3


 1 −2 3 17 4

0 −1 2 13 5
0 1 0 −3 3

 L2←−L2−−−−−→

 1 −2 3 17 4
0 1 −2 −13 −5
0 1 0 −3 3


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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Exemple 2 1 −2 3 17 4
0 1 −2 −13 −5
0 1 0 −3 3

 L3←L3−L2−−−−−−→

 1 −2 3 17 4
0 1 −2 −13 −5
0 0 2 10 8


 1 −2 3 17 4

0 1 −2 −13 −5
0 0 2 10 8

 L3← 1
2 L3−−−−−→

 1 −2 3 17 4
0 1 −2 −13 −5
0 0 1 5 4


La matrice est maintenant échelonnée.
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Exemple 2
Pour réaliser la réduction, on remonte à partir de la dernière ligne en
utilisant le premier coefficient non nul comme pivot. 1 −2 3 17 4

0 1 −2 −13 −5
0 0 1 5 4

 L1←L1−3L3−−−−−−−→
L2←L2+2L3

 1 −2 0 2 −8
0 1 0 −3 3
0 0 1 5 4


 1 −2 0 2 −8

0 1 0 −3 3
0 0 1 5 4

 L1←L1+2L2−−−−−−−→

 1 0 0 −4 −2
0 1 0 −3 3
0 0 1 5 4


La matrice est maintenant échelonnée et réduite.
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Systèmes d’équations linéaires : Méthode du pivot de
Gauss

Exemple 2
Le système (S) est maintenant équivalent à

x − 4t = −2
y − 3t = 3
z + 5t = 4

où x , y , z sont les variables principales et t est la variable secondaire (ou
paramètre). L’ensemble des solutions est{

(x , y , z , t) ∈ R4 | x = −2 + 4λ, y = 3 + 3λ, z = 4− 5λ, t = λ;λ ∈ R
}

= (−2, 3, 4, 0) + Vect
(

(4, 3,−5, 1)
)
.
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Application de la méthode de Gauss à l’inversion des
matrices

Si A est une matrice carrée inversible de type (n, n) et B est l’inverse de A,
alors

AB = In
Si B1, . . . ,Bn sont les colonnes de B , l’équation matricielle précédente est
équivalente aux n équations

ABi = ~ei , i = 1, ..., n.

Donc calculer B revient à résoudre n systèmes d’équations linéaires ayant
la même matrice A.
Pour calculer la matrice inverse, on applique la méthode de Gauss pour
résoudre les systèmes précédents parallèlement.
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Application de la méthode de Gauss à l’inversion des
matrices

Exemple
Soit

A =

 1 2 0
0 3 2
1 1 1


On écrit alors le tableau  1 2 0 1 0 0

0 3 2 0 1 0
1 1 1 0 0 1


et on applique la méthode de Gauss.
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Application de la méthode de Gauss à l’inversion des
matrices

Exemple 1 2 0 1 0 0
0 3 2 0 1 0
1 1 1 0 0 1

→
 1 2 0 1 0 0

0 3 2 0 1 0
0 −1 1 −1 0 1


 1 2 0 1 0 0

0 3 2 0 1 0
0 −1 1 −1 0 1

→
 1 2 0 1 0 0

0 1 2/3 0 1/3 0
0 −1 1 −1 0 1


 1 2 0 1 0 0

0 1 2/3 0 1/3 0
0 −1 1 −1 0 1

→
 1 2 0 1 0 0

0 1 2/3 0 1/3 0
0 0 5/3 −1 1/3 1


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Application de la méthode de Gauss à l’inversion des
matrices
Exemple

 1 2 0 1 0 0
0 1 2/3 0 1/3 0
0 0 5/3 −1 1/3 1

→
 1 2 0 1 0 0

0 1 2/3 0 1/3 0
0 0 1 −3/5 1/5 3/5


 1 2 0 1 0 0

0 1 2/3 0 1/3 0
0 0 1 −3/5 1/5 3/5

→
 1 2 0 1 0 0

0 1 0 2/5 1/5 −2/5
0 0 1 −3/5 1/5 3/5


 1 2 0 1 0 0

0 1 0 2/5 1/5 −2/5
0 0 1 −3/5 1/5 3/5

→
 1 0 0 1/5 −2/5 4/5

0 1 0 2/5 1/5 −2/5
0 0 1 −3/5 1/5 3/5


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Application de la méthode de Gauss à l’inversion des
matrices

Exemple
Donc la matrice inverse est

A−1 =

 1/5 −2/5 4/5
2/5 1/5 −2/5
−3/5 1/5 3/5


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Systèmes de Cramer

Systèmes de Cramer
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Systèmes de Cramer

Définition
On dit qu’un système de n équations linéaires à n inconnues est un
système de Cramer si la matrice A de ce système est inversible.
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Systèmes de Cramer

Proposition
Soit (S) un système de n équations linéaires à n inconnues écrit sous
forme matricielle AX = B. Les propriétés suivantes sont équivalentes :

Quel que soit B, le système (S) admet une solution et une seule.
Quel que soit B, le système (S) admet au moins une solution.
Quel que soit B, le système (S) admet au plus une solution.
Le système homogène associé au système (S) n’admet que la solution
triviale.
La matrice A du système (S) est inversible.
det(A) 6= 0.

La solution unique du système (S) est alors X = A−1B.
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Systèmes de Cramer

Proposition (Règle de Cramer)
Soit (S) un système de n équations linéaires à n inconnues écrit sous
forme matricielle AX = B.
Pour chaque 1 ≤ i ≤ n, soit Ai la matrice obtenue en remplaçant la ième
colonne de A par le second membre B.
Supposons que (S) est de Cramer (donc det(A) 6= 0). Alors l’unique
solution (x1, . . . , xn) de (S) est donnée par

xi = det(Ai )
det(A) , 1 ≤ i ≤ n.
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Systèmes de Cramer

Exemple

Soit (S)
{

x + y = 5
2x + 3y = 6 écrit sous forme matricielle

(
1 1
2 3

)(
x
y

)
=
(

5
6

)
.

On a det(A) =
∣∣∣∣∣ 1 1
2 3

∣∣∣∣∣ = 1 6= 0.

Donc (S) est un système de Cramer et l’unique solution est

x =

∣∣∣∣∣ 5 1
6 3

∣∣∣∣∣∣∣∣∣∣ 1 1
2 3

∣∣∣∣∣
= 9

1 = 9, y =

∣∣∣∣∣ 1 5
2 6

∣∣∣∣∣∣∣∣∣∣ 1 1
2 3

∣∣∣∣∣
= −41 = −4.
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Réduction des endomorphismes
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Réduction des endomorphismes

Rappel
Soit E un K-espace vectoriel.

Une application linéaire de E dans E est appelée un endomorphisme.
L’espace vectoriel des endomorphismes est noté End(E ).
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Réduction des endomorphismes
Soient E un K-e.v de dimension finie et f ∈ End(E ). On se fixe une base
B de E .
On considère la matrice MB(f ) de f par rapport à la base B : on prend la
même base pour E comme ensemble de départ que pour E comme
ensemble d’arrivée.
Si B = (~e1, · · · ,~en) et les composantes de chaque f (~ej) dans la base B
sont

f (~ej) =


a1j
a2j
...
anj


B

alors

MB(f ) =


a11 a12 · · · a1m
a21 a22 · · · a2m
... . . .

...
...

an1 an2 · · · anm

 .
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Réduction des endomorphismes

Exemple
Soit f l’endomorphisme de R2 définie par

f : R2 → R2, f (x , y) = (x + 2y ,−x + 4y).

Considérons R2 muni de la base canonique Can = (~e1,~e2). Alors

f (~e1) = f (1, 0) = (1,−1) =
(

1
−1

)
Can

,

f (~e2) = (0, 1) = (2, 4) =
(

2
4

)
Can

.

Donc
MCan(f ) =

(
1 2
−1 4

)
.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 177 / 315



Réduction des endomorphismes

Si on considère maintenant R2 muni de la base B = (~u, ~v) où

~u = (2, 1), ~v = (1, 1)

alors
f (~u) = f (2, 1) = (4, 2) = 2~u =

(
2
0

)
B

f (~v) = f (1, 1) = (3, 3) = 3~v =
(

0
3

)
B

et donc
MB(f ) =

(
2 0
0 3

)
.
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Réduction des endomorphismes

On voit que les deux matrices de f , par rapport aux différentes bases Can
et B

MCan(f ) =
(

1 2
−1 4

)
, MB(f ) =

(
2 0
0 3

)
sont très différentes.
La dernière matrice est plus simple.
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Réduction des endomorphismes

La matrice associée à un endomorphisme f dépend de la base choisie :
pour deux bases B1,B2, les matrices MB1(f ), MB2(f ) ne sont pas
forcément identiques.

L’objectif de la réduction d’un endomorphisme, c’est de trouver une base
B dans laquelle MB(f ) soit la plus simple possible.

Les matrices les plus simples sont les matrices diagonales :
a11 0 · · · 0
0 a22

. . . ...
... . . . . . . 0
0 · · · 0 ann

 .

Elles sont simples : la somme, la multiplication, la puissance n-ème, ... etc,
se ramène à des opérations simples.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 180 / 315



Réduction des endomorphismes

Exemple
Si

A =


α1 0 · · · 0
0 α2

. . . ...
... . . . . . . 0
0 · · · 0 αp

 , B =


β1 0 · · · 0
0 β2

. . . ...
... . . . . . . 0
0 · · · 0 βp


alors

AB =


α1β1 0 · · · 0
0 α2β2

. . . ...
... . . . . . . 0
0 · · · 0 αpβp


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Réduction des endomorphismes

Si

A =


λ1 0 · · · 0
0 λ2

. . . ...
... . . . . . . 0
0 · · · 0 λp


alors, pour tout n ∈ N

An =


λn

1 0 · · · 0
0 λn

2
. . . ...

... . . . . . . 0
0 · · · 0 λn

p

 .
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Réduction des endomorphismes : Définition, propriétés

Définition
On dit d’un endomorphisme f qu’il est diagonalisable, s’il existe une base
B de E telle que MB(f ) est diagonale :

MB(f ) =


a11 0 · · · 0
0 a22

. . . ...
... . . . . . . 0
0 · · · 0 ann

 .
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Réduction des endomorphismes : Définition, propriétés

Exemple
Reprenons l’exemple précédent

f : R2 → R2, f (x , y) = (x + 2y ,−x + 4y).

Alors, dans la base B = (~u, ~v) où

~u = (2, 1), ~v = (1, 1)

la matrice de f est
MB(f ) =

(
2 0
0 3

)
et donc f est diagonalisable.
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Réduction des endomorphismes : Définition, propriétés

Comment peut-on définir la diagonalisation d’une matrice ?
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Réduction des endomorphismes : Définition, propriétés

Rappel
Si A ∈Mn(K), alors l’application linéaire associée à A est définie par

fA : Kn → Kn, fA(x1, · · · , xn) = A ·


x1
x2
...
xn

 .

Remarquons que A est la matrice de fA par rapport à la base canonique :
MCan(fA) = A.
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Réduction des endomorphismes : Diagonalisation

On définit maintenant la diagonalisation d’une matrice en utilisant son
application linéaire associée ...

Définition
On dit d’une matrice carrée A ∈Mn(K) qu’elle est diagonalisable, si
l’application linéaire qui lui est associée est diagonalisable.
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Réduction des endomorphismes : Diagonalisation

Rappelons que si B est une base de Kn et A ∈Mn(K) alors

A = MCan(f ) = PCan,B ·MB(f ) · PB,Can

et PB,Can = P−1
Can,B.

Donc en particulier, si A est diagonalisable, alors il existe une matrice
diagonale D et une matrice inversible P telles que A = PDP−1.
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Réduction des endomorphismes : Diagonalisation

Inversement, supposons que A = PDP−1 où D est diagonale et P est
inversible.
Si on prend pour B la famille B = (~u1, · · · , ~un) où ~ui est le i-ième vecteur
colonne de la matrice P ; comme P est inversible, det(P) 6= 0, B est une
famille libre et est donc une base de Kn.
Donc en particulier, P est la matrice de passage de Can à B et D est la
matrice de fA dans la base B.
Donc A est diagonalisable.
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Réduction des endomorphismes : Diagonalisation

Définition
On dit que la matrice A est semblable à B s’il existe une matrice inversible
P telle que A = PBP−1.

Donc on avait montré la proposition importante suivante :

Proposition
Une matrice A est diagonalisable si et seulement si elle est semblable à une
matrice diagonale.
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Réduction des endomorphismes : Diagonalisation

Remarques (en pratique)
Si A est diagonalisable et si B est la base dans laquelle A (ou
l’application linéaire qui lui est associée) est représentée par une
matrice diagonale D alors

A = PDP−1

où P = PCan,B est la matrice de passage de la base canonique Can à
B.
Diagonaliser une matrice carrée A revient à trouver une matrice
diagonale D et une matrice inversible P telles que A = PDP−1. On
cherche une base B, dans laquelle A est représentée par une matrice
diagonale D et on prend P la matrice de passage de la base
canonique à B.
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Réduction des endomorphismes : Diagonalisation

Comment peut-on, en pratique, trouver une telle matrice diagonale D ?

Pour cela, quelques notions sont nécessaires ...
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Réduction des endomorphismes

Vecteurs propres, valeurs propres
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Réduction des endomorphismes : Vecteurs propres, valeurs
propres

Définition (Vecteurs propres, valeurs propres)
Soit f ∈ End(E ).

Un vecteur ~u ∈ E est un vecteur propre de f si :
~u 6= ~0,
il existe un scalaire λ ∈ K tel que f (~u) = λ~u.

Un scalaire λ ∈ K est une valeur propre de f s’il existe ~u ∈ E tels que
~u 6= ~0 et f (~u) = λ~u.
Si ~u est un vecteur propre de f , l’unique scalaire λ vérifiant
f (~u) = λ~u est appelé la valeur propre associée à ~u.
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Réduction des endomorphismes : Vecteurs propres, valeurs
propres

Remarque
Si ~u est un vecteur propre de f , alors pour tout scalaire α non nul, α~u est
un vecteur propre de f .
En effet,

f (α~u) = αf (~u) = αλ~u = λ(α~u).
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Réduction des endomorphismes : Vecteurs propres, valeurs
propres

On définit les valeurs propres et les vecteurs propres des matrices, en
utilisant les applications linéaires associées.

Un vecteur ~u ∈ E est un vecteur propre de A s’il est pour l’application
linéaire associée.
De même, un scalaire λ ∈ K est une valeur propre de A si elle l’est
pour l’application linéaire associée.
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Réduction des endomorphismes : Vecteurs propres, valeurs
propres

Cela revient à dire :
Un vecteur ~u = (x1, . . . , xn) ∈ E est un vecteur propre de A si ~u 6= 0
et s’il existe un scalaire λ ∈ K tel que :

A ·

 x1
...
xn

 = λ

 x1
...
xn


De même, un scalaire λ ∈ K est une valeur propre de A s’il existe
~u = (x1, . . . , xn) ∈ E tels que ~u 6= ~0 et

A ·

 x1
...
xn

 = λ

 x1
...
xn


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Réduction des endomorphismes : Vecteurs propres, valeurs
propres

Proposition
L’endomorphisme f est diagonalisable, si et seulement si, il existe une base
de E formée de vecteurs propres de f .

Preuve
Si f est diagonalisable, alors il existe une base B = (~u1, . . . , ~un) de E telle
que

MB(f ) =


λ1 0 · · · 0
0 λ2

. . . ...
... . . . . . . 0
0 · · · 0 λn

 .
Donc pour tout 1 ≤ i ≤ n, f (~ui ) = λi~ui . D’où ~ui est un vecteur propre.
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Réduction des endomorphismes : Vecteurs propres, valeurs
propres

Réciproquement, si E admet une base B = (~u1, . . . , ~un) formée de vecteurs
propres de f , alors pour tout 1 ≤ i ≤ n, il existe λi tel que f (~ui ) = λi~ui .
Donc

MB(f ) =


λ1 0 · · · 0
0 λ2

. . . ...
... . . . . . . 0
0 · · · 0 λn


et f est diagonalisable.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 199 / 315



Réduction des endomorphismes : Vecteurs propres, valeurs
propres

La traduction de la proposition 1 pour les matrices :

Proposition
Une matrice carrée A ∈Mn(K) est diagonalisable ssi elle possède n
vecteurs propres formant une base de Kn.
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Réduction des endomorphismes

Sous-espaces propres
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Réduction des endomorphismes : Sous-espaces propres

Rappel
Soient U et V deux s.e.v du K-e.v E .

On appelle somme de U et V l’ensemble défini par

U + V = {~u + ~v | ~u ∈ U, ~v ∈ V }.

On dit que la somme U + V est directe si U ∩ V = {~0}.
On dit du s.e.v F qu’il est la somme directe de U et V si

F = U + V ;
U ∩ V = {~0}.

On écrit F = U ⊕ V .
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Réduction des endomorphismes : Sous-espaces propres

Plus généralement, soient U1, . . . ,Um, des s.e.v de E . On dit que E est la
somme directe de U1, . . . ,Um et on écrit E = U1 ⊕ U2 ⊕ · · · ⊕ Um si :

E = U1 + U2 · · ·+ Um = {~u1 + · · ·+ ~um | ~ui ∈ Ui},
pour tout ~u1 ∈ U1, ~u2 ∈ U2, . . . , ~um ∈ Um :

si ~u1 + · · ·+ ~um = ~0 alors ~ui = ~0 pour tout 1 ≤ i ≤ m.

Propriété
Soient U1, . . . ,Um, des s.e.v de E . Pour chaque 1 ≤ i ≤ m , soit Bi une
base de Ui . Alors E est la somme directe de U1, . . . ,Um, si et seulement
si, B1 ∪ B2 ∪ · · · ∪ Bm est une base de E .
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Réduction des endomorphismes : Sous-espaces propres

Définition
Soit f un endomorphisme de E et soit λ une valeur propre de f . On
appelle sous-espace propre associé à la valeur propre λ de f , le sous-espace
vectoriel

Eλ(f ) = Ker(f − λIdE ) = {~u ∈ E | f (~u) = λ~u}.
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Réduction des endomorphismes : Sous-espaces propres

Si A ∈Mn(K) et λ une valeur propre de A, on définit d’une façon similaire
le sous-espace propre associé à la valeur propre λ de A

Eλ(A) = {~u ∈ E | A~u = λ~u}.
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Réduction des endomorphismes : Sous-espaces propres

Proposition
L’endomorphisme f est diagonalisable, si et seulement si, E est somme
directe de ses sous-espaces propres.

Autrement dit, si λ1, . . . , λm sont les valeurs propres de f , deux à deux
distinctes, f est diagonalisable si et seulement si

E = Eλ1(f )⊕ · · · ⊕ Eλm (f ).
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Réduction des endomorphismes : Sous-espaces propres

Corollaire
Si λ1, . . . , λm sont les valeurs propres de f , deux à deux distinctes, f est
diagonalisable si et seulement si

dim(E ) = dim(Eλ1(f )) + · · ·+ dim(Eλm (f )).

Corollaire
Si dim(E ) = n et f admet n valeurs propres distinctes, alors f est
diagonalisable.
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Réduction des endomorphismes

Polynôme caractéristique
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Réduction des endomorphismes : Polynôme caractéristique

Définition
Soit A ∈Mn(K). Soit

PA(X ) = det(A− XIn).

Alors PA(X ) est un polynôme de degré n, appelé le polynôme
caractéristique de A.
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Réduction des endomorphismes : Polynôme caractéristique

Exemple
Soit

A =
(

1 3
4 2

)
.

Alors

A− XI2 =
(

1 3
4 2

)
− X

(
1 0
0 1

)
=
(

1 3
4 2

)
−
(

X 0
0 X

)

=
(

1− X 3
4 2− X

)
.

On a

PA(X ) =
∣∣∣∣∣ 1− X 3

4 2− X

∣∣∣∣∣ = (1− X )(2− X )− 12 = X 2 − 3X − 10.
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Réduction des endomorphismes : Polynôme caractéristique
Soit f ∈ End(E ). Soient B1,B2 deux bases de E . Alors

MB1(f ) = P−1MB2(f )P

où P est la matrice de passage de B2 à B1. On a

det(MB1(f )− XIn) = det(P−1MB2(f )P − XIn)

= det(P−1(MB2(f )− XIn)P) = det(MB2(f )− XIn).
Cela permet de définir :

Définition
Soit f ∈ End(E ). Soit B une base de E . On définit le polynôme
caractéristique de f par :

Pf (X ) = det(MB(f )− XIn).

(Donc il ne dépend pas de la base B).
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Réduction des endomorphismes : Polynôme caractéristique

Proposition 5
Soit A ∈Mn(K) et λ ∈ K. Alors λ est une valeur propre de A, si et
seulement si, λ est racine du polynôme caractéristique de A.

Preuve
Si λ est une valeur propre de A, alors il existe ~u avec ~u 6= 0 tel que
A~u = λ~u. Donc (A− λIn)~u = ~0. Donc A− λIn n’est pas inversible et
donc det(A− λIn) = 0.
Si det(A− λIn) = 0, alors A− λIn n’est pas inversible et donc il existe
~u avec ~u 6= 0 tel que (A− λIn)~u = ~0 et donc ~u 6= 0 tel que A~u = λ~u.
Donc λ est une valeur propre.
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Réduction des endomorphismes : Polynôme caractéristique

Exemple
Soit

A =
(

1 0
5 2

)
.

On a
PA(X ) =

∣∣∣∣∣ 1− X 0
5 2− X

∣∣∣∣∣ = (1− X )(2− X ).

Donc les valeurs propres de A sont 1 et 2.
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Réduction des endomorphismes : Polynôme caractéristique

Rappel sur les polynômes
Une racine λ d’un polynôme P(X ) ∈ K[X ], est une racine de
multiplicité m si (X − λ)m divise P(X ) mais (X − λ)m+1 ne divise pas
P(X ).
Un polynôme P(X ) ∈ K[X ], de degré n, est dit scindé dans K[X ], s’il
peut s’écrire sous la forme

P(X ) = a(X − λ1)m1 · · · (X − λp)mp

où mi ∈ N∗, a ∈ K∗, λi ∈ K (et m1 + · · ·+ mp = n).
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Réduction des endomorphismes : Polynôme caractéristique

Exemple
(1) Soit

P(X ) = X 3 − 5X 2 + 7X − 3.

Alors
P(X ) = (X − 1)2(X − 3).

La multiplicité de la racine λ1 = 1 est 2 et la multiplicité de la racine
λ2 = 3 est 1. On voit aussi que P est scindé dans R[X ] mais aussi dans
C[X ].

(2) Le polynôme P(X ) = X 2 + X + 1 n’est pas scindé dans R[X ] car il
n’admet pas de racine réelle. Par contre il est scindé dans C[X ] :
P(X ) = (X − j)(X − j̄) où j = eiπ/3.
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Réduction des endomorphismes : Polynôme caractéristique

Définition
Soit A ∈Mn(K) et λ ∈ K une valeur propre de A.

La multiplicité algébrique de λ est la multiplicité de λ comme racine
de PA(X ).
La multiplicité géométrique de λ est la dimension du sous-espace
propre Eλ(A).
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Réduction des endomorphismes

Diagonalisation
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Réduction des endomorphismes : Diagonalisation

Théorème (CNS pour la diagonalisation)
Soit A ∈Mn(K). Alors A est diagonalisable si et seulement si les
propriétés suivantes sont satisfaites :

Le polynôme caractéristique PA(X ) est scindé dans K[X ] : dans ce cas

PA(X ) = (−1)n(X − λ1)m1 · · · (X − λp)mp

où λ1, . . . , λp sont les valeurs propres ; mi est la multiplicité
algébrique de λi .
Pour chaque valeur propre λi , sa multiplicité algébrique coïncide avec
sa multiplicité géométrique : dim(Eλi (A)) = mi .
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Réduction des endomorphismes : Diagonalisation–mise en
pratique

On calcule le polynôme caractéristique PA(X ).
On cherche les racines de PA(X ), λ1, · · · , λp, et les multiplicités
algébriques m1, . . . ,mp.

Si PA(X ) n’est pas scindé, alors A n’est pas diagonalisable.
Si PA(X ) est scindé, on cherche les bases des sous-espaces propres
Eλi (A). Si pour chaque i , dim(Eλi (A)) = mi , alors A est
diagonalisable :

D =



λ1 0 · · · · · · · · · · · · 0

0
. . . 0 · · · · · · · · · 0

0 · · · λ1 · · · · · · · · · 0

0 · · · 0
. . . · · · · · · 0

0 · · · · · · 0 λp · · · 0

0 · · · · · · · · · 0
. . . 0

0 · · · · · · · · · · · · · · · λp


.

où chaque λi est répété mi -fois.
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Réduction des endomorphismes : Diagonalisation–mise en
pratique

Dans ce cas, si Bi est une base de Eλi (A), alors B = B1 ∪ · · · ∪ Bp est une
base de Kn formée de vecteurs propres de A. On a alors A = PDP−1 où P
est la matrice de passage de la base canonique à B.
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Réduction des endomorphismes : Diagonalisation–Exemples
(1) Soit

A =
(

1 −3
3 4

)
.

On a
PA(X ) =

∣∣∣∣∣ 1− X −3
3 4− X

∣∣∣∣∣ = X 2 − 5X + 13.

Le discriminant est strictement négatif et donc PA(X ) n’admet pas de
racines dans R. Donc A n’est pas diagonalisable dans R.
(2) Soit

A =
(

1 2
−1 4

)
.

On a

PA(X ) =
∣∣∣∣∣ 1− X 2
−1 4− X

∣∣∣∣∣ = X 2 − 5X + 6 = (X − 2)(X − 3)

et donc les valeurs propres sont λ1 = 2 et λ2 = 3.
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Réduction des endomorphismes : Diagonalisation–Exemples
Comme A ∈M2(R) et PA(X ) admet deux racines distinctes, A est
diagonalisable (on applique ici le corollaire 2). La matrice diagonale est

D =
(

2 0
0 3

)
. On a

Eλ1(A) = {(x , y) ∈ R2 | A
(

x
y

)
= 2

(
x
y

)
} = Vect((2, 1))

Eλ2(A) = {(x , y) ∈ R2 | A
(

x
y

)
= 3

(
x
y

)
} = Vect((1, 1)).

En posant ~u = (2, 1), ~v = (1, 1), B = (~u, ~v) est une base de R2 formée de
vecteurs propres de A. La matrice de passage de la base canonique à B est

P =
(

2 1
1 1

)
.

On a
A = P

(
2 0
0 3

)
P−1.
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Réduction des endomorphismes : Diagonalisation–Exemples

(3) Soit

A =

 3 0 −1
2 4 2
−1 0 3

 .
1. Polynôme caractéristique : on a

PA(X ) =

∣∣∣∣∣∣∣
3− X 0 −1

2 4− X 2
−1 0 3− X

∣∣∣∣∣∣∣ = (4− X )
∣∣∣∣∣ 3− X −1
−1 3− X

∣∣∣∣∣
= (2− X )(4− X )2.

Donc A possède deux valeurs propres : 2 de multiplicité algébrique 1 (on
dit qu’elle est simple) et 4 de multiplicité algébrique 2 (on dit qu’elle est
double). En plus PA est scindé.
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Réduction des endomorphismes : Diagonalisation–Exemples

2. Sous-espaces propres : on a

E2(A) = {(x , y , z) ∈ R3 | A

 x
y
z

 = 2

 x
y
z

}.

E4(A) = {(x , y , z) ∈ R3 | A

 x
y
z

 = 4

 x
y
z

}.
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Réduction des endomorphismes : Diagonalisation–Exemples

En résolvant le système homogène A

 x
y
z

 = 2

 x
y
z

, par la méthode

de Gauss par exemple, on obtient E2(A) = Vect(~u), où ~u = (1,−2, 1).
De même
E4(A) = Vect(~v , ~w), où ~v = (0, 1, 0), ~w = (1, 0,−1).
Donc la multiplicité géométrique de la valeur propre 2 est 1 et celle de la
valeur propre 4 est 2.

3. Diagonalisabilité : comme PA est scindé et la multiplicité algébrique de
chaque valeur propre coïncide avec sa multiplicité géométrique, A est
diagonalisable.
4. Diagonalisation : on a

D =

 2 0 0
0 4 0
0 0 4

 , P =

 1 0 1
−2 1 0
1 0 −1

 , A = PDP−1.
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Réduction des endomorphismes

Théorème de Cayley-Hamilton
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Réduction des endomorphismes : Théorème de
Cayley-Hamilton

Soit E un K-e.v et P ∈ K[X ]

P(X ) = anXn + · · ·+ a1X + a0.

Si f ∈ End(E ), on note P(f ) l’endomorphisme de E défini par

P(f ) = anf n + · · ·+ a1f + a0IdE ,

où f k = f ◦ f ◦ · · · ◦ f
k−fois

.

De même si A ∈Mm(K), alors P(A) est définie par

P(A) = anAn + · · ·+ a1A + a0Im.
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Réduction des endomorphismes : Théorème de
Cayley-Hamilton

Théorème (Théorème de Cayley-Hamilton)
Soit f ∈ End(E ) (resp. A ∈Mn(K)) et Pf (X ) son polynôme
caractéristique (resp. PA(X )). Alors Pf (f ) = 0 (resp. PA(A) = 0).
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Réduction des endomorphismes : Théorème de
Cayley-Hamilton

Exemple
Soit

A =
(

1 3
4 1

)
.

Son polynôme caractéristique est

PA(X ) =
∣∣∣∣∣ 1− X 2

4 1− X

∣∣∣∣∣ = (1− X )2 − 8 = X 2 − 2X − 7.

D’après le théorème, on a A2 − 2A− 7I2 = la matrice nulle .
Cela permet par exemple de calculer A2 en utilisant A et la matrice
identité I2.
On a aussi A · (1

7(A− 2I2)) = I2 et on déduit que A−1 = 1
7(A− 2I2).
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Espace vectoriel muni d’un produit scalaire, diagonalisation des matrices
symétriques et hermitiennes
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Espace vectoriel muni d’un produit scalaire, diagonalisation
des matrices symétriques et hermitiennes

Nous avons vu que dans un espace vectoriel nous pouvons additionner des
vecteurs et les multiplier par des scalaires.

Pouvons-nous aller plus et définir des notions comme les longueurs, les
angles et l’orthogonalité ?

Le produit scalaire est une nouvelle opération qui s’ajoute aux lois
s’appliquants aux vecteurs, à savoir l’addition et la multiplication scalaire,
et qui permet donc d’utiliser les notions usuelles de géométrie comme les
longueurs, les distances, les angles et l’orthogonalité.

Le produit scalaire permet d’étendre ces notions à des espaces vectoriels
réels ou complexes de toute dimension.
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Produit scalaire

Rappelons que dans R3 le produit scalaire est défini par (en utilisant la
notation matricielle)

〈~u|~v〉 =
(
x y z

)
·

x ′y ′
z ′

 = xx ′ + yy ′ + zz ′

On remarque que ce produit scalaire satisifait les propriétés :
en fixant ~u, l’application ~x 7→ 〈~u|~x〉 est linéaire ; de même
l’application ~u 7→ 〈~x |~u〉 est linéaire ; on dit qu’elle est bilinéaire ;
symétrie : pour tous ~u, ~v , 〈~u|~v〉 = 〈~v |~u〉
positivité : pour tout ~u, 〈~u|~u〉 = x2 + y2 + z2 ≥ 0 ;
définie : pour tout tout ~u, 〈~u|~u〉 = 0⇒ ~u = 0.

Il s’avère que ces trois propriétés sont les plus élémentaires qui permettent
de généraliser les “propriétés géométriques” recherchées aux espaces
abstraits ...
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Produit scalaire

Nous distinguerons le cas réel et le cas complexe pour définir le produit
scalaire.
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Produit scalaire réel

Définition
Soit E un R-espace vectoriel. Une application ϕ : E × E → R est appelée
forme bilinéaire si :

ϕ est linéaire à droite : pour tout a ∈ E fixé, l’application ϕa : E → R
définie par ϕa(y) = ϕ(a, y) est linéaire.
ϕ est linéaire à gauche : pour tout b ∈ E fixé, l’application
ϕb : E → R définie par ϕb(x) = ϕ(x , b) est linéaire.
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Produit scalaire réel

Exemple
En prenant E = R l’application

R× R→ R, ϕ(x , y) = xy

est une forme bilinéaire sur E . En effet :
ϕ est linéaire à droite : pour tout a ∈ R fixé, l’application ϕa : R→ R
définie par ϕa(y) = ay est évidemment linéaire.
ϕ est linéaire à gauche : pour tout b ∈ R fixé, l’application
ϕb : R→ R définie par ϕb(x) = xb est évidemment linéaire.

On remarque par contre que ϕ elle-même n’est pas linéaire (exercice).
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Produit scalaire réel

Définition
Une forme bilinéaire ϕ : E × E → R est

symétrique si ϕ(x , y) = ϕ(y , x) pour tous x , y ∈ E .
positive si ϕ(x , x) ≥ 0 pour tout x ∈ E .
définie si pour tout x ∈ E ,

ϕ(x , x) = 0⇒ x = 0.
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Produit scalaire réel

Exemple
Dans R2, l’application

ϕ : R2 × R2 → R, ϕ((x1, x2), (y1, y2)) = x1y1 + x2y2

est une forme bilinéaire (exercice) symétrique et définie positive. En effet :
ϕ est symétrique : on a

ϕ((x1, x2), (y1, y2)) = x1y1 + x2y2 = y1x1 + y2x2 = ϕ((y1, y2), (x1, x2))

et donc ϕ est symétrique.
ϕ est définie positive : on a

ϕ((x1, x2), (x1, x2)) = x2
1 + x2

2 ≥ 0

et ϕ((x1, x2), (x1, x2)) = 0 si et seulement si (x1, x2) = (0, 0).
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Produit scalaire réel

Définition
Soit E un R-espace vectoriel. On appelle produit scalaire sur E toute
forme bilinéaire sur E qui est symétrique et définie positive.

Un R-espace vectoriel muni d’un produit scalaire est appelé un espace
préhilbertien. S’il est de dimension finie alors est appelé un espace
euclidien.

Notation
Si ϕ : E × E → R est un produit scalaire, alors ϕ(x , y) est noté 〈x |y〉.
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Produit scalaire réel

Exemple : Produit scalaire canonique de Rn

Dans Rn, le produit scalaire canonique, est défini par

〈(x1, . . . , xn)|(y1, . . . , yn)〉 = x1y1 + · · ·+ xnyn.
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Produit scalaire réel

Exemple
Soit E = C([a, b]) le R-e.v des applications continues de l’intervalle [a, b]
dans R. Alors l’application

E × E → R, (f , g)→ 〈f |g〉 =
∫ b

a
f (x)g(x) dx

est un produit scalaire. En effet
bilinéarité : conséquence de la linéarité de l’intégrale ;
symétrie : 〈f |g〉 = 〈g |f 〉 est évidente ;

positivité : 〈f |f 〉 =
∫ b

a
f (x)2 dx ≥ 0 car l’intégrale d’une fonction

positive est positive ;
définie : 〈f |f 〉 = 0⇒ f = 0 ; propriété de l’intégrale de Riemann.
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Produit scalaire réel

Exemple
Soit E =Mn(R) le R-e.v des matrices carrées n × n. Alors l’application

E × E → R, (A,B)→ 〈A|B〉 = Tr(At · B)

est un produit scalaire (où pour une matrice M, Tr(M) désigne la trace de
M et Mt désigne la transposée de M).
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Produit scalaire réel

Exercice
Soit E = R2. Pour (x , y), (x ′, y ′) ∈ E , on pose

ϕ((x , y), (x ′, y ′)) = xx ′ + 12(xy ′ + yx ′) + yy ′.

Montrer que ϕ est un produit scalaire sur E .
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Produit scalaire complexe

Définition
Soit E un C-espace vectoriel. Une application ϕ : E × E → C est appelée
forme sesquilinéaire sur E si :

pour tout b ∈ E fixé, l’application ϕb : E → C définie par
ϕb(x) = ϕ(x , b) est linéaire.
pour tout a ∈ E fixé, l’application ϕa : E → C définie par
ϕa(y) = ϕ(a, y) est semi-linéaire :

ϕ(a, y1 + y2) = ϕ(a, y1) + ϕ(a, y2), pour tout y1, y2 ∈ E

ϕ(a, λy) = λ̄ϕ(a, y), pour tout y ∈ E et λ ∈ C.
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Produit scalaire complexe

Exemple
En prenant E = C l’application

C× C→ C, ϕ(x , y) = xy

est une forme sesquilinéaire sur E . En effet :
pour tout b ∈ C fixé, l’application ϕb : C→ C définie par ϕb(x) = xb
est linéaire.
pour tout a ∈ C fixé, l’application ϕa : C→ C définie par ϕa(y) = ay
est semi-linéaire :

ϕa(y1 + y2) = a(y1 + y2) = ay1 + ay2 = ϕa(y1) + ϕa(y2)

ϕa(λy) = aλy = aλy = λϕa(y).
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Produit scalaire complexe

Définition
Une forme sesquilinéaire ϕ : E × E → C est

hermitienne si ϕ(x , y) = ϕ(y , x), pour tout x , y ∈ E .
positive si ϕ(x , x) ≥ 0 pour tout x ∈ E .
définie si pour tout x ∈ E ,

ϕ(x , x) = 0⇒ x = 0.
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Produit scalaire complexe

Exemple
Dans C2, l’application

ϕ : C2 × C2 → C, ϕ((x1, x2), (y1, y2)) = x1y1 + x2y2

est une forme sesquilinéaire (exercice) hermitienne et définie positive. En
effet :

ϕ est hermitienne : on a

ϕ((x1, x2), (y1, y2)) = x1y1 + x2y2 = y1x1 + y2x2 = ϕ((y1, y2), (x1, x2))

et donc ϕ est hermitienne.
ϕ est définie positive : on a
ϕ((x1, x2), (x1, x2)) = x1x1 + x2x2 = |x1|2 + |x2|2 ≥ 0 et
ϕ((x1, x2), (x1, x2)) = 0⇒ (x1, x2) = (0, 0).
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Produit scalaire complexe

Définition
Soit E un C-espace vectoriel. On appelle produit scalaire sur E toute
forme sesquilinéaire sur E qui est hermitienne et définie positive.

Un C-espace vectoriel muni d’un produit scalaire est appelé un espace
préhilbertien. S’il est de dimension finie alors il est appelé hermitien.

Notation
Si ϕ : E × E → C est un produit scalaire, alors ϕ(x , y) est noté 〈x |y〉.
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Produit scalaire complexe

Exemple : Produit scalaire canonique de Cn

Dans Cn, le produit scalaire canonique, est défini par

〈(x1, . . . , xn)|(y1, . . . , yn)〉 = x1y1 + · · ·+ xnyn.
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Produit scalaire complexe

Récapitulatif pour les R-espaces vectoriels
Soit E un R-espace vectoriel.

On appelle produit scalaire sur E toute forme bilinéaire sur E qui est
symétrique et définie positive.
Un R-espace vectoriel muni d’un produit scalaire est appelé un espace
préhilbertien.
Un R-espace vectoriel de dimension finie muni d’un produit scalaire
est appelé un espace euclidien.
Produit scalaire canonique de Rn : le produit scalaire canonique de
Rn, est défini par

〈(x1, . . . , xn)|(y1, . . . , yn)〉 = x1y1 + · · ·+ xnyn.
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Produit scalaire complexe

Récapitulatif pour les C-espaces vectoriels
Soit E un C-espace vectoriel.

On appelle produit scalaire sur E toute forme sesquilinéaire sur E qui
est hermitienne et définie positive.
Un C-espace vectoriel muni d’un produit scalaire est appelé un espace
préhilbertien.
Un C-espace vectoriel de dimension finie muni d’un produit scalaire
est appelé un espace hermitien.
Produit scalaire canonique de Cn : le produit scalaire canonique de
Cn, est défini par

〈(x1, . . . , xn)|(y1, . . . , yn)〉 = x1y1 + · · ·+ xnyn.
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Propriétés géométriques

Rappel
Si ϕ : E × E → K est un produit scalaire, alors ϕ(x , y) est noté 〈x |y〉.
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Propriétés géométriques

Dans la suite E est un K-espace vectoriel préhilbertien. Donc un espace
vectoriel, réel ou complexe, muni d’un produit scalaire noté 〈x |y〉.
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Propriétés géométriques : Norme associée

Définition
Nous avons pour tout x ∈ E , 〈x |x〉 ≥ 0 ; on pose alors

‖x‖ =
√
〈x |x〉

qu’on appelle la norme de x ;

Exemple
Dans R2 muni du produit scalaire canonique〈

(x , y)|(x ′, y ′)
〉

= xx ′ + yy ′

on retombe sur la notion usuelle de norme (ou longueur)

‖~u‖ =
√
〈(x , y)|(x , y)〉 =

√
x2 + y2
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Propriétés géométriques : Norme associée

Proposition
Pour tous x , y ∈ E et pour tout λ ∈ K on a :

‖x‖ ≥ 0,
‖λx‖ = |λ|‖x‖,
‖x‖ = 0 si et seulement si x = 0,
‖x + y‖ ≤ ‖x‖+ ‖y‖ (Inégalité triangulaire),
‖x + y‖2 = ‖x‖2 + 2Re(〈x |y〉) + ‖y‖2.
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Propriétés géométriques : Distance associée

Définition
Pour tous x , y ∈ E , on pose d(x , y) = ‖x − y‖ qu’on appelle la distance
entre x et y .

Exemple
Dans R2 muni du produit scalaire canonique〈

(x , y)|(x ′, y ′)
〉

= xx ′ + yy ′

on retombe également sur la notion usuelle de distance

d((x , y), (x ′, y ′)) =
√
〈(x − x ′, y − y ′)|(x − x ′, y − y ′)〉

=
√

(x − x ′)2 + (y − y ′)2.
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Propriétés géométriques : Distance associée

Proposition
Pour tous x , y ∈ E et pour tout λ ∈ K on a :

pour tous x , y ∈ E , d(x , y) ≥ 0,
pour tous x , y ∈ E , d(x , y) = 0 si et seulement si x = y ,
pour tous x , y ∈ E , d(x , y) = d(y , x),
pour tous x , y , z ∈ E , d(x , y) ≤ d(x , z) + d(z , y) (Inégalité
triangulaire).
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Propriétés géométriques : Distance associée

Proposition (Identité du parallélogramme)
Dans tout espace préhilbertien E , on a pour tous x , y ∈ E

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2).

Dans un parallélogramme, la somme des carrés des longueurs des
diagonales est égale à la somme des carrés des longueurs des côtés.
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Propriétés géométriques : Distance associée

Proposition (Inégalité de Cauchy-Schwarz)
Dans tout espace préhilbertien E , on a pour tous x , y ∈ E

| 〈x |y〉 | ≤ ‖x‖ · ‖y‖

avec égalité si et seulement si x et y sont linéairement dépendants.
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Propriétés géométriques : Angle

Soient u et v deux vecteurs non nuls de E . On sait d’après l’inégalité de
Cauchy-Schwarz que ∣∣∣ 〈u|v〉‖u‖‖v‖

∣∣∣ ≤ 1

On peut donc trouver un unique angle α ∈ [0, π] tel que

cos(α) = 〈u|v〉
‖u‖‖v‖

Définition
Cet unique angle est appelé l’angle non orienté entre u et v .
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Propriétés géométriques : Orthogonalité

Définition
On dit que deux vecteurs x , y ∈ E sont orthogonaux si 〈x |y〉 = 0. On
écrit x⊥y .
Deux parties A et B de E sont dites orthogonales si pour tout a ∈ A
et pour tout b ∈ B, a et b sont orthogonaux. On écrit A⊥B.

Remarque
Remarquons que deux vecteurs u et v non nuls sont orthogonaux si et
seulement si l’angle non orienté formé entre u et v est π/2.
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Propriétés géométriques : Orthogonalité

Définition
Soit C = (u1, . . . , up) une famille de vecteurs d’un espace préhilbertien E .
On dit que C est orthogonale si ui⊥uj pour tout i , j ∈ {1, . . . , p} avec
i 6= j .
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Propriétés géométriques : Orthogonalité

Exemple
On munit R3 du produit scalaire canonique. Soit B = (u, v) la famille
définie par

u = ( 1√
3
,
1√
3
,
1√
3

), v = ( 1√
2
,
−1√
2
, 0)

est une famille orthogonale. En effet

〈u|v〉 = 1√
3
× 1√

2
− 1√

3
× 1√

2
= 0

et donc u et v sont orthogonaux.
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Propriétés géométriques : Orthogonalité

Théorème de Pythagore
Soit C = (u1, . . . , up) une famille orthogonale de vecteurs d’un espace
préhilbertien E . Alors ∥∥∥ p∑

i=1
ui
∥∥∥2

=
p∑

i=1
‖ui‖2.
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Propriétés géométriques : Orthogonalité

Proposition
Toute famille de vecteurs, ne contenant pas de vecteurs nuls, orthogonale
est libre.
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Propriétés géométriques : Projection orthogonale

Proposition
Soit A une partie non vide de E . L’ensemble des vecteurs de E qui sont
orthogonaux à tous les vecteurs de A, noté A⊥

A⊥ = {x ∈ E |x⊥y pour tout y ∈ A}

est un s.e.v de E appelé l’orthogonal de A.
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Proposition
Pour tout s.e.v F de dimension finie de E on a E = F ⊕ F⊥.
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Théorème (projection orthogonale)
Soit F un s.e.v de dimension finie de E . Pour tout vecteur x ∈ E , il existe
un unique vecteur y dans F tel que :

d(x , y) = d(x ,F ) = inf
z∈F

d(x , z).

C’est l’unique vecteur appartenant à F vérifiant x − y ∈ F⊥.

Pour x ∈ E , le vecteur y de F fourni par le théorème précédent peut être
vu comme la meilleure approximation de x dans F .

On dit que y est la projection orthogonale de x sur F . On note y = pF (x).

On a E = F ⊕ F⊥ et

x = pF (x) + (x − pF (x))

avec pF (x) ∈ F et x − pF (x) ∈ F⊥.
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Bases orthonormées, orthonormalisation

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 269 / 315



Définition
On dit d’un vecteur x ∈ E qu’il est unitaire si ‖x‖ = 1.

Définition
Soit C = (u1, . . . , up) une famille de vecteurs de E . On dit que C est
orthonormée si C est orthogonale et si ui est unitaire pour tout
i ∈ {1, . . . , p}.

Autrement dit, une famille C = (u1, . . . , un) de E est une base
orthonormée si

‖ui‖ = 1 pour tout i ∈ {1, . . . , n},
〈ui |uj〉 = 0 pour tout i , j avec i 6= j .
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Exemple
Reprenons un exemple précédent. On munit R3 du produit scalaire
canonique. Alors la famille B = (u, v) définie par

u = ( 1√
3
,
1√
3
,
1√
3

), v = ( 1√
2
,
−1√
2
, 0)

est une famille orthonormée. En effet (orthogonalité déjà vue)

〈u|v〉 = 1√
3
× 1√

2
− 1√

3
× 1√

2
= 0

et donc u et v sont orthogonaux. On a en plus

√
〈u|u〉 =

√
( 1√

3
)2 + ( 1√

3
)2 + ( 1√

3
)2 = 1

et de même
√
〈v |v〉 = 1.
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Définition
Une base de E qui forme une famille orthonormée est appelée base
orthonormée.

De même, une base B = (e1, . . . , en) de E est une base orthonormée si
‖ei‖ = 1 pour tout i ∈ {1, . . . , n},
〈ei |ej〉 = 0 pour tout i , j avec i 6= j .
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Exemple
Dans Rn muni du produit scalaire canonique

〈(x1, . . . , xn)|(y1, . . . , yn)〉 = x1y1 + · · ·+ xnyn

la base canonique Can = (e1, . . . , en) est une base orthonormée. Il faut
vérifier (exercice)

‖ei‖ = 1,
〈ei |ej〉 = 0 pour tout i , j avec i 6= j .
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Proposition (Lecture des composantes dans une base orthonormée)
Soit E un espace euclidien ou hermitien. Soit B = (e1, . . . , en) une base
orthonormée de E . Alors pour tout x ∈ E , on a

x = 〈x |e1〉 e1 + · · ·+ 〈x |en〉 en et ‖x‖2 = | 〈x |e1〉 |2 + · · ·+ | 〈x |en〉 |2.

Donc

x =

 〈x |e1〉
...

〈x |en〉


B
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Preuve
Écrivons x = λ1e1 + · · ·+ λnen ; donc en composantes dans la base B.
Alors par la bilinéarité du produit scalaire et l’orthonormalité de B

〈x |e1〉 = 〈λ1e1 + · · ·+ λnen|e1〉

= λ1 〈e1|e1〉+ · · ·+ λn 〈en|e1〉

= λ1 〈e1|e1〉 = λ1.

De même 〈x |ei〉 = λi et donc on a bien

x = 〈x |e1〉 e1 + · · ·+ 〈x |en〉 en et ‖x‖2 = | 〈x |e1〉 |2 + · · ·+ | 〈x |en〉 |2.
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Proposition (Lecture d’un produit scalaire dans une base
orthonormée)
Soit E un espace euclidien ou hermitien. Soit B = (e1, . . . , en) une base
orthonormée de E . Alors pour tout x , y ∈ E , si

x =

 x1
...
xn


B

, y =

 y1
...
yn


B

alors
〈x |y〉 = x1y1 + x2y2 + · · ·+ xnyn.

Autrement dit le produit scalaire dans ce cas, peut être vu comme le
produit scalaire canonique dans Rn.
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Proposition (Projection orthogonale)
Soit F un s.e.v. de dimension finie de E . Soit B = (e1, . . . , ep) une base
orthonormée de F .

Alors pour tout x ∈ E , la projection orthogonale de x sur F est donnée par

pF (x) = 〈x |e1〉 e1 + · · ·+ 〈x |ep〉 ep.
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Exemple
Dans R2 muni du produit scalaire canonique, calculons la projection
orthogonale d’un vecteur u sur la droite vectorielle F = Vect(v) engendrée
par le vecteur non nul v .

Une base orthonormée de F : en posant e = v
‖v‖ ,on obtient une base

orthonormée de F .
On a donc

pF (u) = 〈u|e〉 e =
〈
u| v
‖v‖

〉 v
‖v‖ = 〈u|v〉

‖v‖2 v = 〈u|v〉
〈v |v〉v .
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Exemple
Calculons la projection orthogonale de u = (2, 1, 1) sur la droite vectorielle
F = Vect((1, 1, 0)).

base orthonormée de F : ‖(1, 1, 0)‖ =
√
2 et donc en posant

e = ( 1√
2 ,

1√
2 , 0) on obtient une base orthonormée de F

On a

pF (u) = 〈u|e〉 e = ( 2√
2

+ 1√
2

)( 1√
2
,
1√
2
, 0) = (32 ,

3
2 , 0).
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Orthonormalisation de Gram-Schmidt
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Théorème d’orthonormalisation de Gram-Schmidt
Soit E un espace préhilbertien. Soit B = (e1, . . . , en) une famille libre de
E . Alors il existe une famille C = (f1, . . . , fn) de E , orthonormée et
vérifiant Vect(f1, . . . , fj) = Vect(e1, . . . , ej) pour tout 1 ≤ j ≤ n.

On construit les vecteurs f1, . . . , fn par récurrence, selon un procédé appelé
le procédé d’orthonormalisation de Gram-Schmidt, comme suit :

1 On pose f1 = e1
‖e1‖ .

2 Supposons que la famille (f1, . . . , fj) soit construite, 1 ≤ j ≤ n− 1, on
définit alors

f ′j+1 = ej+1 −
j∑

k=1
〈ej+1|fk〉 fk et fj+1 =

f ′j+1
‖f ′j+1‖

.
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Remarque
Remarquons que le vecteur

j∑
k=1
〈ej+1|fk〉 fk

est la projection orthogonale de ej+1 sur l’espace vectoriel engendré par
f1, f2, . . . , fj . Par conséquent, le vecteur

ej+1 −
j∑

k=1
〈ej+1|fk〉 fk

est orthogonal à l’espace vectoriel engendré par f1, f2, . . . , fj . Pour le rendre
unitaire il suffit de le diviser par sa norme

ej+1 −
∑j

k=1 〈ej+1|fk〉 fk∥∥∥ej+1 −
∑j

k=1 〈ej+1|fk〉 fk
∥∥∥ .
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Exemple
Dans R3 considérons u1 = (1,−1, 0); u2 = (0, 2, 1) et F = Vect(u1, u2)
et calculons une base orthonormée de F par le procédé de Gram-Schmidt.
On pose

v1 = u1
‖u1‖

= 1√
2

(1,−1, 0) = ( 1√
2
,
−1√
2
, 0)

on voit alors ‖v1‖ = 1 et Vect(u1) = Vect(v1). On a

u2 − 〈u2|v1〉 v1 = (0, 2, 1) +
√
2( 1√

2
,
−1√
2
, 0) = (1, 1, 1)

et on pose donc

v2 = u2 − 〈u2|v1〉 v1
‖u2 − 〈u2|v1〉 v1‖

= ( 1√
3
,
1√
3
,
1√
3

).

D’où (v1, v2) est une base orthonormée de F .
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Corollaire (Existence des bases orthonormées)
Tout espace euclidien ou hermitien admet des bases orthonormées.

Corollaire (Théorème de la base orthonormée incomplète)
Soit E un espace euclidien ou hermitien de dimension n ≥ 1. Soit
(e1, . . . , ep), où 1 ≤ p ≤ n − 1, une famille orthonormée de E . Alors il
existe ep+1, . . . , en de E tels que (e1, . . . , ep, ep+1, . . . , en) soit une base
orthonormée de E .
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Espace vectoriel muni d’un produit scalaire, diagonalisation des matrices
symétriques et hermitiennes
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Diagonalisation des matrices symétriques et hermitiennes
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Nous avons vu à la section sur la réduction des endomorphismes qu’étant
donnée une matrice A, on cherche une matrice diagonale D semblable à
A ; ou d’une façon équivalente, on cherche une base B dans laquelle A est
représentée par une matrice diagonale.

Dans les espaces euclidiens ou hermitiens, où nous disposons d’un produit
scalaire, on peut se demander, étant donnée une matrice A, s’il existe une
base orthonormée B dans laquelle A est représentée par une matrice
diagonale.

Nous verrons que les matrices qui vérifient cette propriété dans les espaces
euclidiens sont les matrices symétriques et dans les espaces hermitiens sont
les matrices hermitiennes.
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Matrices symétriques
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Définition
Soit A = (aij)1≤i≤n;1≤j≤m une matrice de type (n,m) à coefficients dans K

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
... . . .

...
...

an1 an2 · · · anm

 .

La transposée de A, notée tA, est la matrice de type (m, n) définie par :
pour 1 ≤ j ≤ n, la colonne j de tA est égale à ligne j de A.

tA =


a11 a21 · · · an1
a12 a22 · · · an2
... . . .

...
...

a1m a2m · · · anm

 .
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Exemple
Soit

A =

 1 2 3
4 5 6
7 8 9

 .
Alors

tA =

 1 4 7
2 5 8
3 6 9

 .
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Définition
On dit que A est symétrique si elle est égale à sa transposée.

A est symétrique si et seulement si A = tA.
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Exemple
La matrice

A =

 1 2 3
2 5 8
3 8 1


est symétrique, alors que la matrice

B =

 1 2 3
4 5 6
7 8 9


ne l’est pas car B 6= tB

tB =

 1 4 7
2 5 8
3 6 9

 .
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Définition
Soit A ∈Mn(K). On dit que A est diagonalisable dans une base
orthonormée s’il existe une base orthonormée B de Kn et une matrice
diagonale D telles que

A = PCan,BDP−1
Can,B.

(Rappel : Can est la base canonique de Kn).
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Soit A ∈Mn(R) et supposons que A est diagonalisable dans une base
orthonormée B = (f1, · · · , fn). Alors, comme Can est orthonormée, la
matrice de passage P = PCanB = (pij)1≤i ,j≤n a comme coefficients

pij = 〈fj |ei〉 .

Symétriquement, comme B est orthonormée, la matrice de passage
P ′ = PBCan = (p′ij)1≤i ,j≤n a comme coefficients

p′ij = 〈ej |fi〉 .

On remarque que
pij = 〈fj |ei〉 = 〈ei |fj〉 = p′ji

et donc P ′ = tP.
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D’où
tA = t(PDP ′) =t P ′tDtP = PDP ′ = A

et donc A est symétrique. En fait cette dernière condition est aussi
suffisante ...

Théorème
Soit A ∈Mn(R). Alors A est diagonalisable dans une base orthonormée si
et seulement si A est symétrique.

Intermédiaire important ...

Proposition
Soit A ∈Mn(R) une matrice symétrique. Alors les sous-espaces propres
associés aux valeurs propres de A sont deux à deux orthogonaux.
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Soit A ∈Mn(R). Si A est symétrique, alors il existe une matrice de
passage P et une matrice diagonale D telles que A = PDP−1.

Nous avons vu que P−1 = tP. On dit que P est orthogonale.
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Définition
Soit P ∈Mn(R). On dit que P est orthogonale si P · tP = tP · P = In.
Autrement dit si P est inversible et P−1 = tP.
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Exemple
Dans R2 muni du produit scalaire canonique, toute matrice orthogonale est
de la forme

A =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
ou B =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
.

La première représente une rotation d’angle θ et le seconde représente une
symétrie orthogonale.
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Exemple
Dans R3 muni du produit scalaire canonique, toute matrice orthogonale est
semblable à une matrice de la forme

A =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 ou B =

 −1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 .

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 299 / 315



Proposition
Soient E un espace euclidien de dimension n et P ∈Mn(R). Alors P est
orthogonale si et seulement si P est la matrice de passage d’une base
orthonormée B de E à une base orthonormée B′ de E .
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Mise en pratique

Soit
A =

(
1 3/2
3/2 1

)
et cherchons une matrice diagonale D et une matrice orthogonale P telles
que A = PDP−1. Comme A est symétrique cela est possible.
Les valeurs propres de A sont λ1 = −1

2 et λ2 = 5
2 . Les sous-espaces propres

sont
E−1/2(A) = Vect((1,−1)), E5/2 = Vect((1, 1))

et par conséquent, en posant ~u = (1,−1) et ~v = (1, 1), B = (~u, ~v) est une
base de vecteurs propres de A. Pour avoir une base orthonormée, on prend
les vecteurs unitaires

~u′ = (1/
√
2,−1/

√
2), ~v ′ = (1/

√
2, 1/
√
2)

et donc B′ = (~u′, ~v ′) est une base orthonormée dans laquelle A est
représentée par une matrice diagonale.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 301 / 315



On a finalement

D =
(
−1/2 0
0 5/2

)
, P =

( 1√
2

1√
2

− 1√
2

1√
2

)
et A = PDtP.
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V. 5. 2. Matrices hermitiennes
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Dans un espace hermitien, les matrices symétriques ne sont pas suffisantes
pour caractériser les matrices diagonalisables dans des bases orthonormées.

Par exemple la matrice (−1 i
i 1

)
est symétrique mais elle n’est même pas diagonalisable !
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Définition
Soit A = (aij)1≤i≤n;1≤j≤n une matrice carrée (n, n) à coefficients dans C

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... . . .

...
...

an1 an2 · · · ann

 .

La conjuguée de A, notée A, est la matrice carrée (n, n) dont les
coefficients sont les conjugués des coefficients de A

A =


ā11 ā12 · · · ā1n
ā21 ā22 · · · ā2n
... . . .

...
...

ān1 ān2 · · · ānn


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Définition
Soit A une matrice carrée (n, n) à coefficients dans C. La transconjuguée
de A est la transposée de la conjuguée de A, elle est notée A∗.

Donc A∗ = tA.
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Exemple

A =
(

1 i
2i 3

)
, A =

(
1 −i
−2i 3

)
, A∗ =

(
1 −2i
−i 3

)
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Définition
Soit A une matrice carrée (n, n) à coefficients dans C. On dit que A est
hermitienne si A = A∗.
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Exemple

B =
(

1 i
−i 2

)
, B =

(
1 −i
i 2

)
, B∗ =

(
1 i
−i 2

)
et donc B est hermitienne.
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Théorème
Soit A ∈Mn(C). Alors A est diagonalisable dans une base orthonormée si
et seulement si A est hermitienne.

Une proposition intermédiaire importante ...

Proposition
Soit A ∈Mn(C) hermitienne. Alors

les sous-espaces propres associés aux valeurs propres de A sont deux à
deux orthogonaux.
les valeurs propres de A sont réelles.
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Soit A ∈Mn(C). De même ici, si A est hermitienne, il existe une matrice
de passage P et une matrice diagonale D telles que A = PDP−1.

Que peut-on dire de plus sur la matrice P ? Vérifie-t-elle des propriétés
particulières ?

Dans le cas des espaces hermitiens, elle est en fait unitaire.
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Définition
Soit P ∈Mn(C). On dit que P est unitaire si P · P∗ = P∗ · P = In.
Autrement dit si P est inversible et P−1 = P∗.
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Proposition
Soient E un espace hermitien de dimension n et P ∈Mn(C). Alors P est
unitaire si et seulement si P est la matrice de passage d’une base
orthonormée B de E à une base orthonormée B′ de E .
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Conclusion ...

Théorème Spectral
Soit A une matrice réelle (resp. complexe). Alors il existe une matrice P
orthogonale (resp. unitaire) et une matrice diagonale D telles que
A = PDP−1 si et seulement si A est symétrique (resp. hermitienne).
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