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Introduction

Ce cours de Mathématiques 3 est destiné aux étudiants de niveau licence 2
de la filiere PCSI (Physique-Chimie et Sciences de I'ingénieur).
Trois chapitres sont développés dans ce cours
@ Algébre linéaire ( Espaces vectoriels, Applications linéaires, Matrices,
Déterminants, Systémes linéaires, Réduction des endomorphismes,
Espace vectoriel muni d'un produit scalaire : Diagonalisation des
matrices symétriques et hermitiennes),

@ Suites et Séries numériques et de fonctions : Suites et séries
numériques, Séries entiéres.

@ Séries entieres — Equations différentielles.

Les notions seront présentées dans un esprit pratique sans développement
théorique.

L'UE compte pour 6 crédits. Un contrdle partiel (45% de la note) et
un contrdle terminal (55% de la note) sont prévus.
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Page de 'UE

https://licence-math.univ-1lyonl.fr/doku.php?id=a25:
s3_maths3:page
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Espaces vectoriels

Dans la suite, K désigne le corps des nombres réels ou le corps des
nombres complexes. Les éléments de K sont appelés des scalaires.

| A\

Espace vectoriel

Un espace vectoriel est un ensemble d'éléments, appelés vecteurs, qu'on
peut additionner et multiplier par des scalaires.

Pour que ceci ait un sens, |'addition et la multiplication par des scalaires
doivent satisfaire certaines propriétés.
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Définition 1
Soit E un ensemble non vide muni d'une loi de composition interne,
autrement dit d'une application
ExXE — E
(4,V) — U+v
et d'une loi de composition externe, autrement dit d'une application

KxE — E
(AT) = A-d
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On dit que E, muni de ces opérations, est un K-espace vectoriel si :

(1) (E,+) est un groupe commutatif, autrement dit :

commutativité : i+ vV =V + 4; (pour tous 4,V € E);

associativité : i+ (V+ w) = (d + V) + w (pour tous u, vV, w € E);

il existe un élément O € E, appelé élément neutre, tel que

O+ =1+ 0g = & (pour tout & € E);

pour tout I € E, il existe i* € E vérifiant i + o* = O ; I'élément 7*

est appelé le symétrique ou |'opposé de u et est noté —1ii.

(2) Pour tous i,V € E, pour tous A\, u € K :
)

oA (G+T)=A-T+\-7;
o (AN+p)-d=A-d+p-a;
o A (p-d)= (M) 4;
o l1l-d=1u
L]
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On appelle :

@ Addition la loi de composition interne

EXE — E
(4,vV) — d+v
et multiplication par des scalaires la loi de composition externe
KxE — E
(\d) — A-d

@ Vecteurs les éléments de E ;
@ Scalaires les éléments de K

@ Vecteur nul le vecteur Of.
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Exemple 1
Sur R?, on définit I'addition par

() () =05)

et la multiplication par des scalaires A € R par

(5)-(x),

Alors R%, muni de ces deux opérations, est un R-espace vectoriel.
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Exemple 2

Plus généralement, sur R", on définit |'addition par

X1 341 X1+ Wy

X2 Y2 X2+ yo
: + ) = :

Xn Yn Xn + Yn

et la multiplication par des scalaires A € R par

X1 AX1
A\ X2 )\XQ
Xn AXp

Alors R", muni de ces deux opérations, est un R-espace vectoriel.
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De méme, sur C”, on définit |'addition par

X1 1 x1+n

X2 Y2 X2 + y2
; T ; = :

Xn Yn Xn + Yn

et la multiplication par des scalaires A € C par

X1 )\Xl

X2 AXp
A =

Xn AXp

Alors C", muni de ces deux opérations, est un C-espace vectoriel.
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Exemple 3

Soit E = R,[X] I'ensemble des polynémes de degré inférieur ou égal a n a
coefficients réels. On munit R,[X] de I'addition des polynémes

Ra[X] x Ra[X] — Ra[X]

oD pig  u(P Q) =PX)+ Q)

et de la multiplication par des scalaires A € R

R XxRp[X] — Ry[X] . _
(\ P) AP ou (AP)(X) = AP(X).

Alors R,[X] est un R-espace vectoriel.

Son vecteur nul est le polynéme nul.

De méme, I'ensemble C,[X] des polyndmes de degré inférieur ou égal a n
a coefficients complexes est un C-espace vectoriel.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 11/315



Propriétés (Regles de calcul)
Soit E un K-espace vectoriel. Pour tous i, vV € E et pour tous A, u € K, on
a:

Propriété Importante

A\-7=0g si et seulement si A\ =0 ou & = Of
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Sous-espaces vectoriels

Soit E un K-espace vectoriel et soit F C E.
On peut se poser la question de savoir quand est-ce que F, quand il est

muni par I'addition de E et la multiplication par des scalaires, est
[ui-méme un espace vectoriel.

Il s’avére qu'il suffit que F soit stable par I'addition et la multiplication par
les scalaires.
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Définition 2
Soit E un K-espace vectoriel et F un sous-ensemble non vide de E. On dit
que F est un sous-espace vectoriel de E si

—

@ pourtous i,VvE F, i+ VEF;
@ pour tout 7 € F et pour tout A € K, \id € F.

Dans ce cas F, muni de I'addition et de la multiplication par des scalaires,

FxF — F KxF — F
(4,V) — d+v (\,d) — Xd

est lui-méme un K-espace vectoriel.

Abréviation

Sous-espace vectoriel= s.e.v
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Proposition 1

Soit E un K-espace vectoriel et F un sous-ensemble de E. Alors F est un
sous-espace vectoriel de E si et seulement si ces deux propriétés sont
satisfaites

e0cF;
@ pour tous 4,V € F et pour tout A € K, Ad+ vV € F.

Preuve

| A

Supposons que F soit un s.e.v de E. Alors comme F n'est pas vide, il
contient un vecteur . Alors —G € Feti—id=0 € F.

Pour la seconde propriété, soient i, Vv € F et A € K. Alors Aii € F et donc
ANi+veF.

Exercice : montrer I'implication réciproque. []

v

Exemples immédiats : E et {0} sont des s.e.v de E.

D
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Dans R?, toute droite passant par |'origine est un s.e.v. En effet toute
droite passant par |'origine a comme équation ax + by =0 ou a,b € R et
on vérifie aisement qu'il s'agit bien d'un s.e.v (exercice).
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Exemple 2

Dans R3, tout plan passant par |'origine est un s.e.v. Un plan P passant
par 'origine est donné par une équation de la forme

ax+by+cz=0 ol a,b,c eR.

Vérifions que P est un s.e.v de R3. Comme P passe par |'origine, on a
/

X X

OcP.Soientii= |y |eP,v=]| y | €ePet)ecR. On doit
/
V4 V4

montrer que A\d+ vV € P. On a

Ax + x
Mi+vV=| Ay+y | etax+by+cz=0, ax' + by’ + cz' = 0.
Az +Z

Dot a(Ax + x") + b(Ay + y') + c(Az+ 2) = 0. Donc A\i + vV € P.
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Exercice

Soit F(R) I'ensemble des applications de R a valeurs dans R. On définit
I'addition et la multiplication par les scalaires par

(f+8)(x) = f(x) + g(x); (Af)(x) = Af(x).
Q \Vérifier que F(R) est un R-espace vectoriel.

Soit C1(R) le sous-ensemble de F(R) des applications de classe C*

CY(R) = {f € F(R) | f est dérivable et f’ est continue}.

@ Montrer que C1(R) est un s.e.v de F(R).
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Soit E un K-espace vectoriel et (F;);jc; une famille de s.e.v de E. Alors
I'intersection (), F; est définie par

mFi:{er|xE Fi, pour tout j € [}.
iel

Par exemple, si F1, Fp, ..., F, sont des sous-ensembles de E, alors leur
intersection F; N Fo N --- N F, est I'ensemble des éléments x € E tel que
x € Fy pour tout k € {1,...,n}.
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Soit E un K-espace vectoriel et (F;)jc; une famille de s.e.v de E. Alors
I'intersection

F:ﬂF;:{x€E|x€F;, pour tout i € I}
i€l

est un s.e.v de E.

o (Pourtout i€ /l,0€F) = 0¢€ g Fi;
@ Soient U,V € F et X\ € K. Alors pour tout i € I, Aii + vV € F;. Donc
Ai+veF. O
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Corollaire 1

@ Si F et G sont des s.e.v, alors leur intersection F N G est un s.e.v.

@ Si F1,Fy, ..., F, sont des s.e.v, alors leur intersection
FiNnFN---NF, est un s.e.v.
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Soient Py et P, deux plans de R3 passants par |'origine. Alors leur
intersection P1 N Py, qui est une droite, est un s.e.v de R3.
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Soient U et V deux s.e.v du K-e.v E.

@ On appelle somme de U et V I'ensemble défini par
U+V={i+v | deUveV}

@ On dit que la somme U + V est directe si UN V = {0}.
@ On dit du s.e.v F qu'il est la somme directe de U et V si
o F=U+ V_,;
o UNV ={0}.

Onécrit F=Ua® V.
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Considérons dans R? deux vecteurs i, v non nuls et non colinéaires. Soient
U={Xd|XeR}, V={\]|XeR}

(U est la droite vectorielle dirigée par d, V est la droite vectorielle dirigée
par V.)
Alors U et V sont des s.e.v de R2 et R2 = U @ V (exercice).

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 24 /315



Familles génératrices, familles libres, bases

Soient E un K-espace vectoriel et i, v deux vecteurs de E. Alors on peut
fabriquer de nouveaux vecteurs en combinant les deux vecteurs i, v

ad + v

ol «, B € K.

Un tel nouveau vecteur est appelé une combinaison linéaire de i et V.
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Plus généralement ...

Définition 4
Soient iy, - - , U, des vecteurs d'un K-espace vectoriel E. Tout vecteur de
E de la forme

Mify + -+« + Aniln
ou A1, -+, A, € K, est appelé une combinaison linéaire des vecteurs
Hl) ) l_jn-
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Exemple 1

Dans R? le vecteur
= -1
w =
16
est bien une combinaison linéaire des deux vecteurs

-1 . 1

=y
I
<
|

car w = 34 + 2v. )
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Exemple 2
Dans R3, soient

1 0 0
éi=|0|,&=|11],&=]0
0 0 1
X
Un vecteur quelconque 7= | y | de R3 s’écrit
z

cy
I
o X
+
< o
S
o O
Il

X
[l
+
<

= O
+

N
o O

= xé1 + yé + zés.

Donc i est une combinaison linéaire de €1, €, €3.

v
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Proposition 2

Soit E un K-e.v et A C E. Il existe un plus petit s.e.v de E contenant A. I
est unique et on |'appelle le sous-espace vectoriel engendré par A. On le
note Vect(A).

Preuve

| A

E est un s.e.v de E contenant A. Donc il existe des s.e.v de E qui
contiennent A. L'intersection F de ces s.e.v est un s.e.v de E contenant A.
Il est le plus petit s.e.v qui contient A. En effet, si A C H, ou H est un
s.e.vde E, alors F C H. ]

v
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Soit E un K-evet AC E, A# (). Alors Vect(A) est I'ensemble des
combinaisons linéaires des vecteurs de A, autrement dit

VeCt(A):{ZAiﬁi ‘ nEN,)\l,...,)\nEK,Ul,...,ﬁnGA}.
i=1

| A

Remarque

Donc un vecteur i € E est dans Vect(A), si et seulement si, il existe
n € N, il existe uy,..., U, € A et des scalaires A\1,..., A\, € K tels que
U= AUy + -+ \plp.
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Considérons dans R? deux vecteurs i, ¥ non nuls et non colinéaires. Soient

U={Xi|XxeR}, V={AV|XeR}

Alors U = Vect({d}) et V = Vect({v}).

Montrer que U + V = Vect(U U V).
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Soit F un s.e.vdu K-ev Eet SC E.

@ On dit que S est une partie génératrice de F si
F = Vect(S).

@ On dit que S est libre, ou que les vecteurs de S sont linéairement
indépendants, si

pour tous A1,..., A\, € K, pour tous i, ...,1d, € S,

)\1L71+"-+)\2L7n:6:>/\1:)\2:"‘:>\n:0-

@ On dit que S est une base de E, si elle est génératrice et libre.
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o Dans R?, I'espace vectoriel F engendré par les deux vecteurs

-(3) (3

vérifie Vect(u, V) = Vect(u,2d) = Vect(u) et donc la famille {G} est
génératrice de F.

e Dans R?, |a famille {i, v} est libre ot

() )

e R3 = Vect(é},éﬁ,é},).
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Théoreme 1

Tout K-espace vectoriel non nul admet une base. Toutes les bases ont la
méme cardinalité : si By et By sont deux bases, alors il existe une bijection
entre By et Bs.

Définition 6

On dit d'un K-e.v E qu'il est de dimension finie s'il admet une base finie.
Le cardinal (le nombre d'éléments) d'une base est appelé la dimension de
E et est noté dim(E).
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Exemple 1
Dans R", considérons la famille B = {&;,...,&,} ot pour 1 <i<n
0
=11
0
Alors B est une base de R" appelée la base canonique de R"”. On a donc
dim(R") = n.
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Exemple 2
Dans R,[X], le R-e.v des polynémes de degré inférieur ou égal a n, la
famille des polynémes

PO(X) =1, Pl(X) = X, PQ(X) = Xz,.. ,7Pn(X) — X"

forme une base. Donc dim(R,[X]) = n+ 1.
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Théoréme de la base incomplete

Soit E un K-espace vectoriel. Soient L une partie libre et G une partie
génératrice de E. Alors on peut compléter L par des éléments de G pour
former une base de E.

Autrement dit, il existe F C G\ L tel que L U F soit une base de E.

Théoreme de la base incompléte(version en dimension finie)

Soit E un K-espace vectoriel de dimension finie. Soit U = {1, - , s} une
famille libre de E et soit G = {gi1,- - ,&m} une famille génératrice de E.
Alors il existe g, - - , &, de G telle que la famille {@y,--- , bn, &, -, &1}

forme une base de E.
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Proposition 4

Soit E un K-e.v de dimension finie n. Alors :
@ Toute famille libre de E a au plus n éléments.
@ Toute famille génératrice de E a au moins n éléments.

@ Toute famille libre peut étre complétée en une base de E.
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Soit B une famille de vecteurs d’un K-e.v E de dimension finie n. Les
propriétés suivantes sont équivalentes :

@ B est une base de E ;

@ B est une famille libre 3 n éléments;

@ B est une famille génératrice a n éléments.
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Exemple récapitulatif sur la base incompléete

Exemple récapitulatif

Considérons dans R3 la famille & des deux vecteurs

2 3
i=| 1 |, v=| -1
~1 1

Alors U est une famille libre. En effet, soient a, 5 € R tels que
at+ v = 0. Alors

3 0 2a+38=0
ali+Bv=0%& «a 1 +8] -1 |=|0 |« a—F3=0
-1 1 0 —a+08=0

Donc o = 3 et 5a = 0. Par conséquent o = 5 = 0.
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Exemple récapitulatif sur la base incompléete

suite de I'exemple

On peut compléter la famille libre U par des éléments de la base canonique
{€1,&, &} de R3 pour former une base de E.

On peut choisir par exemple €. Vérifions si {u, V, €} est libre. Soient

a, 3,7 € R tels que ail + 8V + & = 0. On obtient 2cv + 33+~ = 0 et
a = . Donc v = —5a et a = (. Par conséquent la famille {&, V, &} n'est
pas libre.

Choisisons &. Vérifions si {1, V, &} est libre. Soient o, 5,7 € R tels que
ol + BV + vé = 0. On obtient 2a + 33 =0, a—F+y=0eta=20.
Donc ao = =y =0, par conséquent la famille {7, v, &} est libre.
Comme dim(R3) = 3 et comme {i, V,&} est une famille libre constituée
de trois vecteurs, elle forme une base.
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Définition 7
Si B = (é,...,€n) est une base d'un K-espace vectoriel E, alors pour tout
U € E, il existe des uniques scalaires A\1,..., A\, € K tels que

U= A\l ~+ -+ A\plin

qui sont appelés les composantes de i dans la base B.
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Proposition 6 (Formule de Grassmann)

Soient F et G deux s.e.v d'un K-e.v de dimension finie. On a

dim(F 4+ G) = dim(F) + dim(G) — dim(F N G).
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Applications linéaires )
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Applications linéaires : Définitions, propriétés

Définition 8
Soient E et F deux K-e.v et f : E — F une application. On dit que f est
linéaire si

o f(0g) =OF;

@ Pour tous 4,V € E, pour tout A € K, f(A\d + V) = \f(d) + (V).
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Applications linéaires : Exemples

Exemple 1

Soit « € K et f : E — E I'nomothétie de rapport o

i f(d) = ad.
Alors f est linéaire. En effet :
o f(0)=a-0=0.
@ Soient iU,V € E et \ € K. Alors
f(ANd+ V) = a(Ad + V)

= \ai + av

= M (4) + (V).
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Applications linéaires : Exemples

Exemple 2
Soit f : R?2 — R? définie par

f(x,y) = (x =y, x+y).

Alors f est linéaire. En effet, pour tous i, v € R?, pour tout A € R, on a :

FAT+7) = FOx+x, Ay +y') = () =), Oxx)+ 0y +y))

(Ax = Ay, A+ y) + (X =y, X+ y') = M(d) + £(V).
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Applications linéaires : Exemples

Exemple 3
Soit E I'espace vectoriel des applications de R dans R de classe C*°.

L'application
D:E—E, D(f)y="f

est une application linéaire. En effet :
e D(0) = 0.
@ Soient f,g € E et A € R. Alors

D\ f +g)= (M + g)
— Af"i‘g/
= AD(f) + D(g).
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Applications linéaires : Exemples

Exemple 4

Une rotation R d'un angle # autour de I'origine dans R? est une
application linéaire. En effet, on a

. [ x [ xcos@ —ysin0
pouru—(y);R(U)—<Xsin9+yc059>'
o x X! [ (x+x")cos® — (y +y')sin0

xcosf — ysinf x'cos® —y'sinf \ . .
< xsinf + ycosf ) * ( x'sinf +y'cosf | ) ()

De méme on a R(Ad) = AR(0).

v
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Applications linéaires

Proposition 7
Soient E et F deux K-e.v. Alors I'ensemble des applications linéaires de E
dans F, noté L(E, F), munit des opérations

(f.8) = (f +8)(x) = f(x) + 8(x); (A ) = (Af)(x) = Af(x)

est un K-e.v. )
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Applications linéaires

Définition 9

@ Une application linéaire de E dans E est appelé un endomporphisme.
Le K-e.v L(E, E) est noté L(E).
@ Une application linéaire bijective est appelée un isomorphisme.

@ Un endomorphisme bijective est appelé un automorphisme.
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Applications linéaires : Image et noyau

Rappel

Soit f : E — F une application.

@ L'image directe par f d'une partie A C E est :
f(A) ={f(x) | x € A}.
@ L'image réciproque d'une partie B C F est :

f1(B)={x€E | f(x) € B}.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 52 /315



Applications linéaires : Image et noyau

Proposition 8

Soit f : E — F une application linéaire.
@ Si H est un s.e.v de E, alors f(H) est un s.e.v de F.
@ Si G est uns.ev de F, alors f1(G) est un s.e.v de E.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 53 /315



Applications linéaires : Image et noyau

Définition 10
Soit f : E — F une application linéaire.
On appelle :

@ Image de f, le s.ev de E :
Im(f)=f(E)={f(x) | x€ E}
@ Noyau de f, le s.e.v de E :

Ker(f) = f~}(0) = {# € E | f(d) =0}
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Applications linéaires : Image et noyau

Exemple
Soit f : R? — R? définie par
f(Xay) = (X_y7X+y)‘

Alors f est linéaire (Exercice). On a Ker(f) = {0} et Im(f) = R?. En
effet :

° Uz(j)EKer(f)@f(U)zﬁ@x—y:Oetx+y:0@x:
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Applications linéaires : Image et noyau

Propriété

Soit f € L(E, F). Soit B = (dy,- - , Us) une base de E. Alors
Im(f) = Vect(f(tr),- -, f(dn)).
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Applications linéaires : Image et noyau

Proposition 10
Soit f € L(E,F).
Les propriétés suivantes sont équivalentes :
o f est injective;
o Ker(f) = {0};
e Pourtout i€ E, f(i)=0= i =0.
Les propriétés suivantes sont équivalentes :
@ f est surjective;
e Im(f)=F.
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Applications linéaires : Image et noyau

Définition 11

Soient E et F deux K-e.v et f € L(E, F). La dimension de Im(f) est
appelée le rang de f et est notée rg(f).

Théoreme (Théoreme du rang)
Soient E et F deux K-e.v de dimension finie et f € L(E, F). On a

dim(E) = rg(f) + dim(Kerf(f)).

W
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Applications linéaires : Rappel terminologie

Terminologie a retenir
@ Une application linéaire de E dans E est appelée un endomorphisme.
Le K-e.v L(E, E) est noté L(E).
@ Une application linéaire bijective est appelée un isomorphisme.

@ Un endomorphisme bijectif est appelé un automorphisme.
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Les matrices

Matrices )
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Les matrices

On appelle matrice tout tableau de la forme

a1 a2 - dim
dp1 d22 - a2m
dnl dn2 °°° dnm

ol aj; sont des scalaires (des éléments de K).

@ On note
M = (aj)1<i<mi<i<ms

ajj est le coefficient : intersection de la i-éme ligne et de la j-eme
colonne.

@ M est dite de taille n x m (elle a n lignes et m colonnes).
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Les matrices

1 3 2 i 3 1
A= 1 5 7 |[;B=| 256 1+ij |;C=| 2 ].
13 10 8 21 11 6
A est une matrice a coefficients dans R (mais dans C aussi); B est une

matrice a coefficients dans C.
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Les matrices

On dit que M est une matrice
@ colonne si elle a une seule colonne (m = 1).
e ligne si elle a une seule ligne (n = 1).

o carrée si elle a le méme nombre de lignes que de colonnes (n = m).

Exemples
1 3 2 1
A=| 1 5 7 ,B:(i35),cz 2
13 10 8 6

A est une matrice carrée
B est une matrice ligne
C est une matrice colonne
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Les matrices

Remarques & notations

@ Une matrice a n lignes et m colonnes est aussi appelée matrice de
type (n, m) ou encore matrice n x m.

@ On note M, ,,(K) I'ensemble des matrices n x m.

@ On note M, (K) I'ensemble des matrices carrées n x n.
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Les matrices

Remarques & notations

o La matrice identité I, € M,(K) est la matrice carrée dont tous les
coefficients diagonaux valent 1 et les autres coefficients valent 0.

Exemple :
1 000
Ih = 0100
0 010
0 001

o La matrice nulle Opm € Mj m(K) est la matrice dont tous les
coefficients sont nuls.
Exemple :

O3 =

)

o O O
o O O
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Opérations sur les matrices

Définition 6 (Somme de deux matrices)

Soient A, B € M, m(K), A= (aj)i<i<ni<j<m, B = (bj)i<i<mi<j<m

air a2 - aim bi1 bz - bim

a1 ax» - am b1 b - bom
A= . . . ; B= . . .

dnl adn2 - dmm bnl bn2 e bnm

On définit la somme A+ B, une matrice de M, n(K), par

A+ B = (aj + bj)i<i<ni<j<m

a1 +buin anx+br - aim+ bim

a1+ b an+byp - am+ bom
A+ B= . . .

anl + bnl an2 + bn2 **+  dnm + bnm
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Opérations sur les matrices
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Opérations sur les matrices

Remarque

On ne somme que des matrices de méme taille.
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Opérations sur les matrices

Définition (Multiplication par un scalaire)
Soient A € Mmm(K), A= (a,'j)lg,'gn;lsjgm et A\ € K,

di1 412 - dlm

dp1 a2 - am
A=

dnl dn2 ' dnm

On définit la matrice AA, une matrice de Mn,m(K), par

A = (Aajj)i<i<ni<j<m

)\311 )\312 0coo )\alm

)\321 /\322 coa )\32,,,
A = : :

Aapl Aam - Aanm
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Opérations sur les matrices
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Opérations sur les matrices

Proposition 4
L'ensemble M, n(K) muni de I'addition des matrices (A, B) — A+ B et
de la multiplication par des scalaires (A, A) — AA est un K-espace vectoriel

de dimension finie n x m.
Le vecteur nul de cet espace est la matrice nulle O, .
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Opérations sur les matrices

Exemple & exercice

Dans M3(K) on considére la famille B = (A1, Az, As, As)
0
e

10 0 1 0 0

Montrer que B est une base de M»(K).

0
0
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Opérations sur les matrices

Définition (Produit de deux matrices)

Soient A = (ajj)1<i<n,1<j<p une matrice n x p et B = (bjj)i<i<pi<j<m
une matrice p X m.
Le produit de A et B est la matrice n x m, notée A - B, dont les

coefficients c¢;; sont définis par : ¢; est le produit scalaire de la i®Me ligne

de A par la /M€ colonne de B
by
b2j
Cij = ( ain a2 -+ ap ) - | = ainbyj + aibyj + -+ - 4 ajpby,
bpj
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Opérations sur les matrices

4
(123)5 |=(x4+2x5+3x6)=(32).
6
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Opérations sur les matrices

(13)

1 2 I1x0+2x1 1x2+2x2 2 6
3 4 3x04+4x1 3x2+4x%x2 =1 4 14
5 6 bx0+6x1 5x2+6x%x2 6 22
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Opérations sur les matrices

Remarques

(1) Pour que le produit de A par B ait un sens if faut que le nombre de
colonnes de A soit le méme que le nombre de lignes de B.

(2) Le produit d'une matrice de type (n, p) par une matrice de type (p, m)
est une matrice de type (n, m).
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Opérations sur les matrices

Remarques

(1) On a

(58)(38)=(55)
(56)(558)-(53)

Ce qui prouve qu'en général A-B# B-Aet A- B= O n'implique pas
forcément A= O ou B= O (O désigne la matrice nulle).
(2) Pour tout A € M,(K) on a (exercice)

Al =1,-A=A
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Opérations sur les matrices

Propriétés
Les propriétés suivantes sont vraies sous hypothése que les produits
considérés ont un sens :

e (A-B)-C=A-(B-C);

e (A+B)-C=A-C+B-C;
e A-(B+C)=A-B+A-C;

o MA-B)= (M) -B=A-()\B).
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Opérations sur les matrices

Notations & conventions
Pour tout A € M,(K)

A=, AL=A A"=A-A..-A.

n fois
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Opérations sur les matrices

Remarque

On a
(A+ B)> = A> + AB + BA + B?

et si AB # BA alors

(A+ B)? # A + 2AB + B2.

Proposition 5 (Formule du bindme pour les matrices)

Soient A, B € M,(K) tels que AB = BA.
Alors pour tout n > 0 on a

(A+B)" = kz::n (Z) A=k gk

k=0

ol () est le coefficient binomial : () = CX = ﬁlk),

4
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Matrice de passage

Matrice de passage J
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Matrice de passage

Définition
Soit E un K-e.v de dimension finie n et soit By = (&, ..., €,) une base de
E. Soit 0 € E ayant comme composantes dans la base B, (A1,...,An).

(DOHC U= M\& +---+ Angn).
On appelle matrice des composantes du vecteur i dans la base B, la

matrice colonne
A1

An
On écrit
A\ A
Mg(d) = : ou U= 3

An An /) g
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Matrice de passage

Définition (suite)

Plus généralement, soit (&1, ..., Un) une famille de vecteurs de E.

On appelle matrice des composantes de la famille (4, ..., Uy) dans la
base 3, la matrice n x m dont les colonnes sont Mp(11), ..., Mg(im).
Elle est notée Mp(uy, ..., Umn).
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Matrice de passage

Soit B = (€1, ..., &) la base canonique de R". Alors
1 0 0
0 1 0
MB(@]_, . 7511) = = /n
0 O 1
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Matrice de passage

Définition
Soit E un K-e.v de dimension finie n. Soient By = (&, ..

-

By =(f,...,f) deux bases de E.

., €p) et

On appelle matrice de passage de la base B; a la base B;, la matrice
carrée n x n, Mg, (fi, ..., fp).

Elle est notée Pg, 5,.

Donc c'est la matrice dont la j™M€ colonne est formée des composantes de
f; dans la base B;.

C'est donc la matrice carrée n x n, A = (ajj)1<i<n,1<j<n tel que pour tout
jed{l,....n} .
fi = ayjé1 + - - - + anjén.
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Matrice de passage

Exemple

Dans R? considérons les deux bases By = (i, V) et By = (W, F) ol

(1) () () ()

Calculons la matrice Pg, s,. Les composantes de w et ¥ dans By sont
(exercice)

N

Donc

MBI(VT/) = (

NN
N——
>
—~~
s
|
~//
[ |
—_
~
)
&
&
N
|
~/
NN
[l |
—_
~
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Matrice de passage

Proposition

Soit E un K-e.v de dimension finie et soient B; et By deux bases de E.
Alors pour tout i € E

MBl(L_j) = PBth : MBz(L_j)'
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Matrice de passage

(1) () (2) ()

On avait trouvé
1/2 —1
Pove, = ( 1?2 1 ) '

et calculons ses composantes dans la base B;. On a

MBz(F):<1>7 MBl(F)Z(i?; —1]-)(1):(_3}/22)

wn
o,
—t+
|
Il
S
+
all
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Matrice d'une application linéaire

Matrice d'une application linéaire J
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Matrice d'une application linéaire

Définition

Soient E et F des K-e.v munis respectivement des bases B = (i, .. ., Up)
et C = (v4,...,Vp). Soit f € L(E, F) une application linéaire.

On appelle matrice de f, par rapport aux bases B et C, la matrice

Me(f(di), ..., f(dn)).

Elle est notée My o(f).
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Matrice d'une application linéaire

On munit R3 de la base canonique, notée ici B = (i1, i, i3) et R? de la
base canonique, notée ici C = (v, ib). Soit f : R® — R? I'application
linéaire définie par

f(X7y7Z) = (X—|—2y—z,x—y).

On a
f(o1) = (1,1) = ¥ + o, f() = (2,—1) =2v4 — vk,

f(ﬁ3) = (—1,0) =—v1 +0- .

M (F) = ( Y )

Donc
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Matrice d'une application linéaire

Soient E et F des K-e.v (de dimension finie) munis respectivement des
bases B et C. Soit f € L(E, F) une application linéaire. Alors pour tout
ieE

Me(f (@) = Mgc(f) - Mp(d).

Remarque

| \

Autrement dit, si Y désigne la matrice colonne des composantes de f ()
dans la base C et X désigne la matrice colonne des composantes de & dans
la base B, alors

Y = AX, ou A= Mgc(f).

\
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Matrice d'une application linéaire

En reprenant I'exemple précédent, par rapport aux bases canoniques,

1 -1 0

x+2y-z\_ (1 2 -1\ (*
X—y 1 -1 o0 2/

1 2 -1
f(x,y,2) = (x+2y —z,x —y), MB,c(f)=< >

on a
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Matrice d'une application linéaire

Définition

Soient E et F deux K-e.v de dimension respectives n et m. Soient

B =(€,...,8&,) une base de E et C = (7?1,...,1?,,,) une base de F.

Soit A = (ajj)1<i<m,1<j<n € Mmn(K). L'application linéaire associée a A,
relative aux bases B et C, est I'application définie par : au vecteur i € E
de composantes (xi, - - , x,) dans B, elle associé le vecteur V dont les
composantes (y1,--- ,¥m) dans la base C sont données par

Yi = aiix1 + apXx2 + -+ + ainXp

Autrement dit

1 ail ar -+ ain X1
: a1 axp - axn :
Ym dml am2 °°° dmn Xn
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Matrice d'une application linéaire

EE
Soit

-(51)

L'application linéaire associée 3 A, relativement a la base canonique de R?,
f:R? — R? est

X 1 2 X X+ 2
=2 (5)=(38)(7)-(53%)
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Matrice d'une application linéaire

Théoreme

Soit E (respectivement F) un K-e.v de dimension finie n (respectivement
m), muni d'une base B (respectivement C). L'application

M : L(E,F) = Mpna(K); £ M(f) = Mge(f)

est un isomorphisme de K-e.v.

| \

Remarque

Donc fondamentalement en dimension finie, une fois que les bases sont
fixées, il n'existe pas de différence réelle entre applications linéaires et
matrices.
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Matrice d'une application linéaire

Proposition

Soient E, F, G trois K-e.v de dimension finie, munis respectivement des
bases B,C,D. Pour tout f € L(E,F) et g € L(F,G), on a

Mg p(g o f) = Mcp(g) - Mpc(f).
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Matrices inversibles

Matrices inversibles )
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Matrices inversibles

Une matrice carrée A € M,(K) est dite inversible s'il existe une matrice
B € Mp(K) vérifiant A-B=B-A= I,
Cette matrice est alors unique, est appelée I'inverse de A et est notée A1

<

Exemple
On a
13) (1 —?3 _(10)_,
0 2 o £ ) \o1) 7
1 3 , . .
et donc A = < 0 2 ) est inversible, d'inverse

a (1 F
A _(0 %)
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Matrices inversibles

Soient A, B € M,(K).
@ Si A et B sont inversibles, il en de méme de A- B et on a

(A-Byt=B"1.A"1

@ Si A est inversible, alors A~1 est inversible et (A~1)~! = A.
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Matrices inversibles et bases

Matrices inversibles et bases )
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Matrices inversibles et bases

Proposition

Soit E un K-e.v de dimension finie n muni d'une base B.

Une famille de vecteurs (i, ..., U,) est une base de E si et seulement si
Mp(i1, .. ., Up) est inversible.
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Matrices inversibles et bases

Soit Can = (&}, &, &) la base canonique de R3.

- =

Considérons la famille B = (4, v, w) ou

-

i=¢€+&, V=26, w=¢ +&.

La famille B est libre car la matrice

MCan(L-ia ‘77 VT/) =

O =
o = O
_ O

est inversible (exercice).
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Matrices inversibles et matrices de passage

Matrices inversibles et matrices de passage J
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Matrices inversibles et matrices de passage

Proposition

Si By et B> deux bases d'un K-e.v de dimension finie, alors la matrice de
passage Pp, 3, est inversible et son inverse est la matrice de passage
Pp, 5, ; autrement dit

Plgll,Bz = Pg, 5,
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Matrices inversibles et matrices de passage

Exemple

Considérons les deux bases B; = (i, V) et B, = (w, 7) de R? ol

(1) () () ()

Nous avons déja calculé :

)7 MB1(F):<_11>7 P81752:<

Alors Pg, 5, est inversible et

MBI(V_‘;) = (

NN

NN =
[ |
—_
v

1

=1l _ _
PBl,BQ - PBZ,BI - <

N[ =
\/

N|—=
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Matrices inversibles et applications linéaires

Matrices inversibles et applications linéaires J
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Matrices inversibles et applications linéaires

Proposition

Soient E et F deux K-e.v de dimension finie, 31 une base de E et B> une
base de F.

Une application linéaire f € L(E, F) est bijective si et seulement si
Mp, 5,(f) est inversible.

On a alors
MBlsz(f)—l = MBz,B1(f_1)'
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Matrices inversibles et applications linéaires

Soit f : R? — R? définie par f(x,y) = (x — y,x + y).
Sa matrice par rapport a la base canonique de R? est

A:<}—11>.

f(x,y) = (a, b) si et seulement si x = 2 y =

On a

et donc f~1(a, b) = (%ba %)

_ 12 1/2
A 1:<—1/2 1/2)'
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Matrices inversibles et applications linéaires

Proposition

Soit E un K-e.v de dimension finie et soit f un endomorphisme de E.
Soient B et C deux bases de E. Alors

Mg p(f) = P - Mcc(f) - Pes.
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Déterminants

Déterminants )

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 111 /315



Déterminants

Définition
Soit A € M»(K)

a b
A= .
Alors le déterminant de A est la quantité

ad — bc.

On note
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Déterminants

Alors
8
1

det(A):‘ g':8><2—1><5:11.
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Déterminants

Proposition & Définition

Supposons avoir défini le déterminants des matrices carrées B € M ,(K)
avec m < n — 1. Soit A = (ajj)1<i<ni<j<n € Mn(K). Soit Aj; le
déterminant de la matrice extraite de A obtenue en supprimant la jeme
ligne et la j®M€ colonne. Alors :

o (Développement suivant une colonne) : pour tout j € {1,...,n}, on a
det(A Z aj(—1)"HaA;.

o (Développement suivant une ligne) : pour tout i € {1,...,n}, on a
det(A Z ajj(— ’+JA,J
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Déterminants

Développement suivant la premiére colonne :

a1 a2 a3
_ a2 azs a12 a3 a2 ai3
a1 axp a3 | = ai — a1 + as1
a3 as3 d32 as3 ax ax
a31 d32 433
Développement suivant la premiére ligne :
A1 A1z A3 axp ax a1 ax a1 ax
a1 axp ax | = ai — a1 + a13
az  as3 as1 as3 a1  as2
431 d32 433
W
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Déterminants

En développant suivant la premiére colonne

1 2
=11, 4

B =N

1
3
0

1N O

2 0
5 5

|_3.

2 0
'-|-0-| 1 9 |——3—30+0——33.
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Déterminants

Soit E un K-e.v de dimension finie n et B une base de E. Soit (i1, ..., Uy
une famille de n vecteurs de E. On définit

det(fil, ce ﬁn) = det(l\/IB(Ul, e ﬁn))

Proposition
Soit E un K-e.v de dimension finie n et B une base de E.

Soit (41, ..., Uy) une famille de n vecteurs de E.
Les propriétés suivantes sont équivalentes :

e (U1,...,Uy) est une base de E.

e det(un,...,un) # 0.
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Déterminants

Exemple

Dans R? considérons

Alors

det(ﬁ,ﬁ)=‘§ § ‘:—1

et donc (@, V) est une base de R.
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Déterminants

Proposition

Soit A € M,(K). Alors A est inversible si et seulement si det(A) # 0. On
a alors

1

FE) = ol
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Déterminants

Quelques propriétés des déterminants

Un déterminant qui a deux colonnes (resp. deux lignes) identiques est
nul.

La permutation de deux colonnes (resp. de deux lignes) multiplie le
déterminant par —1.

Un déterminant dont une colonne (resp. une ligne) est combinaison
linéaire des autres colonnes (resp. des autres lignes) est nul.

Un déterminant dont une colonne (resp. une ligne) est formée de 0
est nul.

La valeur d'un déterminant est inchangé si I'on ajoute a une colonne
(resp. une ligne) une combinaison linéaire des autres colonnes (resp.
des autres lignes).

Si I'on multiplie une colonne (resp. une ligne) d'un déterminant par
un scalaire A, le déterminant est multiplié par \.

v
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Systemes d'équations linéaires

Systemes d’'équations linéaires J

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 121 /315



Systémes d'équations linéaires

Les systemes linéaires interviennent dans diverses branches des
mathématiques, ainsi que dans la résolution de nombreux problémes issus
des autres domaines, comme la physique, la mécanique, I'économie, le
traitement du signal, ...

lls peuvent étre considérés comme la "base calculatoire" de I'algebre
linéaire. lls sont au coeur du traitement d'une grande partie des problémes
issus de I'algebre linéaire en dimension finie. Par exemple, ils permettent
de déterminer le noyau et I'image d'une application linéaire, de déterminer
si une famille de vecteurs est libre ou non, ....
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Systémes d'équations linéaires

Exemples de la géométrie euclidienne

@ Dans le plan (Oxy), I'équation d'une droite s'écrit
ax + by = c,

ou a, b et ¢ sont des réels.

o Considérons deux droites : D1 d'équation ax + by = c et D,
d'équation dx + ey = f. Alors un point (x, y) appartient a
I'intersection D1 N Do, si et seulement si, il est solution du systéme

linéaire :
ax + by =c¢
() { dx+ey=f
Remarquons que trois cas se présentent :

e D; et D, s'intersectent en un seul point : (S) a une unique solution
o D; et D, sont paralléles : (S) n'a pas de solution
o D; et D, sont confondues : (S) a une infinité de solutions.

v
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Systémes d'équations linéaires

Dans I'espace (Oxyz), I'intersection de deux plans P; et P est |'ensemble
des solutions du systéme

(S) ax+by+cz=d
ax+by+cdz=d

Trois cas se présentent :
@ P; et P, s'intersectent en une droite : (S) a une infinité de solutions

@ P; et P, sont paralléles : (S) n'a pas de solution

@ P; et P, sont confondues : (S) a une infinité de solutions.
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Systemes d'équations linéaires

On appelle systeme linéaire de n équations et a m inconnues xi, ..., Xm,
tout systéme de la forme

ainxy + apxe + - 4+ aimxm = b
(S) anx1y + apxe + - 4+ AimXm = b;
amXx1 + amx2 + -+ + ammXm = by
ol (ajj)i<i<ni<j<m €t b1,..., b, sont des éléments de K.

@ Les nombres a5, 1 < i< n, 1 <j < m, sont les coefficients du
systeme (S).

o Le n-uplet (b1,...,bp) est le second membre du systeme (S).
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Systémes d'équations linéaires

(1) Pour n =1, on obtient une équation linéaire
aixy + axxo + -+ - + amxm = b.

(2) Equation d'une droite dans le plan : ax + by = c.
(3) Systemes a 2 équations et 2 inconnues :

ai1x1 + axo = by ax + by = ¢ 2x +3y =4
ar1X1 + anxo = by ’ a'x + b’y =c I9x + 6y =3

(4) Le systeme

X1—X2:1
(S) xXp—x3=1
X2—X1:1

a comme second membre (1,1,1).

V.
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Systémes d'équations linéaires

(1) La matrice A = (ajj)1<i<n1<j<m st appelée la matrice du systeme
(S). Elle sera notée As.

(2) Si le second membre du systeme est nul, autrement dit
by = by =--- = b, =0, on dit que le systeme (S) est homogene.
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Systémes d'équations linéaires

(1) Soit (S) le systeme

x1+2x =6
(5) { 3x1 +5x =10

Alors la matrice associée a (S) est

12

et le second membre est (6, 10).
(2) Le systéme

x1+2x =0
(S) { 3x1 +5x =0

est homogene.
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Systemes d'équations linéaires

Ecriture matricielle )
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Systemes d'équations linéaires

Soit (S) un systéme linéaire

ajnxy + apxe + -+ aimXxm = b,

(S) ajxi + apxe + -+ + aimXm = by,

an1X1 + an2Xo + -+ - + anmXm = bp,

A = As = (ajj)1<i<ni<j<m Sa matrice et (bi, ..., b,) son second membre.
En posant
X1 by
x=|: ], B=
Xm bm

on peut écrire le systeme (S) sous la forme matricielle

A-X=B8B.
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Systémes d'équations linéaires

X1+ 2x; = 6,
3x1 + 5xp = 10.
Alors la matrice associée a (S) est

Soit (S) le systeme (S)

12

et le second membre est (6,10). L'écriture matricielle de (S) est

()(2)-(5)
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Systémes d'équations linéaires

2x +7y +5z=1,
Considérons le systeme (S) 3x +2y — 6z =11,
x—y+9z=0.
Alors la matrice associée a (S) est

2 7 5
As=1| 3 2 -6
1 -1 9

2 7 5 X 1
3 2 -6 y | =1 11
1 -1 9 z 0

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025

132 /315



Systémes d'équations linéaires

2x +9y =1,
Considérons le systeme (S) 3x —2y =3,
x—y=1.

Alors la matrice associée a (S) est

2 9
As=1| 3 -2
1 -1

et le second membre est (1,3, 1). L'écriture matricielle de (S) est

2 9 1
3 =2 <X>: 3
1 -1 y 1
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Systemes d'équations linéaires : Interprétation a I'aide

d'une application linéaire
Soient K™ et K" munis respectivement des bases canoniques.
Soit (S) un systeme linéaire de n équations et m inconnues de matrice A.

Alors on peut associer canoniquement une application linéaire f a (5)
définie sur K™ a valeurs dans K" : c’est I'application linéaire associée a A
(relativement aux bases canoniques)

X1
(X1, .. Xm) =A-
Xm
X1 b1
En posant X = : et b= o |, (S) est équivalent a
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Systémes d'équations linéaires : Ensemble des solutions

Soit (S) un systéme linéaire de n équations et a m inconnues.

@ Une solution de (S) est un m-uplet (si,...,sm) tels que si I'on
substitue s; pour x1, s, pour xp, - -+, S, pour x,, dans (S) on obtient
une égalité.

@ L'ensemble des solutions de (S) est I'ensemble de toutes les solutions
de (S).

@ On dit que (S) est compatible si (S) admet des solutions.
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Systémes d'équations linéaires : Ensemble des solutions

Proposition

Soit (S) un systeme linéaire homogene de n équations a m inconnues.
L’ensemble des solutions de (S) est un sous-espace vectoriel de K™.

Preuve

| A\

En utilisant I'application linéaire f associée a (S), on a
(si,...,Sm) est une solution de (S) si et seulement si f(sy,...,5,) =0

si et seulement si (s1,...,sm) € Ker(f).

Donc I'ensemble des solutions de (S) est le noyau de f. Comme ce dernier
est un K-e.v., il en est de méme de I'ensemble des solutions de (S). O

v
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Systémes d'équations linéaires : Ensemble des solutions

Proposition

Soit (S) un systéme linéaire de n équations a m inconnues. Si § est une
solution particuliere de (S), alors I'ensemble des solutions de (S) est

$+ Ker(f) = {3+ h | h € Ker(f)},

ou f est I'application linéaire associée a (S).

V.
Preuve

Soit X une solution de (S). Alors f(
par le second membre de (S).
donc X — 5 € Ker(f). D'otu X =5+

) = b, oli b est le vecteur représenté
(R—3)=f(X)—f(8)=b—b=0et
S) € §+4 Ker(f). Inversement, si
+ h) = b+ f(h) = b et donc
X est solution de (S). O

4
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Systémes d'équations linéaires : Ensemble des solutions

Proposition

Tout systeme d'équations linéaires possede ou bien aucune solution, ou
bien une seule solution, ou bien une infinité de solutions.

Preuve

| \

Soit f(X) = b I'interprétation a I'aide d'une application linéaire de (S). Un
des cas suivants se présentent :

o b Im(f) : (S) n'a pas de solutions
o b e Im(f) et Kerf(f) = {0} : (S) a une unique solution
o b e Im(f) et Kerf(f) # {0} : (S) a une infinité de solutions

A\
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Systémes d'équations linéaires : Existence des solutions

Définition

Soit A € Mp, (K) une matrice. On appelle rang de la matrice A la
dimension du sous-espace vectoriel (de K™) engendré par ses vecteurs
colonnes.

| A

Propriété

Le rang d'une matrice A € M, 5(K) est égal au rang de I'application
linéaire qui lui est associée. En effet, si f est |'application linéaire associée
aA

rg(f) = dim(Im(f)) = dim(Vect(f(&),...,(€n)))

or on vérifie que

f(é)=A-&= la i®M€ colonne de A.

A
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Systémes d'équations linéaires : Existence des solutions

@ Soit A une matrice de type (m, n). On appelle matrice extraite de A,

toute matrice obtenue en supprimant un certain nombre de lignes et
un certain nombre de colonnes de A.

@ On appelle déterminant extrait de A, tout déterminant d’'une matrice
carrée extraite de A.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 140 /315



Systémes d'équations linéaires : Existence des solutions

Théoreme (Calcul pratique du rang d'une matrice)

Soit A € Mp n(K). Alors le rang de A est le plus grand entier r tel que
I'on puisse extraire de A au moins une matrice carrée inversible de type
(r,r). O
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Systémes d'équations linéaires : Existence des solutions

1 11
(1) Soit A= 0 2 3 |[.Le déterminant de A est

0 3 2

2 3 . .

det(A) =1 3 0|~ —5 # 0. Donc on peut extraire une matrice d’ordre
3 inversible ; d'ou rg(A) = 3.

1 1/2 0
(2) Sot A= 0 3 4 |.Ledéterminant de A est

=1 i1 2

|3 4 1/2 0| .
det(A) = | 1 2| | 3 4= 0. Donc on ne peut pas extraire une
o . , . 3 4 .

matrice d'ordre 3 inversible. Par contre la matrice 1 9 extraite de A
posséde un déterminant non nul; d'ou rg(A) = 2.

v
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Systémes d'équations linéaires : Existence des solutions

Soit (S) un systéme de n équations a m inconnues de matrice
A = (ajj)1<i<m,1<j<m et de second membre b.

@ Le rang de (S) est par définition le rang de sa matrice :

rg(S) = rg(A).

o La matrice augmentée de (S) est la matrice, notée [A|b], définie par :

ailr a2 - aim b

. a1 ax» -+ am b
[Alb] = | .

anl an2 - anm bn
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Systémes d'équations linéaires : Existence des solutions

Remarque

Pour bien distinguer le second membre b de A et pour des raisons
pratiques de calculs, on écrit [A|b] sous la forme

ail aw - aim | by
a1 a» - am | b
dnl an2 - anm bn
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Systémes d'équations linéaires : Existence des solutions

2x+ Ty +5z =1,

Considérons le systeme (S) 3x + 2y — 6z =11,
x—y+9z=0.

Alors la matrice du systeme (S) est

et le second membre est (1,11,0). Donc [A|b] est

2 7 5 |1
3 2 —6]|11
1 -1 9|0
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Systémes d'équations linéaires : Existence des solutions

Proposition (CNS pour I'existence des solutions)

Soit (S) un systéme d'équations linéaires, de matrice A et de second
membre b. Alors (S) est compatible, si et seulement si, rg(A) = rg([A|b]).

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 146 / 315



Systémes d'équations linéaires : Existence des solutions

X+y—+z=2
Soit (S) 2y +3z=0 Alors la matrice du systéme est
3y+2z=1
1 11
A=1 0 2 3 |.Ledéterminant de A est
0 3 2
2 3 . .
det(A) =1 ‘ 3 9|~ —5 £ 0. Donc on peut extraire une matrice d'ordre
3 inversible; d’ou rg(A) = 3. La matrice augmentée de (S) est
1 1 12
[AlB]=| 0 2 3|0 |.Son rang ne peut étre 4 et comme A est une
0 3 2|1
matrice extraite de rang 3; rg([A|b]) = 3. Donc (S) est compatible (admet
des solutions).

<
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Systémes d'équations linéaires : Méthodes de résolution

Méthode du pivot de Gauss )
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

La méthode de pivot de Gauss consiste a transformer un systéme, en
utilisant des "opérations élémentaires", a un systéme échelonné réduit. Il
se trouve que les systemes échelonnés réduits sont plus faciles a résoudre.
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Systemes d'équations linéaires : Méthode du pivot de
Gauss

Définition 9
Les opérations suivantes sur les équations d'un systéme linéaire (ou sur les
lignes de sa matrice) sont appelées des opérations élémentaires :

@ L; <+ AL;, A € K*: multiplier I'équation L; par le scalaire non nul A.
o Lj« Li+ AL, €K, i#j:rajouter a I'équation L;, I'équation L;
multipliée par le scalaire .

@ L; <+ L;: permuter les deux équations L; et L;.

| A

Propriété
Les opérations élémentaires ne changent pas |'ensemble des solutions d'un
systéeme. lls transforment un systéme linéaire en un autre systeme ayant le
méme ensemble de solutions.
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Mise en pratique

Etape 1 : échelonnement

o Il faut d'abord que le premier coefficient de la premiére ligne soit non
nul. Si ce n'est pas le cas, on permute la ligne L; par la premiére ligne
dont le premier coefficient est non nul : L1 < L;.

@ Si le premier coefficient de la premiere ligne est différent de 1, on
multiplie Ly par 1/a11 : L1 < 1/a11L1. Nous avons un pivot en
position (1,1).

@ Le pivot sert a éliminer tous les autres termes sur la méme colonne :
pour 2 < i < n, on remplace I'équation L; par L; — aj1L1, on élimine
ainsi x; dans I'équation L;.
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

On obtient un systéme avec une équation Ly contenant x; et les autres
équations ne contenant pas de xg :

X1 + a:12x2 4+ -+ a/%me = bé
0 + doo X2 + -+ i Xm = b2
(s . . ! ,
0 + apx2 + - + a,xm = b

On aboutit ainsi a un nouveau systéme, on recommence les étapes
ci-dessus pour éliminer x, :

R
(H) . .
/ / Y
dpX2 + 0+ dypXm = n
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Soit
2x+y+z=1
(S) x+y+3z=4
XxX—y+2z=1

On effectue les opérations élémentaires directement sur la matrice
augmentée :

2 1 11
1 1 3|4
1 -1 2|1
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Exemple

2 1 1|1\, (112 12]1)2

1 1 3|4 1 1 3| 4

1 -1 21 1 -1 2 |1

1 12 1/2|1/2 1 12 1/2|1/2
bbb fg 12 52|72 |22 o0 1 5 | 7
bbb\ o —3/2 3/21/2 0 —3/2 3/2|1)2
benen (1 Y2 202N L (112 1/2] 12
Al 1 5 |7 01 5| 7

0 0 9|11 0 0 1 [11/9

La matrice est maintenant échelonnée.
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Etape 2 : réduction

En partant de la derniére ligne et en utilisant le premier coefficient non nul
comme pivot, on applique la méme méthode que celle de I'étape
d’'échelonnement, en allant du bas a droite vers le haut a gauche.
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Exemple
Continuons I'exemple précédent avec la matrice échelonnée obtenue.

112 12012\ . (1 12 0]-1/9
0 1 5| 7 10 1 0] 8/9
o 0o 1 |11/9 ) ®B Lo o 1]11/9
o (39 0|30
0 0 1]11/9

La matrice est maintenant échelonnée et réduite.
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Etape 3 : resolution
Maintenant le systeme est échelonné et réduit, sa résolution est plus
simple.
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Exemple

Continuons I'exemple précédent avec la matrice échelonnée réduite
obtenue.

1 0 0|-5/9
0 1 0] 8/9
0 0 1]11/9
Le systéeme devient
x=-5/9
y=8/9
z=11/9

et la solution, dans ce cas, est évidente.
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Exemple 2
Considérons le systeme

-y +2z+13t=5
(S) x—2y+3z+17t =4
—x+3y—3z—-20t=-1

La matrice augmentée du systeme est

0 -1 2 13 | 5
1 -2 3 17 | 4
-1 3 -3 -20|-1
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Exemple 2
0 -1 2 135 1 -2 3 17 | 4
1 —2 3 17 |4 |22 0 -1 2 13|5
-1 3 -3 —20|-1 1 3 -3 —20|-1
1 -2 3 17 | 4 1 -2 3 17
0 -1 2 13 |5 |L=btl o 1 2 13
1 3 -3 —20|-1 0 1 0 -3

1 -2 3 17 |4 1
0 -1 2 13|5 | 2= [0 1 -2 —13|-5
0 1 0 -3|3 0
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Exemple 2
1 -2 3 17 4 1 -2 3 17 4
L3<—L3—L2

o 1 -2 -3 |——)] 0 1 -2 -13|-5

0o 1 0 -3|3 0 0 2 10 | 8
1 -2 3 17 4 1 1 -2 3 17 4

L3<—§ L3

0 1 -2 —-13|-5 0 1 -2 -13|-5
0 0 2 10 | 8 0 0 1 5 4

La matrice est maintenant échelonnée.
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Exemple 2
Pour réaliser la réduction, on remonte a partir de la derniere ligne en
utilisant le premier coefficient non nul comme pivot.

1 -2 3 17 | 4 1 -2 0 2 |-8
0 1 -2 —13| -5 |b=b8bit o 1 0 —3] 3
00 1 5 |4 )bl 0 1 5|4

1 -2 0 2 |-8 100 —4|-2
0 1 0 —3| 3 |Lbehf2e | g9 o 3] 3
0 0 1 5|4 001 5| 4

La matrice est maintenant échelonnée et réduite.
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Systemes d'équations linéaires : Méthode du pivot de

Gauss

Exemple 2
Le systeme (S) est maintenant équivalent a

X —4t = -2
y—3t=3
z+5t=4

ol x,y,z sont les variables principales et t est la variable secondaire (ou
paramétre). L'ensemble des solutions est

[(y.z.t) R [x=-2+4\y =343\ z=4-5\t=X\AeR}

=(~2,3,4,0) + Vect((4,3,-5,1)).
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Application de la méthode de Gauss a l'inversion des

matrices

Si A est une matrice carrée inversible de type (n, n) et B est l'inverse de A,
alors

AB =1,

Si By, ..., B, sont les colonnes de B, I'équation matricielle précédente est
équivalente aux n équations

AB,' = E;,I' = ]_, ceey N

Donc calculer B revient a résoudre n systémes d’équations linéaires ayant
la méme matrice A.

Pour calculer la matrice inverse, on applique la méthode de Gauss pour
résoudre les systémes précédents parallélement.
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Application de la méthode de Gauss a l'inversion des

matrices

Exemple
Soit
1 20
A=1]1 0 3 2
111
On écrit alors le tableau
1 2 01 0O
0 3 2/0 10
11 1/0 01

et on applique la méthode de Gauss.
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Application de la méthode de Gauss a l'inversion des

matrices

Exemple
1 2 0|1 00 1 2 0,1 00
0 32(010)]—=-|0 3 2/0 10
1 1 1{0 01 0 -1 1|-1 0 1

o
=
N
~
w
o
=
~
w
o

N
—_
N
o
[
o
o

1 12 01 0 0
0 1 2/3/0 1/30|—=|0123]0 1/30
0 00 5/3|-11/3 1
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Application de la méthode de Gauss a l'inversion des

matrices

Exemple

12 0|1 0 0 12 0| 1 0 o0
01230 130|=[0123 0 1/3 0
00 5/3|-1 1/3 1 00 1 |-3/51/5 3/5

12 0} 1 0 O 10 0

120
0123 0 1/3 0 |—=|o010|25 1/5 —2/5
00 1 |-3/51/5 3/5 00 1|-3/5 1/5 3/5
120/ 1 0 0 1 00| 1/5 —2/5 4/5
01025 1/5 —2/5 |—=>|010]|25 1/5 —2/5
00 1|-3/5 1/5 3/5 00 1|-35 1/5 3/5
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Application de la méthode de Gauss a l'inversion des

matrices

Exemple
Donc la matrice inverse est

1/5 —2/5 4/5
A= 2/5 1/5 -2/5
-3/5 1/5 3/5
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Systémes de Cramer

Systemes de Cramer J
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Systémes de Cramer

Définition

On dit qu'un systeme de n équations linéaires a n inconnues est un
systeme de Cramer si la matrice A de ce systeme est inversible.
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Systémes de Cramer

Soit (S) un systeme de n équations linéaires a n inconnues écrit sous
forme matricielle AX = B. Les propriétés suivantes sont équivalentes :

@ Quel que soit B, le systéme (S) admet une solution et une seule.
@ Quel que soit B, le systeme (S) admet au moins une solution.

@ Quel que soit B, le systeme (S) admet au plus une solution.
°

Le systeme homogeéne associé au systeme (S) n'admet que la solution
triviale.

La matrice A du systéme (S) est inversible.
det(A) # 0.
La solution unique du systeme (S) est alors X = A™1B.
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Systémes de Cramer

Proposition (Reégle de Cramer)

Soit (S) un systéme de n équations linéaires a n inconnues écrit sous
forme matricielle AX = B.
Pour chaque 1 < i < n, soit A; la matrice obtenue en remplacant la e

colonne de A par le second membre B.
Supposons que (S) est de Cramer (donc det(A) # 0). Alors I'unique

solution (xi, ..., X,) de (S) est donnée par
det(A,-) i
i= " 1Si<n
X det(A) r=r
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Systémes de Cramer

Soit (S) { x+y=5 écrit sous forme matricielle

2x+3y =6
11\ (x\ (5
2 3 y )] \6 ]
On a det(A) = ; ; = 1l £ @

Donc (S) est un systeme de Cramer et |'unique solution est

S o1
w

N =
w =

”
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Réduction des endomorphismes )
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Réduction des endomorphismes

Soit E un K-espace vectoriel.

@ Une application linéaire de E dans E est appelée un endomorphisme.

@ L'espace vectoriel des endomorphismes est noté End(E).
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Réduction des endomorphismes

Soient E un K-e.v de dimension finie et f € End(E). On se fixe une base
B de E.

On considére la matrice M(f) de f par rapport a la base B : on prend la
méme base pour E comme ensemble de départ que pour E comme
ensemble d’arrivée.

Si B= (€L, ,€,) et les composantes de chaque f(€;) dans la base B
sont
a1j
o a2j
flg =1 .
anj B
alors
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Réduction des endomorphismes

Soit f I'endomorphisme de R? définie par
f:R?> 5 R% f(x,y) = (x4 2y, —x +4y).

Considérons R? muni de la base canonique Can = (&, &). Alors

F(&1) = F(1,0) = (1,—1) = ( _11 ) ,
Can

f(&) = (0,1) = (2,4) = ( p ) .
Can

MCan(f):(_ll i)

Donc
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Réduction des endomorphismes

Si on considére maintenant R2 muni de la base B = (i, V) ou

alors

F(7) = F(1,1) = (3,3) = 37 = (

w O
~
oy

et donc
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Réduction des endomorphismes

On voit que les deux matrices de f, par rapport aux différentes bases Can

et B
MCan(f):<_11 i): MB(f):<§ g)

sont tres différentes.
La derniere matrice est plus simple.
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Réduction des endomorphismes

La matrice associée a un endomorphisme f dépend de la base choisie :
pour deux bases By, By, les matrices Mg, (f), Mg, (f) ne sont pas
forcément identiques.

L'objectif de la réduction d'un endomorphisme, c'est de trouver une base
B dans laquelle Mg(f) soit la plus simple possible.

Les matrices les plus simples sont les matrices diagonales :

alil 0 0
0 ax»
0
0 0 ann

Elles sont simples : la somme, la multiplication, la puissance n-eme, ... etc,
se rameéne a des opérations simples.
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Réduction des endomorphismes

Si
ap O 0 ,81 0 0
A— 0 wm . B= 0 ,32
0 0 O 0
0 0 ap 0 0 Bp
alors
a1y 0 0
AB — 0  op
: 0
0 0 aphp
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Réduction des endomorphismes

Si
A0 0
A 0 X
0
0 0 X
alors, pour tout n € N
Al 0 0
P RCRY:
0 0 A;
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Réduction des endomorphismes : Définition, propriétés

Définition
On dit d'un endomorphisme f qu'il est diagonalisable, s'il existe une base
B de E telle que Mg(f) est diagonale :

a1l 0 0
0 a
MB(f) _ 22
- 0
0 0 ann
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Réduction des endomorphismes : Définition, propriétés

Exemple

Reprenons |'exemple précédent
f:R2 = R?% f(x,y) = (x+2y,—x+4y).
Alors, dans la base B = (4, V) ou
i=(2,1), v=(1,1)

la matrice de f est

et donc f est diagonalisable.
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Réduction des endomorphismes : Définition, propriétés

Comment peut-on définir la diagonalisation d'une matrice ?
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Réduction des endomorphismes : Définition, propriétés

Rappel

Si A € Mp(K), alors I'application linéaire associée a A est définie par

X1
X2

fA KT — Kn, fA(Xl,--- ,Xn) =A.
Xn

Remarquons que A est la matrice de f4 par rapport a la base canonique :
Mecan(fa) = A.
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Réduction des endomorphismes : Diagonalisation

On définit maintenant la diagonalisation d'une matrice en utilisant son
application linéaire associée ...

Définition

On dit d'une matrice carrée A € M,(K) qu’elle est diagonalisable, si
I'application linéaire qui lui est associée est diagonalisable.
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Réduction des endomorphismes : Diagonalisation

Rappelons que si B est une base de K" et A € M, (K) alors
A= MCan(f) = 'DCan,B : MB(f) : PB,Can
et PB,Can = PEaln,B'

Donc en particulier, si A est diagonalisable, alors il existe une matrice
diagonale D et une matrice inversible P telles que A = PDP™1.
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Réduction des endomorphismes : Diagonalisation

Inversement, supposons que A = PDP~! ol D est diagonale et P est
inversible.

Si on prend pour B la famille B = (4, - , Up) ou U est le i-ieme vecteur
colonne de la matrice P; comme P est inversible, det(P) # 0, B3 est une
famille libre et est donc une base de K.

Donc en particulier, P est la matrice de passage de Can a B et D est la
matrice de f4 dans la base B.

Donc A est diagonalisable.
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Réduction des endomorphismes : Diagonalisation

Définition

On dit que la matrice A est semblable a B s'il existe une matrice inversible
P telle que A= PBP~1.

Donc on avait montré la proposition importante suivante :

Proposition

Une matrice A est diagonalisable si et seulement si elle est semblable a une
matrice diagonale.
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Réduction des endomorphismes : Diagonalisation

Remarques (en pratique)

@ Si A est diagonalisable et si BB est la base dans laquelle A (ou
I'application linéaire qui lui est associée) est représentée par une
matrice diagonale D alors

A= PDP!

ol P = Pcan s est la matrice de passage de la base canonique Can a

B.

@ Diagonaliser une matrice carrée A revient a trouver une matrice
diagonale D et une matrice inversible P telles que A= PDP~1. On
cherche une base B, dans laquelle A est représentée par une matrice
diagonale D et on prend P la matrice de passage de la base
canonique a B.
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Réduction des endomorphismes : Diagonalisation

Comment peut-on, en pratique, trouver une telle matrice diagonale D7

Pour cela, quelques notions sont nécessaires ...
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Réduction des endomorphismes

Vecteurs propres, valeurs propres J
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Réduction des endomorphismes : Vecteurs propres, valeurs

propres

Définition (Vecteurs propres, valeurs propres)
Soit f € End(E).
@ Un vecteur d € E est un vecteur propre de f si :
°o U# 0,
o il existe un scalaire A € K tel que (&) = \d.
@ Un scalaire A € K est une valeur propre de f s'il existe 0 € E tels que
i#0 et f() = 0.
@ Si i est un vecteur propre de f, I'unique scalaire A vérifiant
() = AU est appelé la valeur propre associée a u.
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Réduction des endomorphismes : Vecteurs propres, valeurs
propres

Remarque

Si U est un vecteur propre de f, alors pour tout scalaire & non nul, ad est
un vecteur propre de f.
En effet,

f(ab) = af(d) = ali = N ad).
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Réduction des endomorphismes : Vecteurs propres, valeurs

propres

On définit les valeurs propres et les vecteurs propres des matrices, en
utilisant les applications linéaires associées.

@ Un vecteur 4 € E est un vecteur propre de A s'il est pour I'application
linéaire associée.

@ De méme, un scalaire A\ € K est une valeur propre de A si elle |'est
pour |'application linéaire associée.
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Réduction des endomorphismes : Vecteurs propres, valeurs

propres

Cela revient a dire :

@ Un vecteur 4 = (x1,...,xp) € E est un vecteur propre de Asi 4 # 0
et s'il existe un scalaire A € K tel que :

Xn Xn

@ De méme, un scalaire A\ € K est une valeur propre de A s'il existe
U= (x1,...,xn) € E tels que 0 # 0 et
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Réduction des endomorphismes : Vecteurs propres, valeurs
propres

Proposition
L'endomorphisme f est diagonalisable, si et seulement si, il existe une base
de E formée de vecteurs propres de f.

| A

Preuve
Si f est diagonalisable, alors il existe une base B = (i, ..., U,) de E telle
que

M O - 0

0 A

Ms(f)=| ™
: . .. 0
0 - 0 X\,

Donc pour tout 1 </ < n, f(4;) = A;t;. D'ou U; est un vecteur propre.
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Réduction des endomorphismes : Vecteurs propres, valeurs

propres

Réciproquement, si E admet une base B = (i, ..., U,) formée de vecteurs
propres de f, alors pour tout 1 < i < n, il existe \; tel que f(4;) = \;i;.
Donc

M 0 -0
0 A
Mg(f)=| ~ 2
: . .. 0
0 - 0 \,
et f est diagonalisable. O
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Réduction des endomorphismes : Vecteurs propres, valeurs

propres

La traduction de la proposition 1 pour les matrices :

Proposition

Une matrice carrée A € M,(K) est diagonalisable ssi elle possede n
vecteurs propres formant une base de K”.
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Réduction des endomorphismes

Sous-espaces propres J
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Réduction des endomorphismes : Sous-espaces propres

Rappel

Soient U et V deux s.e.v du K-e.v E.

@ On appelle somme de U et V I'ensemble défini par

U+V={i+7V | GeUve V.

o On dit que la somme U + V est directe si UN V = {0}.

@ On dit du s.e.v F qu'il est la somme directe de U et V si
o F=U+ V_);
o UNV = {0}
Onécrit F=U® V.
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Réduction des endomorphismes : Sous-espaces propres

Plus généralement, soient Uy, ..., Uy, des s.e.v de E. On dit que E est la
somme directe de Uy, ..., Upetonécrit E=U D Uy D --- D Uy, si:

o E=U+Up-+Un={th + - +im | G €U},
@ pour tout iy € Uy, th € Uy, ..., 1Um € Upy -

Sith 4+ -+ lm =0 alors ﬁ;zﬁpourtoutlgigm.

v

Soient Uy, ..., Un, des s.e.v de E. Pour chaque 1 < i < m, soit B; une
base de U;. Alors E est la somme directe de Uy, ..., Uy, si et seulement

si, ByUBy U ---U B, est une base de E.
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Réduction des endomorphismes : Sous-espaces propres

Définition
Soit f un endomorphisme de E et soit A une valeur propre de . On
appelle sous-espace propre associé a la valeur propre \ de f, le sous-espace

vectoriel
E\(f) = Ker(f — Nldg) = {u € E | f(d) = \d}.

Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 204 /315

Léon Matar Tine



Réduction des endomorphismes : Sous-espaces propres

Si A € Mu(K) et X une valeur propre de A, on définit d'une facon similaire
le sous-espace propre associé a la valeur propre A de A

Ex(A) = {T € E | Al = \G}.
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Réduction des endomorphismes : Sous-espaces propres

Proposition

L'endomorphisme f est diagonalisable, si et seulement si, E est somme
directe de ses sous-espaces propres.

Autrement dit, si A1,..., A, sont les valeurs propres de f, deux a deux
distinctes, f est diagonalisable si et seulement si

E=E\(f)®- - E\,(f).
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Réduction des endomorphismes : Sous-espaces propres

Corollaire

Si A1,...,An sont les valeurs propres de f, deux a deux distinctes, f est
diagonalisable si et seulement si

dim(E) = dim(Ey,(f)) + - - - + dim(En,(£))-

Corollaire

Si dim(E) = n et f admet n valeurs propres distinctes, alors f est
diagonalisable.
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Réduction des endomorphismes

Polyndme caractéristique )
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Réduction des endomorphismes : Polyn6me caractéristique

Soit A € Mp(K). Soit

Pa(X) = det(A — XI,).

Alors Pa(X) est un polynéme de degré n, appelé le polynéme
caractéristique de A.
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Réduction des endomorphismes : Polyn6me caractéristique

Exemple

Soit

Alors

A—XI2=<

13
4 2

10
0 1

I+
(" %)

3
2-X

‘:(1—X)(2—X)—12:X2—3X—10.
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Réduction des endomorphismes : Polyn6me caractéristique

Soit f € End(E). Soient By, By deux bases de E. Alors
Mg, (f) = P~ Mg, (f)P
ou P est la matrice de passage de B> a B;1. On a
det(Mg, (f) — XI,) = det(P~ Mg, (f)P — XI,)

= det(P~ (Mg, (f) — Xl»)P) = det(Mz,(f) — Xi,).
Cela permet de définir :
Définition
Soit f € End(E). Soit B une base de E. On définit le polynéme
caractéristique de f par :

P¢(X) = det(Mp(f) — Xlp).

(Donc il ne dépend pas de la base B).

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 211 /315



Réduction des endomorphismes : Polyn6me caractéristique

Proposition 5

Soit A € Mp(K) et A € K. Alors X est une valeur propre de A, si et
seulement si, A est racine du polynéme caractéristique de A.

Preuve
@ Si A est une valeur propre de A, alors il existe 4 avec 4 # 0 tel que
Aii = \ii. Donc (A — Al,)i = 0. Donc A — Al, n'est pas inversible et
donc det(A — Al,) = 0.
o Sidet(A— Al,) =0, alors A— Al, n'est pas inversible et donc il existe
i avec 1 # 0 tel que (A — A,)i7 = 0 et donc @ # 0 tel que Al = \ii.
Donc A est une valeur propre.

| A

Ol

y
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Réduction des endomorphismes : Polyn6me caractéristique

EE
Soit
10
A_<5 2).
On a
1-X 0
PA(X):‘ 5 2_X‘:(1—X)(2—X).

Donc les valeurs propres de A sont 1 et 2.
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Réduction des endomorphismes : Polyn6me caractéristique

Rappel sur les polynomes

@ Une racine A d'un polyndme P(X) € K[X], est une racine de
multiplicité m si (X — X\)™ divise P(X) mais (X — A)™ "1 ne divise pas
P(X).

@ Un polyndme P(X) € K[X], de degré n, est dit scindé dans K[X], s'il
peut s'écrire sous la forme

P(X) = a(X = A1)™ - (X = A,)™

ou mi € N*, ae K", \ie K (et my +---+ mp = n).
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Réduction des endomorphismes : Polyn6me caractéristique

Exemple
(1) Soit

P(X) = X3 —5X%24+7X —3.

Alors
P(X) = (X —1)*(X - 3).

La multiplicité de la racine A\; = 1 est 2 et la multiplicité de la racine

A2 = 3 est 1. On voit aussi que P est scindé dans R[X] mais aussi dans
C[X].

(2) Le polyndme P(X) = X? 4+ X + 1 n'est pas scindé dans R[X] car il
n'admet pas de racine réelle. Par contre il est scindé dans C[X] :
P(X) = (X —j)(X ~J) o j = /%
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Réduction des endomorphismes : Polyn6me caractéristique

Soit A € M,(K) et A € K une valeur propre de A.

o La multiplicité algébrique de X\ est la multiplicité de A\ comme racine
de Pa(X).

@ La multiplicité géométrique de X est la dimension du sous-espace
propre Ey(A).
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Réduction des endomorphismes

Diagonalisation J
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Réduction des endomorphismes : Diagonalisation

Théoreme (CNS pour la diagonalisation)

Soit A € Mp(K). Alors A est diagonalisable si et seulement si les
propriétés suivantes sont satisfaites :

@ Le polyndme caractéristique Pa(X) est scindé dans K[X] : dans ce cas
Pa(X) = (=1)"(X = A1)™ -+ (X = Ap)™

ol A1,...,Ap sont les valeurs propres; m; est la multiplicité
algébrique de A;.

@ Pour chaque valeur propre A;, sa multiplicité algébrique coincide avec
sa multiplicité géométrique : dim(Ejy,(A)) = m;.
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Réduction des endomorphismes : Diagonalisation—mise en

pratique

@ On calcule le polynéme caractéristique Pa(X).
@ On cherche les racines de Pa(X), A1,---, Ap, et les multiplicités
algébriques my, ..., mp.
o Si Pa(X) n'est pas scindé, alors A n'est pas diagonalisable.
o Si Pa(X) est scindé, on cherche les bases des sous-espaces propres
Ey.(A). Si pour chaque i, dim(Ejx;(A)) = m;, alors A est
diagonalisable :

AN 0 - 0
0 0 0
0 A1 0
D=1 o 0 0
0 0N 0
0 o

ol chaque \; est répété m;-fois.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 219 /315



Réduction des endomorphismes : Diagonalisation—mise en

pratique

Dans ce cas, si B; est une base de E);(A), alors B=B; U---U B, est une
base de K" formée de vecteurs propres de A. On a alors A= PDP~! ou P
est la matrice de passage de la base canonique a B.
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Réduction des endomorphismes : Diagonalisation—Exemples

1-X -3
3 4—-X

Le discriminant est strictement négatif et donc Pa(X) n'admet pas de
racines dans R. Donc A n’est pas diagonalisable dans R.

(2) Soit
1 2
(1)

1-X 2
-1 4-X

Pa(X) = |:X2—5X+13.

On a

Pa(X) =

’:X2—5X+6:(X—2)(X—3)

et donc les valeurs propres sont A\; =2 et Ap = 3.
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Réduction des endomorphismes : Diagonalisation—Exemples

Comme A € M»(R) et Pa(X) admet deux racines distinctes, A est
diagonalisable (on applique ici le corollaire 2). La matrice diagonale est
2 0

D= 0 3 .On a

Ex(A) ={(x,y) eR?| A( ; ) =2 < ; )} = Vect((2,1))

y ) =3 < y )} = Vect((1,1)).

En posant i = (2,1),V = (1,1), B = (i, V) est une base de R? formée de
vecteurs propres de A. La matrice de passage de la base canonique a B est

p:<§;).

Ex,(A) ={(x,y) eR?| A

VR
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Réduction des endomorphismes : Diagonalisation—Exemples

(3) Soit
3 0 -1
A= 2 4 2
-1 0 3

1. Polynéme caractéristique : on a

3-X 0 -1
Pa(X) = 2 4—-X 2 _(4—X)'
-1 0 3-X

=(2-X)(4 - X)%

Donc A possede deux valeurs propres : 2 de multiplicité algébrique 1 (on
dit qu'elle est simple) et 4 de multiplicité algébrique 2 (on dit qu’elle est
double). En plus P4 est scindé.
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Réduction des endomorphismes : Diagonalisation—Exemples

2. Sous-espaces propres : on a

E2(A):{(X7yvz)€R3‘A y =2

Ex(A) ={(x,y,2) eR]|A| vy | =4
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Réduction des endomorphismes : Diagonalisation—Exemples

X X
En résolvant le systeme homogene A| y | =2 y |, par la méthode
z z
de Gauss par exemple, on obtient Ex(A) = Vect(d), ou 4 = (1,—2,1).
De méme
Ex(A) = Vect(v,w), ou v =(0,1,0),w = (1,0,—1).
Donc la multiplicité géométrique de la valeur propre 2 est 1 et celle de la
valeur propre 4 est 2.

3. Diagonalisabilité : comme P4 est scindé et la multiplicité algébrique de
chaque valeur propre coincide avec sa multiplicité géométrique, A est
diagonalisable.

4. Diagonalisation : on a

2 00 1 0 1
D=|040]|,P=-21 0 |,A=PDP L
00 4 1 0 -1
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Réduction des endomorphismes

Théoreme de Cayley-Hamilton J
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Réduction des endomorphismes : Théoreme de

Cayley-Hamilton

Soit E un K-e.v et P € K[X]
P(X) = apnX"+ -+ a1 X + a.

Si f € End(E), on note P(f) I'endomorphisme de E défini par
P(f) = anf" + -+ arf + aoldg,

ol fk=Ffofo---of.
k—fois

De méme si A € M,(K), alors P(A) est définie par

P(A) = apA" + -+ a1A+ aolm.
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Réduction des endomorphismes : Théoreme de
Cayley-Hamilton

Théoreme (Théoreme de Cayley-Hamilton)

Soit f € End(E) (resp. A € M,(K)) et P¢(X) son polyndme
caractéristique (resp. Pa(X)). Alors P¢(f) =0 (resp. Pa(A) = 0).
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Réduction des endomorphismes : Théoreme de
Cayley-Hamilton

Soit

A:(ig).

Son polynéme caractéristique est

1-X 2

PA(X):| 4 1-X

‘:(1—X)2—8:X2—2X—7.

D'apres le théoréme, on a A2 — 2A — 7/, = la matrice nulle .

Cela permet par exemple de calculer A2 en utilisant A et la matrice
identité b.

On a aussi A (3(A—2h)) = b et on déduit que A~1 = 1(A—2h).
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Espace vectoriel muni d'un produit scalaire, diagonalisation des matrices
symétriques et hermitiennes
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Espace vectoriel muni d'un produit scalaire, diagonalisation

des matrices symétriques et hermitiennes

Nous avons vu que dans un espace vectoriel nous pouvons additionner des
vecteurs et les multiplier par des scalaires.

Pouvons-nous aller plus et définir des notions comme les longueurs, les
angles et I'orthogonalité ?

Le produit scalaire est une nouvelle opération qui s'ajoute aux lois
s'appliquants aux vecteurs, a savoir I'addition et la multiplication scalaire,
et qui permet donc d'utiliser les notions usuelles de géométrie comme les
longueurs, les distances, les angles et |'orthogonalité.

Le produit scalaire permet d'étendre ces notions a des espaces vectoriels
réels ou complexes de toute dimension.
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Produit scalaire

Rappelons que dans R3 le produit scalaire est défini par (en utilisant la

notation matricielle)
/

(d|v) = (x y z) Ay | =xx+yy + 27
ZI

On remarque que ce produit scalaire satisifait les propriétés :

@ en fixant 4, I'application X — (i|X) est linéaire ; de méme

I'application U — (X|d) est linéaire; on dit qu'elle est bilinéaire;

@ symétrie : pour tous d, V, (d|V) = (V|d)

e positivité : pour tout I, (id|d) = x>+ y?> +2°>>0;

@ définie : pour tout tout 4, (¥|d) =0= i =0.
Il s’avére que ces trois propriétés sont les plus élémentaires qui permettent
de généraliser les “propriétés géométriques” recherchées aux espaces

abstraits ...

v
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Produit scalaire

Nous distinguerons le cas réel et le cas complexe pour définir le produit
scalaire.
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Produit scalaire réel

Soit E un R-espace vectoriel. Une application ¢ : E X E — R est appelée
forme bilinéaire si :
@  est linéaire a droite : pour tout a € E fixé, I'application ¢, : E — R
définie par p,(y) = ¢(a, y) est linéaire.
@ ( est linéaire a gauche : pour tout b € E fixé, I'application
vp 1 E — R définie par ¢p(x) = p(x, b) est linéaire.
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Produit scalaire réel

Exemple

En prenant E = R ['application
RxR =R, o(x,y) = xy

est une forme bilinéaire sur E. En effet :

@  est linéaire a droite : pour tout a € R fixé, I'application ¢, : R =+ R
définie par p,(y) = ay est évidemment linéaire.

@ o est linéaire a gauche : pour tout b € R fixé, |'application
b : R — R définie par pp(x) = xb est évidemment linéaire.

On remarque par contre que ¢ elle-méme n'est pas linéaire (exercice).
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Produit scalaire réel

Une forme bilinéaire ¢ : E X E — R est

e symétrique si ¢(x,y) = ¢(y,x) pour tous x,y € E.
@ positive si p(x, x) > 0 pour tout x € E.

@ définie si pour tout x € E,

o(x,x) =0=x=0.
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Produit scalaire réel

Dans R?, I'application

0 R?x R = R, ¢((x1,%), (y1,)2)) = x1y1 + xay2

est une forme bilinéaire (exercice) symétrique et définie positive. En effet :

@ (p est symétrique : on a

o((x1,x2), (y1,¥2)) = x1y1 + xoy2 = yix1 + yoxo = ©((y1, y2), (x1, x2))

et donc ¢ est symétrique.

@  est définie positive : on a

o((x1,%2), (x1,%2)) = X +x3 >0

et p((x1,x2), (x1,x2)) = 0 si et seulement si (x1,x2) = (0,0).

<
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Produit scalaire réel

Définition

Soit E un R-espace vectoriel. On appelle produit scalaire sur E toute
forme bilinéaire sur E qui est symétrique et définie positive.

Un R-espace vectoriel muni d'un produit scalaire est appelé un espace
préhilbertien. S'il est de dimension finie alors est appelé un espace
euclidien.

Si ¢ : E x E — R est un produit scalaire, alors ¢(x, y) est noté (x|y).
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Produit scalaire réel

Exemple : Produit scalaire canonique de R"

Dans R”, le produit scalaire canonique, est défini par

<(X17' .. 7Xn)|(y1, cee >}/n)> = Xiy1 S ooc +Xn)/n~
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Produit scalaire réel

Exemple

Soit E = C([a, b]) le R-e.v des applications continues de I'intervalle [a, b]
dans R. Alors I'application

ExE—R, (f,g) = (flg) = /f Je(x) d

est un produit scalaire. En effet
@ bilinéarité : conséquence de la linéarité de I'intégrale;
e symétrie : (f|g) = (g|f) est évidente;

b
@ positivité : (f|f) = / f(x)? dx > 0 car I'intégrale d'une fonction
positive est positive ;a

o définie : (f|f) =0 = f = 0; propriété de l'intégrale de Riemann.
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Produit scalaire réel

EE

Soit E = M,(R) le R-e.v des matrices carrées n x n. Alors |'application
ExE R, (A B) — (AB) = Tr(At - B)

est un produit scalaire (o pour une matrice M, Tr(M) désigne la trace de
M et M* désigne la transposée de M).

v
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Produit scalaire réel

Soit E = R2. Pour (x,y),(x’,y’) € E, on pose

o((x,y), (x',¥") = xx" + 12(xy" + yx") + yy'".

Montrer que ¢ est un produit scalaire sur E.
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Produit scalaire complexe

Soit E un C-espace vectoriel. Une application ¢ : E x E — C est appelée
forme sesquilinéaire sur E si :
@ pour tout b € E fixé, I'application ¢y : E — C définie par
wp(x) = p(x, b) est linéaire.
@ pour tout a € E fixé, |'application ¢, : E — C définie par
©va(y) = p(a, y) est semi-linéaire :

¢(a,y1+y2) = ¢(a,y1) +¢(a,y2), pour tout y1,y> € E

©(a,\y) = Mp(a, y), pourtouty € E et A € C.
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Produit scalaire complexe

En prenant E = C I'application
CxC—C, p(x,y)=xy

est une forme sesquilinéaire sur E. En effet :

@ pour tout b € C fixé, I'application ¢p, : C — C définie par pp(x) = xb
est linéaire.

@ pour tout a € C fixé, I'application ¢, : C — C définie par p,(y) = ay
est semi-linéaire :
pa(yr +y2) = aly1 + y2) = ay1 + ay2 = @a(y1) + pa(y2)
pa(Ay) = aly = aXy = Apa(y)-
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Produit scalaire complexe

Une forme sesquilinéaire ¢ : E x E — C est

@ hermitienne si o(x,y) = ¢(y, x), pour tout x,y € E.
@ positive si p(x, x) > 0 pour tout x € E.

@ définie si pour tout x € E,

o(x,x) =0=x=0.
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Produit scalaire complexe

Exemple

Dans C2, I'application

V2 C*xC*— C, (P((lex2)7 (Y17YQ)) = X1y1 + X2¥2

est une forme sesquilinéaire (exercice) hermitienne et définie positive. En
effet :

@  est hermitienne : on a

o((x1,x2), (y1,¥2)) = x1y1 + x2¥2 = y1X1 + y2x2 = ©((y1, ¥2), (x1,x2))

et donc ¢ est hermitienne.

@  est définie positive : on a
o((x1,x2), (x1, %)) = x1X1 + x2%5 = |x1|?> + [x2|> > 0 et
gD((Xl,Xz), (X1,X2)) =0= (X1,X2) = (0, 0)
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Produit scalaire complexe

Définition
Soit E un C-espace vectoriel. On appelle produit scalaire sur E toute
forme sesquilinéaire sur E qui est hermitienne et définie positive.

Un C-espace vectoriel muni d'un produit scalaire est appelé un espace
préhilbertien. S'il est de dimension finie alors il est appelé hermitien.

Si ¢ : E x E — C est un produit scalaire, alors ¢(x,y) est noté (x]|y).
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Produit scalaire complexe

Exemple : Produit scalaire canonique de C”

Dans C”, le produit scalaire canonique, est défini par

((x1y oy xn)| (Va5 -+ -5 ¥n)) = X1V + -+ + XnVn-
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Produit scalaire complexe

Récapitulatif pour les R-espaces vectoriels

Soit E un R-espace vectoriel.

@ On appelle produit scalaire sur E toute forme bilinéaire sur E qui est
symétrique et définie positive.

@ Un R-espace vectoriel muni d'un produit scalaire est appelé un espace
préhilbertien.

@ Un R-espace vectoriel de dimension finie muni d'un produit scalaire
est appelé un espace euclidien.

@ Produit scalaire canonique de R” : le produit scalaire canonique de
R™, est défini par

<(X17"‘7Xn)‘(y17'-' 7_yn)> = X1y1 FF oo +XnYn-
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Produit scalaire complexe

Récapitulatif pour les C-espaces vectoriels

Soit E un C-espace vectoriel.

@ On appelle produit scalaire sur E toute forme sesquilinéaire sur E qui
est hermitienne et définie positive.

@ Un C-espace vectoriel muni d'un produit scalaire est appelé un espace
préhilbertien.

@ Un C-espace vectoriel de dimension finie muni d'un produit scalaire
est appelé un espace hermitien.

@ Produit scalaire canonique de C” : le produit scalaire canonique de
C", est défini par

<(X17"‘7Xn)‘(y17'-' 7_yn)> = Xl,ﬁ—i_ e +XI7E‘

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 251 /315



Propriétés géométriques

Si ¢ : E x E — K est un produit scalaire, alors ¢(x,y) est noté (x|y).
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Propriétés géométriques

Dans la suite E est un K-espace vectoriel préhilbertien. Donc un espace
vectoriel, réel ou complexe, muni d'un produit scalaire noté (x|y).
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Propriétés géométriques : Norme associée

Nous avons pour tout x € E, (x|x) > 0; on pose alors

[IxIl =/ xx)

qu'on appelle la norme de x;

Exemple

Dans R? muni du produit scalaire canonique

<(X7y)|(X,ay/)> = xx' ‘|‘ny

on retombe sur la notion usuelle de norme (ou longueur)

1]l = /{0 (x, y)) = /52 + y2
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Propriétés géométriques : Norme associée

Pour tous x,y € E et pour tout A € Kon a:
° |x]| =0,
o [[Ax{| = [l
@ ||x|| = 0 si et seulement si x = 0,
o [[x +yl|l <|Ix[| + |lyll (Inégalité triangulaire),
o [lx+ yII2 = [IxI12 + 2Re({xly)) + Iyl )
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Propriétés géométriques : Distance associée

Définition

Pour tous x,y € E, on pose d(x,y) = ||x — y|| qu’on appelle la distance
entre x et y.

Exemple

Dans R? muni du produit scalaire canonique

(KL Y)Y =+ yy'

on retombe également sur la notion usuelle de distance

d((x,y), (x,y")) = \/{(x = x',y = y)l(x = ',y = ¥"))

—\/(X 2+ (y—y)2
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Propriétés géométriques : Distance associée

Pour tous x,y € E et pour tout A € Kon a:

@ pour tous x,y € E, d(x,y) >0,

@ pour tous x,y € E, d(x,y) = 0 si et seulement si x =y,
@ pour tous x,y € E, d(x,y) = d(y, x),
°

pour tous x,y,z € E, d(x,y) < d(x,z)+ d(z,y) (Inégalité
triangulaire).
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Propriétés géométriques : Distance associée

Proposition (ldentité du parallélogramme)

Dans tout espace préhilbertien E, on a pour tous x,y € E

I + y112 + llx = ylI* = 2(1|x]1* + [ly]1?).

Dans un parallélogramme, la somme des carrés des longueurs des
diagonales est égale a la somme des carrés des longueurs des cotés.
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Propriétés géométriques : Distance associée

Proposition (Inégalité de Cauchy-Schwarz)

Dans tout espace préhilbertien E, on a pour tous x,y € E

| Xy T < Ml

avec égalité si et seulement si x et y sont linéairement dépendants.
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Propriétés géométriques : Angle

Soient u et v deux vecteurs non nuls de E. On sait d'aprés |'inégalité de
Cauchy-Schwarz que

‘IIUIIHVH‘ -
On peut donc trouver un unique angle « € [0, 7] tel que

{u]v)
lul[v]

cos(a) =

Définition

Cet unique angle est appelé I'angle non orienté entre u et v
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Propriétés géométriques : Orthogonalité

@ On dit que deux vecteurs x,y € E sont orthogonaux si (x|y) = 0. On
écrit x Ly.

@ Deux parties A et B de E sont dites orthogonales si pour tout a € A
et pour tout b € B, a et b sont orthogonaux. On écrit AL B.

v
Remarque

Remarquons que deux vecteurs u et v non nuls sont orthogonaux si et
seulement si I'angle non orienté formé entre u et v est 7/2.
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Propriétés géométriques : Orthogonalité

Définition

Soit C = (us, . .., up) une famille de vecteurs d'un espace préhilbertien E.
On dit que C est orthogonale si u; Lu; pour tout i,j € {1,...,p} avec

i .
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Propriétés géométriques : Orthogonalité

Exemple
On munit R® du produit scalaire canonique. Soit B = (u, v) la famille
définie par

1 1 1 1 -1
U=\—r=,—75,—#7=), V= _’_50
EEE S e

est une famille orthogonale. En effet

1 1 1
(V) = —= X —= — — x —= =0

V3 2 3 2

et donc u et v sont orthogonaux.
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Propriétés géométriques : Orthogonalité

Théoreme de Pythagore

Soit C = (uy, ..., up) une famille orthogonale de vecteurs d'un espace
préhilbertien E. Alors
P
a
i=1

2 4
2
=> llull®.
i=1
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Propriétés géométriques : Orthogonalité

Proposition

Toute famille de vecteurs, ne contenant pas de vecteurs nuls, orthogonale
est libre.
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Propriétés géométriques : Projection orthogonale

Soit A une partie non vide de E. L’ensemble des vecteurs de E qui sont
orthogonaux 2 tous les vecteurs de A, noté At

Al = {x € E|xLy pour tout y € A}

est un s.e.v de E appelé |'orthogonal de A.
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Proposition

Pour tout s.e.v F de dimension finie de E ona E = F & FL.
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Théoreme (projection orthogonale)

Soit F un s.e.v de dimension finie de E. Pour tout vecteur x € E, il existe
un unique vecteur y dans F tel que :

d(x,y)=d(x,F) = Z|21:_ d(x, z).

C'est I'unique vecteur appartenant a F vérifiant x — y € FL.

Pour x € E, le vecteur y de F fourni par le théoréme précédent peut étre
vu comme la meilleure approximation de x dans F.

On dit que y est la projection orthogonale de x sur F. On note y = pg(x).
OnaE=F@®Ftet

x = pe(x) + (x — p(x))

avec pr(x) € F et x — pp(x) € F*.
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Bases orthonormées, orthonormalisation )

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCS Automne 2025 269 / 315



Définition
On dit d'un vecteur x € E qu'il est unitaire si ||x|| = 1.

Définition

Soit C = (us, ..., up) une famille de vecteurs de E. On dit que C est

orthonormée si C est orthogonale et si u; est unitaire pour tout
ie{l,...,p}.

Autrement dit, une famille C = (u1,. .., un) de E est une base
orthonormée si

o ||ui]| =1 pour tout i € {1,...,n},
o (ujluj) = 0 pour tout i,j avec i # j.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025

270/ 315



Exemple

Reprenons un exemple précédent. On munit R du produit scalaire
canonique. Alors la famille B = (u, v) définie par

VS S SN B |
VRV T Ve

est une famille orthonormée. En effet (orthogonalité déja vue)

0)

R SIVRE S SRVRE S
v RV, RV RV

et donc u et v sont orthogonaux. On a en plus

\V U| \/ \[)2 7 (

et de méme /(v|v) = 1.

)21

%\

v

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025 271 /315



Définition
Une base de E qui forme une famille orthonormée est appelée base
orthonormée.

De méme, une base B = (e, ..., e,) de E est une base orthonormée si

o |l&l =1 pour tout i € {1,...,n},

o (eilej) =0 pour tout i,j avec i # j.
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Exemple
Dans R” muni du produit scalaire canonique

((le 500 ,Xn)|(y17 500 ,yn)> =Xx1¥1+ -+ XaVn

la base canonique Can = (ey,...,e,) est une base orthonormée. Il faut
vérifier (exercice)

o fleif =1,

o (eilej) = 0 pour tout i,j avec i # j.
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Proposition (Lecture des composantes dans une base orthonormée)

Soit E un espace euclidien ou hermitien. Soit B = (e, ..., e,) une base

orthonormée de E. Alors pour tout x € E, on a

x = (x|er) e1 + - + (x|en) en et ||Ix]|* = | (x|ex) [* + - + [ (x|en) [°

Donc
(x|e1)

(xlen) /)

Automne 2025
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Preuve

Ecrivons x = \je; + -+ - + A\ne, ; donc en composantes dans la base B.
Alors par la bilinéarité du produit scalaire et |'orthonormalité de B

(x|e1) = (A1e1 + -+ Apepler)

= M1 (e1ler) + -+ Ay (enler)
= )\1 <e1|e1> = )\1.

De méme (x|e;) = A; et donc on a bien

x = (xler) er + -+ + (x|en) en et x| = | (x|er) |+ + [ (x[en) [°. O
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Proposition (Lecture d'un produit scalaire dans une base

orthonormée)

Soit E un espace euclidien ou hermitien. Soit B = (ey, ..., ep) une base
orthonormée de E. Alors pour tout x,y € E, si

alors
(x|y) = x1y1 + xoy2 + - + Xn¥n.

Autrement dit le produit scalaire dans ce cas, peut étre vu comme le
produit scalaire canonique dans R".
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Proposition (Projection orthogonale)
Soit F un s.e.v. de dimension finie de E. Soit B = (e, ..., €p) une base
orthonormée de F.

Alors pour tout x € E, la projection orthogonale de x sur F est donnée par

Pr(x) = (x|er) e1 + -+ + (x|ep) ep.
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EE

Dans R? muni du produit scalaire canonique, calculons la projection
orthogonale d'un vecteur u sur la droite vectorielle F = Vect(v) engendrée
par le vecteur non nul v.
z v .
@ Une base orthonormée de F : en posant e = W,on obtient une base
v

orthonormée de F.

@ On a donc

pr(u) = (ule) e = <u|ﬁ> v (ulv) L (ulv)

v~ vlE™~ (viv)
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Exemple
Calculons la projection orthogonale de u = (2,1,1) sur la droite vectorielle

F = Vect((1,1,0)).
o base orthonormée de F : ||(1,1,0)|| = v/2 et donc en posant
e= (%, %,0) on obtient une base orthonormée de F

@ On a

— 0=

2 1 1 1 33
PF(U):<U|e>e—(ﬁ+E)( 5 /5 (5,50
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Orthonormalisation de Gram-Schmidt )
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Théoréme d'orthonormalisation de Gram-Schmidt

Soit E un espace préhilbertien. Soit B = (ey, ..., e,) une famille libre de
E. Alors il existe une famille C = (f1,...,f,) de E, orthonormée et
vérifiant Vect(fy,...,f;) = Vect(ey,...,¢;) pour tout 1 < j < n.

On construit les vecteurs fi, ..., f, par récurrence, selon un procédé appelé

le procédé d’'orthonormalisation de Gram-Schmidt, comme suit :
@ On pose f; = L

llewl -
@ Supposons que la famille (fi, ..., f;) soit construite, 1 < j < n—1, on
définit alors
J
!
fiyn = i1 — D (ejalfio) fi et fiyn = T
k=1 j+1

/
i1
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Remarque
Remarquons que le vecteur
J
> (i) fi

k=1

est la projection orthogonale de ej;1 sur |'espace vectoriel engendré par

fi,f, ..., f;. Par conséquent, le vecteur
J
g+1— > (eralfi) fu
k=1
est orthogonal a I'espace vectoriel engendré par f1, f, ..., f;. Pour le rendre

unitaire il suffit de le diviser par sa norme

ej+1 — Yy (e11lf) fi

Hej+1 — Y1 (elfi) ka .
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EE

Dans R3 considérons u; = (1, —1,0); wp = (0,2,1) et F = Vect(uy, up)
et calculons une base orthonormée de F par le procédé de Gram-Schmidt.

On pose
u1 1

1 -1
Tl = AL 10 =(5575.0

on voit alors ||vi|| =1 et Vect(u1) = Vect(vi). On a

Vi =

1

up — (u2|vi) v = (0,2, 1)+f(ﬁ’ﬁ’

0)=(1,1,1)

et on pose donc

vy — up — (uplvi) v —( 1 1 1
|ua — (u2|vi) v | 3 V3

D’ol (v1, v2) est une base orthonormée de F.
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Corollaire (Existence des bases orthonormées)

Tout espace euclidien ou hermitien admet des bases orthonormées.

Corollaire (Théoreme de la base orthonormée incompleéte)

Soit E un espace euclidien ou hermitien de dimension n > 1. Soit
(e1,...,ep), 00 1 < p<n—1, une famille orthonormée de E. Alors il
existe epi1,..., e, de E tels que (e1,...,€p, €pt1,...,€n) soit une base
orthonormée de E.
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Espace vectoriel muni d'un produit scalaire, diagonalisation des matrices
symétriques et hermitiennes
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Diagonalisation des matrices symétriques et hermitiennes )
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Nous avons vu a la section sur la réduction des endomorphismes qu’étant
donnée une matrice A, on cherche une matrice diagonale D semblable a
A; ou d'une facon équivalente, on cherche une base B dans laquelle A est
représentée par une matrice diagonale.

Dans les espaces euclidiens ou hermitiens, ol nous disposons d'un produit
scalaire, on peut se demander, étant donnée une matrice A, s'il existe une
base orthonormée B dans laquelle A est représentée par une matrice
diagonale.

Nous verrons que les matrices qui vérifient cette propriété dans les espaces
euclidiens sont les matrices symétriques et dans les espaces hermitiens sont
les matrices hermitiennes.
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Matrices symétriques )
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Définition

Soit A = (ajj)1<i<n1<j<m une matrice de type (n, m) a coefficients dans K

di1  a12 aim

dp1 a2 a2m
A=

dnl dn2 ' dnm

La transposée de A, notée 'A, est la matrice de type (m, n) définie par :
pour 1 < j < n, la colonne j de A est égale a ligne j de A.

di1 4821 - danl
ta a12 a2 - an2
dlm 42m - dmm
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Soit
1 2 3
A= 5 6
7 8 9

Alors
1 4 7
tA=| 2 5 8
3 6 9

Léon Matar Tine
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Définition

On dit que A est symétrique si elle est égale a sa transposée.

A est symétrique si et seulement si A = *A.
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La matrice

A= 2
3

est symétrique, alors que la matrice

[y

B =

~N

ne |'est pas car B # B

=

w

o o1 N

(6]

(o)}
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Définition
Soit A € M,(K). On dit que A est diagonalisable dans une base
orthonormée s'il existe une base orthonormée B de K" et une matrice

diagonale D telles que
A= PcansDPg; -

(Rappel : Can est la base canonique de K").
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Soit A € M,(R) et supposons que A est diagonalisable dans une base
orthonormée B = (fi,--- , f,). Alors, comme Can est orthonormée, la
matrice de passage P = Pcans = (pij)1<ij<n @ comme coefficients
pij = (filei) -
Symétriquement, comme B est orthonormée, la matrice de passage
P' = Pgcan = (pf-j)lg,-,jg,, a comme coefficients
/
Pij = <ej|fi> .
On remarque que
/
pij = (filei) = (eilfj) = pj;
et donc P/ =tP.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PC¢ Automne 2025

204 /315



D'ou

'A=YPDP') =t P"D'P = PDP' = A
et donc A est symétrique. En fait cette derniére condition est aussi
suffisante ...

Théoreme

Soit A € M,(R). Alors A est diagonalisable dans une base orthonormée si
et seulement si A est symétrique.

Intermédiaire important ...

Proposition

Soit A € M,(R) une matrice symétrique. Alors les sous-espaces propres
associés aux valeurs propres de A sont deux a deux orthogonaux.
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Soit A € M,(R). Si A est symétrique, alors il existe une matrice de
passage P et une matrice diagonale D telles que A= PDP~1.

Nous avons vu que P! = fP. On dit que P est orthogonale.
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Définition

Soit P € M,(R). On dit que P est orthogonale si P-t*P =tP. P = I,.
Autrement dit si P est inversible et P71 = tP.
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Exemple

Dans R? muni du produit scalaire canonique, toute matrice orthogonale est
de la forme

[ cos(8) —sin(0) [ cos(8) sin(6)
A= ( sin(6)  cos(6) ) ou B = ( sin(6) — cos(f) )

La premiere représente une rotation d'angle 6 et le seconde représente une
symétrie orthogonale.
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Exemple

Dans R3 muni du produit scalaire canonique, toute matrice orthogonale est
semblable a une matrice de la forme

1 0 0 =i 0 0
A= | 0 cos(f) —sin(0) ou B=| 0 cos(f) —sin(9)
0 sin(d) cos(f) 0 sin(#) cos(6)
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Proposition

Soient E un espace euclidien de dimension n et P € M,(R). Alors P est
orthogonale si et seulement si P est la matrice de passage d'une base
orthonormée BB de E a une base orthonormée B’ de E.
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Mise en pratique

Soit
1 3/2
A= ( 3/2 1 )

et cherchons une matrice diagonale D et une matrice orthogonale P telles
que A= PDP~1. Comme A est symétrique cela est possible.
Les valeurs propres de A sont A\; = _71 et Ay = % Les sous-espaces propres
sont

E_1/5(A) = Vect((1,-1)), Esjp = Vect((1,1))

et par conséquent, en posant i = (1,—1) et V = (1,1), B = (4, V) est une
base de vecteurs propres de A. Pour avoir une base orthonormée, on prend
les vecteurs unitaires

i =(1/v2,-1/v2), V' =(1/V2,1/V2)

et donc B’ = (&', V') est une base orthonormée dans laquelle A est
représentée par une matrice diagonale.
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On a finalement

_ (12 0 _
P=1 0 50 P={_

il

et A= PD'P.

S-Sl
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V. 5. 2. Matrices hermitiennes )
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Dans un espace hermitien, les matrices symétriques ne sont pas suffisantes
pour caractériser les matrices diagonalisables dans des bases orthonormées.

Par exemple la matrice
-1 i
( i 1)

est symétrique mais elle n'est méme pas diagonalisable !
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Définition
Soit A = (ajj)1<i<n:1<j<n Une matrice carrée (n, n) a coefficients dans C

dil1 d12 - din

a1 ax - ap
A=

dnl dn2 -°° dnn

La conjuguée de A, notée A, est la matrice carrée (n, n) dont les
coefficients sont les conjugués des coefficients de A

a1 ap - an
_ a1 ax» -+ axp
A=

5nl 5n2 o 5nn
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Définition
Soit A une matrice carrée (n, n) a coefficients dans C. La transconjuguée
de A est la transposée de la conjuguée de A, elle est notée A*.

Donc A* = tA.
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Définition

Soit A une matrice carrée (n, n) a coefficients dans C. On dit que A est
hermitienne si A = A*.
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—i 2 i 2 —i 2

et donc B est hermitienne.
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Théoreme

Soit A € M,(C). Alors A est diagonalisable dans une base orthonormée si
et seulement si A est hermitienne.

Une proposition intermédiaire importante ...

Proposition

Soit A € M,(C) hermitienne. Alors

@ les sous-espaces propres associés aux valeurs propres de A sont deux a
deux orthogonaux.

@ les valeurs propres de A sont réelles.
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Soit A € M,(C). De méme ici, si A est hermitienne, il existe une matrice
de passage P et une matrice diagonale D telles que A= PDP~1.

Que peut-on dire de plus sur la matrice P ? Vérifie-t-elle des propriétés
particulieres ?

Dans le cas des espaces hermitiens, elle est en fait unitaire.
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Définition

Soit P € M,(C). On dit que P est unitaire si P- P* = P*. P = |,.
Autrement dit si P est inversible et P~1 = P*.
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Proposition

Soient E un espace hermitien de dimension n et P € M,(C). Alors P est
unitaire si et seulement si P est la matrice de passage d'une base
orthonormée BB de E a une base orthonormée B’ de E.
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Conclusion ...

Soit A une matrice réelle (resp. complexe). Alors il existe une matrice P
orthogonale (resp. unitaire) et une matrice diagonale D telles que
A = PDP~! si et seulement si A est symétrique (resp. hermitienne).
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