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Introduction
Ce cours de Mathématiques 3 est destiné aux étudiants de niveau licence 2
de la filière PCSI (Physique-Chimie et Sciences de l’ingénieur).
Trois chapitres sont développés dans ce cours

Algèbre linéaire ( Espaces vectoriels, Applications linéaires, Matrices,
Déterminants, Systèmes linéaires, Réduction des endomorphismes,
Espace vectoriel muni d’un produit scalaire : Diagonalisation des
matrices symétriques et hermitiennes),
Suites et Séries numériques et de fonctions : Suites et séries
numériques, Séries entières.
Séries entières – Équations différentielles.

Les notions seront présentées dans un esprit pratique sans développement
théorique.

L’UE compte pour 6 crédits. Un contrôle partiel (45% de la note) et
un contrôle terminal (55% de la note) sont prévus.
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Page de l’UE

https://licence-math.univ-lyon1.fr/doku.php?id=a25:
s3_maths3:page
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Espaces vectoriels

Dans la suite, K désigne le corps des nombres réels ou le corps des
nombres complexes. Les éléments de K sont appelés des scalaires.

Espace vectoriel
Un espace vectoriel est un ensemble d’éléments, appelés vecteurs, qu’on
peut additionner et multiplier par des scalaires.

Pour que ceci ait un sens, l’addition et la multiplication par des scalaires
doivent satisfaire certaines propriétés.
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Définition 1
Soit E un ensemble non vide muni d’une loi de composition interne,
autrement dit d’une application

E × E → E
(~u, ~v) 7→ ~u + ~v

et d’une loi de composition externe, autrement dit d’une application

K× E → E
(λ,~u) 7→ λ · ~u
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On dit que E , muni de ces opérations, est un K-espace vectoriel si :
(1) (E ,+) est un groupe commutatif, autrement dit :

commutativité : ~u + ~v = ~v + ~u ; (pour tous ~u, ~v ∈ E ) ;
associativité : ~u + (~v + ~w) = (~u + ~v) + ~w (pour tous ~u, ~v , ~w ∈ E ) ;
il existe un élément ~0E ∈ E , appelé élément neutre, tel que
~0E + ~u = ~u +~0E = ~u (pour tout ~u ∈ E ) ;
pour tout ~u ∈ E , il existe ~u∗ ∈ E vérifiant ~u + ~u∗ = ~0E ; l’élément ~u∗
est appelé le symétrique ou l’opposé de u et est noté −~u.

(2) Pour tous ~u, ~v ∈ E , pour tous λ, µ ∈ K :
λ · (~u + ~v) = λ · ~u + λ · ~v ;
(λ+ µ) · ~u = λ · ~u + µ · ~u ;
λ · (µ · ~u) = (λµ) · ~u ;
1 · ~u = ~u.
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On appelle :
Addition la loi de composition interne

E × E → E
(~u, ~v) 7→ ~u + ~v

et multiplication par des scalaires la loi de composition externe

K× E → E
(λ,~u) 7→ λ · ~u

Vecteurs les éléments de E ;
Scalaires les éléments de K ;
Vecteur nul le vecteur ~0E .
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Exemple 1
Sur R2, on définit l’addition par(

x
y

)
+
(

x ′
y ′

)
=
(

x + x ′
y + y ′

)

et la multiplication par des scalaires λ ∈ R par

λ

(
x
y

)
=
(
λx
λy

)
.

Alors R2, muni de ces deux opérations, est un R-espace vectoriel.
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Exemple 2
Plus généralement, sur Rn, on définit l’addition par

x1
x2
...

xn

+


y1
y2
...

yn

 =


x1 + y1
x2 + y2

...
xn + yn


et la multiplication par des scalaires λ ∈ R par

λ


x1
x2
...

xn

 =


λx1
λx2
...
λxn

 .

Alors Rn, muni de ces deux opérations, est un R-espace vectoriel.
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De même, sur Cn, on définit l’addition par
x1
x2
...

xn

+


y1
y2
...

yn

 =


x1 + y1
x2 + y2

...
xn + yn


et la multiplication par des scalaires λ ∈ C par

λ


x1
x2
...

xn

 =


λx1
λx2
...
λxn

 .

Alors Cn, muni de ces deux opérations, est un C-espace vectoriel.
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Exemple 3
Soit E = Rn[X ] l’ensemble des polynômes de degré inférieur ou égal à n à
coefficients réels. On munit Rn[X ] de l’addition des polynômes

Rn[X ]× Rn[X ] → Rn[X ]
(P,Q) 7→ P + Q où (P + Q)(X ) = P(X ) + Q(X )

et de la multiplication par des scalaires λ ∈ R

R× Rn[X ] → Rn[X ]
(λ,P) 7→ λP où (λP)(X ) = λP(X ).

Alors Rn[X ] est un R-espace vectoriel.
Son vecteur nul est le polynôme nul.

De même, l’ensemble Cn[X ] des polynômes de degré inférieur ou égal à n
à coefficients complexes est un C-espace vectoriel.
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Propriétés (Règles de calcul)
Soit E un K-espace vectoriel. Pour tous ~u, ~v ∈ E et pour tous λ, µ ∈ K, on
a :

λ · ~u = ~0E ⇔ (λ = 0 ou ~u = ~0E ) ;
λ · (~u − ~v) = λ · ~u − λ · ~v ;
(λ− µ) · ~u = λ · ~u − µ · ~u ;
(−λ) · (−~u) = λ · ~u.

Propriété Importante
λ · ~u = ~0E si et seulement si λ = 0 ou ~u = ~0E
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Sous-espaces vectoriels

Soit E un K-espace vectoriel et soit F ⊆ E .
On peut se poser la question de savoir quand est-ce que F , quand il est
muni par l’addition de E et la multiplication par des scalaires, est
lui-même un espace vectoriel.
Il s’avère qu’il suffit que F soit stable par l’addition et la multiplication par
les scalaires.
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Définition 2
Soit E un K-espace vectoriel et F un sous-ensemble non vide de E . On dit
que F est un sous-espace vectoriel de E si

pour tous ~u, ~v ∈ F , ~u + ~v ∈ F ;
pour tout ~u ∈ F et pour tout λ ∈ K, λ~u ∈ F .

Dans ce cas F , muni de l’addition et de la multiplication par des scalaires,

F × F → F
(~u, ~v) 7→ ~u + ~v

K× F → F
(λ,~u) 7→ λ~u

est lui-même un K-espace vectoriel.

Abréviation
Sous-espace vectoriel= s.e.v
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Proposition 1
Soit E un K-espace vectoriel et F un sous-ensemble de E . Alors F est un
sous-espace vectoriel de E si et seulement si ces deux propriétés sont
satisfaites

~0 ∈ F ;
pour tous ~u, ~v ∈ F et pour tout λ ∈ K, λ~u + ~v ∈ F .

Preuve
Supposons que F soit un s.e.v de E . Alors comme F n’est pas vide, il
contient un vecteur ~u. Alors −~u ∈ F et ~u − ~u = ~0 ∈ F .
Pour la seconde propriété, soient ~u, ~v ∈ F et λ ∈ K. Alors λ~u ∈ F et donc
λ~u + ~v ∈ F .
Exercice : montrer l’implication réciproque.

Exemples immédiats : E et {~0} sont des s.e.v de E .
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Exemple 1
Dans R2, toute droite passant par l’origine est un s.e.v. En effet toute
droite passant par l’origine a comme équation ax + by = 0 où a, b ∈ R et
on vérifie aisement qu’il s’agit bien d’un s.e.v (exercice).
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Exemple 2
Dans R3, tout plan passant par l’origine est un s.e.v. Un plan P passant
par l’origine est donné par une équation de la forme

ax + by + cz = 0 où a, b, c ∈ R.

Vérifions que P est un s.e.v de R3. Comme P passe par l’origine, on a

~0 ∈ P. Soient ~u =

 x
y
z

 ∈ P, ~v =

 x ′
y ′
z ′

 ∈ P et λ ∈ R. On doit

montrer que λ~u + ~v ∈ P. On a

λ~u + ~v =

 λx + x ′
λy + y ′
λz + z ′

 et ax + by + cz = 0, ax ′ + by ′ + cz ′ = 0.

D’où a(λx + x ′) + b(λy + y ′) + c(λz + z ′) = 0. Donc λ~u + ~v ∈ P.
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Exercice
Soit F(R) l’ensemble des applications de R à valeurs dans R. On définit
l’addition et la multiplication par les scalaires par
(f + g)(x) = f (x) + g(x); (λf )(x) = λf (x).

1 Vérifier que F(R) est un R-espace vectoriel.

Soit C1(R) le sous-ensemble de F(R) des applications de classe C1

C1(R) = {f ∈ F(R) | f est dérivable et f ′ est continue}.

2 Montrer que C1(R) est un s.e.v de F(R).
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Notation
Soit E un K-espace vectoriel et (Fi)i∈I une famille de s.e.v de E . Alors
l’intersection

⋂
i∈I Fi est définie par⋂
i∈I

Fi = {x ∈ E | x ∈ Fi , pour tout i ∈ I}.

Par exemple, si F1,F2, . . . ,Fn sont des sous-ensembles de E , alors leur
intersection F1 ∩ F2 ∩ · · · ∩ Fn est l’ensemble des éléments x ∈ E tel que
x ∈ Fk pour tout k ∈ {1, . . . , n}.
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Proposition 2
Soit E un K-espace vectoriel et (Fi)i∈I une famille de s.e.v de E . Alors
l’intersection

F =
⋂
i∈I

Fi = {x ∈ E | x ∈ Fi , pour tout i ∈ I}

est un s.e.v de E .

Preuve
(Pour tout i ∈ I, ~0 ∈ Fi) =⇒ ~0 ∈

⋂
i∈I Fi ;

Soient ~u, ~v ∈ F et λ ∈ K. Alors pour tout i ∈ I, λ~u + ~v ∈ Fi . Donc
λ~u + ~v ∈ F .
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Corollaire 1
Si F et G sont des s.e.v, alors leur intersection F ∩ G est un s.e.v.
Si F1,F2, . . . ,Fn sont des s.e.v, alors leur intersection
F1 ∩ F2 ∩ · · · ∩ Fn est un s.e.v.
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Exemple
Soient P1 et P2 deux plans de R3 passants par l’origine. Alors leur
intersection P1 ∩ P2, qui est une droite, est un s.e.v de R3.
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Définition 3
Soient U et V deux s.e.v du K-e.v E .

On appelle somme de U et V l’ensemble défini par

U + V = {~u + ~v | ~u ∈ U, ~v ∈ V }.

On dit que la somme U + V est directe si U ∩ V = {~0}.
On dit du s.e.v F qu’il est la somme directe de U et V si

F = U + V ;
U ∩ V = {~0}.

On écrit F = U ⊕ V .
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Exemple
Considérons dans R2 deux vecteurs ~u, ~v non nuls et non colinéaires. Soient

U = {λ~u | λ ∈ R}, V = {λ~v | λ ∈ R}.

(U est la droite vectorielle dirigée par ~u, V est la droite vectorielle dirigée
par ~v .)
Alors U et V sont des s.e.v de R2 et R2 = U ⊕ V (exercice).
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Familles génératrices, familles libres, bases

Soient E un K-espace vectoriel et ~u, ~v deux vecteurs de E . Alors on peut
fabriquer de nouveaux vecteurs en combinant les deux vecteurs ~u, ~v

α~u + β~v

où α, β ∈ K.
Un tel nouveau vecteur est appelé une combinaison linéaire de ~u et ~v .
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Plus généralement ...

Définition 4
Soient ~u1, · · · , ~un des vecteurs d’un K-espace vectoriel E . Tout vecteur de
E de la forme

λ1~u1 + · · ·+ λn~un

où λ1, · · · , λn ∈ K, est appelé une combinaison linéaire des vecteurs
~u1, · · · , ~un.
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Exemple 1
Dans R2 le vecteur

~w =
(
−1
16

)
est bien une combinaison linéaire des deux vecteurs

~u =
(
−1
2

)
, ~v =

(
1
5

)

car ~w = 3~u + 2~v .
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Exemple 2
Dans R3, soient

~e1 =

 1
0
0

 , ~e2 =

 0
1
0

 , ~e3 =

 0
0
1

 .

Un vecteur quelconque ~u =

 x
y
z

 de R3 s’écrit

~u =

 x
0
0

+

 0
y
0

+

 0
0
z

 = x

 1
0
0

+ y

 0
1
0

+ z

 0
0
1


= x~e1 + y~e2 + z~e3.

Donc ~u est une combinaison linéaire de ~e1,~e2,~e3.
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Proposition 2
Soit E un K-e.v et A ⊆ E . Il existe un plus petit s.e.v de E contenant A. Il
est unique et on l’appelle le sous-espace vectoriel engendré par A. On le
note Vect(A).

Preuve
E est un s.e.v de E contenant A. Donc il existe des s.e.v de E qui
contiennent A. L’intersection F de ces s.e.v est un s.e.v de E contenant A.
Il est le plus petit s.e.v qui contient A. En effet, si A ⊆ H, où H est un
s.e.v de E , alors F ⊆ H.
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Proposition 3
Soit E un K-e.v et A ⊆ E , A 6= ∅. Alors Vect(A) est l’ensemble des
combinaisons linéaires des vecteurs de A, autrement dit

Vect(A) =
{ n∑

i=1
λi~ui | n ∈ N, λ1, . . . , λn ∈ K, ~u1, . . . , ~un ∈ A

}
.

Remarque
Donc un vecteur ~u ∈ E est dans Vect(A), si et seulement si, il existe
n ∈ N, il existe ~u1, . . . , ~un ∈ A et des scalaires λ1, . . . , λn ∈ K tels que
~u = λ1~u1 + · · ·+ λn~un.
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Exemple
Considérons dans R2 deux vecteurs ~u, ~v non nuls et non colinéaires. Soient

U = {λ~u | λ ∈ R}, V = {λ~v | λ ∈ R}.

Alors U = Vect({~u}) et V = Vect({~v}).

Exercice
Montrer que U + V = Vect(U ∪ V ).
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Définition 5
Soit F un s.e.v du K-e.v E et S ⊆ E .

On dit que S est une partie génératrice de F si

F = Vect(S).

On dit que S est libre, ou que les vecteurs de S sont linéairement
indépendants, si

pour tous λ1, . . . , λn ∈ K, pour tous ~u1, . . . , ~un ∈ S,

λ1~u1 + · · ·+ λ2~un = ~0⇒ λ1 = λ2 = · · · = λn = 0.

On dit que S est une base de E , si elle est génératrice et libre.
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Exemples
Dans R2, l’espace vectoriel F engendré par les deux vecteurs

~u =
(

1
2

)
, ~v =

(
2
4

)

vérifie Vect(~u, ~v) = Vect(~u, 2~u) = Vect(~u) et donc la famille {~u} est
génératrice de F .
Dans R2, la famille {~u, ~v} est libre où

~u =
(
−1
2

)
, ~v =

(
1
5

)
.

R3 = Vect(~e1,~e2,~e3).
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Théorème 1
Tout K-espace vectoriel non nul admet une base. Toutes les bases ont la
même cardinalité : si B1 et B2 sont deux bases, alors il existe une bijection
entre B1 et B2.

Définition 6
On dit d’un K-e.v E qu’il est de dimension finie s’il admet une base finie.
Le cardinal (le nombre d’éléments) d’une base est appelé la dimension de
E et est noté dim(E ).
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Exemple 1
Dans Rn, considérons la famille B = {~e1, . . . ,~en} où pour 1 ≤ i ≤ n

~ei =



0
...
1
...
0


.

Alors B est une base de Rn appelée la base canonique de Rn. On a donc
dim(Rn) = n.
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Exemple 2
Dans Rn[X ], le R-e.v des polynômes de degré inférieur ou égal à n, la
famille des polynômes

P0(X ) = 1,P1(X ) = X ,P2(X ) = X 2, . . . ,Pn(X ) = Xn

forme une base. Donc dim(Rn[X ]) = n + 1.
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Théorème de la base incomplète
Soit E un K-espace vectoriel. Soient L une partie libre et G une partie
génératrice de E . Alors on peut compléter L par des éléments de G pour
former une base de E .
Autrement dit, il existe F ⊆ G \ L tel que L ∪ F soit une base de E .

Théorème de la base incomplète(version en dimension finie)
Soit E un K-espace vectoriel de dimension finie. Soit U = {~u1, · · · , ~un} une
famille libre de E et soit G = {~g1, · · · , ~gm} une famille génératrice de E .
Alors il existe ~gi1 , · · · , ~gip de G telle que la famille {~u1, · · · , ~un, ~gi1 , · · · , ~gip}
forme une base de E .
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Proposition 4
Soit E un K-e.v de dimension finie n. Alors :

Toute famille libre de E a au plus n éléments.
Toute famille génératrice de E a au moins n éléments.
Toute famille libre peut être complétée en une base de E .
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Proposition 5
Soit B une famille de vecteurs d’un K-e.v E de dimension finie n. Les
propriétés suivantes sont équivalentes :

B est une base de E ;
B est une famille libre à n éléments ;
B est une famille génératrice à n éléments.
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Exemple récapitulatif sur la base incomplète

Exemple récapitulatif
Considérons dans R3 la famille U des deux vecteurs

~u =

 2
1
−1

 , ~v =

 3
−1
1

 .
Alors U est une famille libre. En effet, soient α, β ∈ R tels que
α~u + β~v = ~0. Alors

α~u + β~v = ~0⇔ α

 2
1
−1

+ β

 3
−1
1

 =

 0
0
0

⇔


2α+ 3β = 0
α− β = 0
−α+ β = 0

Donc α = β et 5α = 0. Par conséquent α = β = 0.
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Exemple récapitulatif sur la base incomplète

suite de l’exemple
On peut compléter la famille libre U par des éléments de la base canonique
{~e1,~e2,~e3} de R3 pour former une base de E .
On peut choisir par exemple ~e1. Vérifions si {~u, ~v ,~e1} est libre. Soient
α, β, γ ∈ R tels que α~u + β~v + γ~e1 = ~0. On obtient 2α+ 3β + γ = 0 et
α = β. Donc γ = −5α et α = β. Par conséquent la famille {~u, ~v ,~e1} n’est
pas libre.
Choisisons ~e2. Vérifions si {~u, ~v ,~e2} est libre. Soient α, β, γ ∈ R tels que
α~u + β~v + γ~e2 = ~0. On obtient 2α+ 3β = 0, α− β + γ = 0 et α = β.
Donc α = β = γ = 0, par conséquent la famille {~u, ~v ,~e2} est libre.
Comme dim(R3) = 3 et comme {~u, ~v ,~e2} est une famille libre constituée
de trois vecteurs, elle forme une base.
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Définition 7
Si B = (~e1, . . . ,~en) est une base d’un K-espace vectoriel E , alors pour tout
~u ∈ E , il existe des uniques scalaires λ1, . . . , λn ∈ K tels que

~u = λ1~u1 + · · ·+ λn~un

qui sont appelés les composantes de ~u dans la base B.
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Proposition 6 (Formule de Grassmann)
Soient F et G deux s.e.v d’un K-e.v de dimension finie. On a

dim(F + G) = dim(F ) + dim(G)− dim(F ∩ G).
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Applications linéaires
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Applications linéaires : Définitions, propriétés

Définition 8
Soient E et F deux K-e.v et f : E → F une application. On dit que f est
linéaire si

f (~0E ) = ~0F ;
Pour tous ~u, ~v ∈ E , pour tout λ ∈ K, f (λ~u + ~v) = λf (~u) + f (~v).
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Applications linéaires : Exemples

Exemple 1
Soit α ∈ K et f : E → E l’homothétie de rapport α

~u 7→ f (~u) = α~u.

Alors f est linéaire. En effet :
f (~0) = α ·~0 = ~0.
Soient ~u, ~v ∈ E et λ ∈ K. Alors

f (λ~u + ~v) = α(λ~u + ~v)

= λα~u + α~v

= λf (~u) + f (~v).
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Applications linéaires : Exemples

Exemple 2
Soit f : R2 → R2 définie par

f (x , y) = (x − y , x + y).

Alors f est linéaire. En effet, pour tous ~u, ~v ∈ R2, pour tout λ ∈ R, on a :

f (λ~u+~v) = f (λx+x ′, λy+y ′) =
(
(λx+x ′)−(λy+y ′), (λx+x ′)+(λy+y ′)

)
(λx − λy , λx + λy) + (x ′ − y ′, x ′ + y ′) = λf (~u) + f (~v).
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Applications linéaires : Exemples

Exemple 3
Soit E l’espace vectoriel des applications de R dans R de classe C∞.
L’application

D : E → E , D(f ) = f ′

est une application linéaire. En effet :
D(~0) = ~0.
Soient f , g ∈ E et λ ∈ R. Alors

D(λf + g) = (λf + g)′

= λf ′ + g ′

= λD(f ) + D(g).
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Applications linéaires : Exemples

Exemple 4
Une rotation R d’un angle θ autour de l’origine dans R2 est une
application linéaire. En effet, on a

pour ~u =
(

x
y

)
, R(~u) =

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

et donc

R(~u + ~v) = R(
(

x
y

)
+
(

x ′
y ′

)
) =

(
(x + x ′) cos θ − (y + y ′) sin θ
(x + x ′) sin θ + (y + y ′) cos θ

)
(

x cos θ − y sin θ
x sin θ + y cos θ

)
+
(

x ′ cos θ − y ′ sin θ
x ′ sin θ + y ′ cos θ

)
= R(~u) + R(~v).

De même on a R(λ~u) = λR(~u).
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Applications linéaires

Proposition 7
Soient E et F deux K-e.v. Alors l’ensemble des applications linéaires de E
dans F , noté L(E ,F ), munit des opérations

(f , g) 7→ (f + g)(x) = f (x) + g(x); (λ, f ) 7→ (λf )(x) = λf (x)

est un K-e.v.
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Applications linéaires

Définition 9
Une application linéaire de E dans E est appelé un endomporphisme.
Le K-e.v L(E ,E ) est noté L(E ).
Une application linéaire bijective est appelée un isomorphisme.
Un endomorphisme bijective est appelé un automorphisme.
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Applications linéaires : Image et noyau

Rappel
Soit f : E → F une application.

L’image directe par f d’une partie A ⊆ E est :

f (A) = {f (x) | x ∈ A}.

L’image réciproque d’une partie B ⊆ F est :

f −1(B) = {x ∈ E | f (x) ∈ B}.
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Applications linéaires : Image et noyau

Proposition 8
Soit f : E → F une application linéaire.

Si H est un s.e.v de E , alors f (H) est un s.e.v de F .
Si G est un s.e.v de F , alors f −1(G) est un s.e.v de E .
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Applications linéaires : Image et noyau

Définition 10
Soit f : E → F une application linéaire.
On appelle :

Image de f , le s.e.v de E :

Im(f ) = f (E ) = {f (x) | x ∈ E}

Noyau de f , le s.e.v de E :

Ker(f ) = f −1(~0) = {~u ∈ E | f (~u) = ~0}
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Applications linéaires : Image et noyau

Exemple
Soit f : R2 → R2 définie par

f (x , y) = (x − y , x + y).

Alors f est linéaire (Exercice). On a Ker(f ) = {~0} et Im(f ) = R2. En
effet :

~u =
(

x
y

)
∈ Ker(f )⇔ f (~u) = ~0⇔ x − y = 0 et x + y = 0⇔ x =

y = 0.

~v =
(

x
y

)
∈ Im(f )⇔ ∃(a, b) ∈ R2 tels que x − y = a et x + y =

b ⇔ x = a+b
2 et y = b−a

2 .
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Applications linéaires : Image et noyau

Propriété
Soit f ∈ L(E ,F ). Soit B = (~u1, · · · , ~un) une base de E . Alors
Im(f ) = Vect(f (~u1), · · · , f (~un)).
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Applications linéaires : Image et noyau

Proposition 10
Soit f ∈ L(E ,F ).
Les propriétés suivantes sont équivalentes :

f est injective ;
Ker(f ) = {~0} ;
Pour tout ~u ∈ E , f (~u) = ~0⇒ ~u = ~0.

Les propriétés suivantes sont équivalentes :
f est surjective ;
Im(f)=F.
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Applications linéaires : Image et noyau

Définition 11
Soient E et F deux K-e.v et f ∈ L(E ,F ). La dimension de Im(f) est
appelée le rang de f et est notée rg(f ).

Théorème (Théorème du rang)
Soient E et F deux K-e.v de dimension finie et f ∈ L(E ,F ). On a

dim(E ) = rg(f ) + dim(Kerf (f )).
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Applications linéaires : Rappel terminologie

Terminologie à retenir
Une application linéaire de E dans E est appelée un endomorphisme.
Le K-e.v L(E ,E ) est noté L(E ).
Une application linéaire bijective est appelée un isomorphisme.
Un endomorphisme bijectif est appelé un automorphisme.
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Les matrices

Matrices
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Les matrices

Définition
On appelle matrice tout tableau de la forme

a11 a12 · · · a1m
a21 a22 · · · a2m
... . . .

...
...

an1 an2 · · · anm


où aij sont des scalaires (des éléments de K).

On note
M = (aij)1≤i≤n;1≤j≤m,

aij est le coefficient : intersection de la i-ème ligne et de la j-ème
colonne.
M est dite de taille n ×m (elle a n lignes et m colonnes).
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Les matrices

Exemples

A =

 1 3 2
1 5 7
13 10 8

 ; B =

 i 3
25 1 + i
21 11

 ; C =

 1
2
6

 .
A est une matrice à coefficients dans R (mais dans C aussi) ; B est une
matrice à coefficients dans C.
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Les matrices

Définition
On dit que M est une matrice

colonne si elle a une seule colonne (m = 1).
ligne si elle a une seule ligne (n = 1).
carrée si elle a le même nombre de lignes que de colonnes (n = m).

Exemples

A =

 1 3 2
1 5 7
13 10 8

 ; B =
(

i 3 5
)

; C =

 1
2
6

 .
A est une matrice carrée
B est une matrice ligne
C est une matrice colonne
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Les matrices

Remarques & notations
Une matrice à n lignes et m colonnes est aussi appelée matrice de
type (n,m) ou encore matrice n ×m.
On noteMn,m(K) l’ensemble des matrices n ×m.
On noteMn(K) l’ensemble des matrices carrées n × n.
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Les matrices

Remarques & notations
La matrice identité In ∈Mn(K) est la matrice carrée dont tous les
coefficients diagonaux valent 1 et les autres coefficients valent 0.
Exemple :

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
La matrice nulle On,m ∈Mn,m(K) est la matrice dont tous les
coefficients sont nuls.
Exemple :

O3,2 =

 0 0
0 0
0 0


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Opérations sur les matrices

Définition 6 (Somme de deux matrices)
Soient A,B ∈Mn,m(K), A = (aij)1≤i≤n;1≤j≤m, B = (bij)1≤i≤n;1≤j≤m

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
... . . .

...
...

an1 an2 · · · anm

 ; B =


b11 b12 · · · b1m
b21 b22 · · · b2m
... . . .

...
...

bn1 bn2 · · · bnm


On définit la somme A + B, une matrice deMn,m(K), par

A + B = (aij + bij)1≤i≤n;1≤j≤m

A + B =


a11 + b11 a12 + b12 · · · a1m + b1m
a21 + b21 a22 + b22 · · · a2m + b2m

... . . .
...

...
an1 + bn1 an2 + bn2 · · · anm + bnm


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Opérations sur les matrices

Exemple

A =
(

1 2
3 4

)
; B =

(
5 6
7 8

)

A + B =
(

1 + 5 2 + 6
3 + 7 4 + 8

)
=
(

6 8
10 12

)
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Opérations sur les matrices

Remarque
On ne somme que des matrices de même taille.
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Opérations sur les matrices

Définition (Multiplication par un scalaire)
Soient A ∈Mn,m(K), A = (aij)1≤i≤n;1≤j≤m et λ ∈ K,

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
... . . .

...
...

an1 an2 · · · anm

 .

On définit la matrice λA, une matrice deMn,m(K), par

λA = (λaij)1≤i≤n;1≤j≤m

λA =


λa11 λa12 · · · λa1m
λa21 λa22 · · · λa2m
... . . .

...
...

λan1 λan2 · · · λanm


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Opérations sur les matrices

Exemples

A =
(

1 2
3 4

)
; B =

(
5 6
7 8

)

2A =
(

2 4
6 8

)
; πB =

(
5π 6π
7π 8π

)
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Opérations sur les matrices

Proposition 4
L’ensembleMn,m(K) muni de l’addition des matrices (A,B) 7→ A + B et
de la multiplication par des scalaires (λ,A) 7→ λA est un K-espace vectoriel
de dimension finie n ×m.
Le vecteur nul de cet espace est la matrice nulle On,m.
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Opérations sur les matrices

Exemple & exercice
DansM2(K) on considère la famille B = (A1,A2,A3,A4)

A1 =
(

1 0
0 0

)
; A2 =

(
0 1
0 0

)
; A3 =

(
0 0
1 0

)
; A4 =

(
0 0
0 1

)
.

Montrer que B est une base deM2(K).
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Opérations sur les matrices

Définition (Produit de deux matrices)
Soient A = (aij)1≤i≤n,1≤j≤p une matrice n × p et B = (bij)1≤i≤p,1≤j≤m
une matrice p × m.
Le produit de A et B est la matrice n ×m, notée A · B, dont les
coefficients cij sont définis par : cij est le produit scalaire de la ième ligne
de A par la jème colonne de B

cij =
(

ai1 ai2 · · · aip
)


b1j
b2j
...

bpj

 = ai1b1j + ai2b2j + · · ·+ aipbpj
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Opérations sur les matrices

Exemple

(
1 2 3

) 4
5
6

 = (1× 4 + 2× 5 + 3× 6) = (32).
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Opérations sur les matrices

Exemple

(
0 2
1 2

)
 1 2

3 4
5 6


 1× 0 + 2× 1 1× 2 + 2× 2

3× 0 + 4× 1 3× 2 + 4× 2
5× 0 + 6× 1 5× 2 + 6× 2

 =

 2 6
4 14
6 22


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Opérations sur les matrices

Remarques
(1) Pour que le produit de A par B ait un sens if faut que le nombre de
colonnes de A soit le même que le nombre de lignes de B.
(2) Le produit d’une matrice de type (n, p) par une matrice de type (p,m)
est une matrice de type (n,m).
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Opérations sur les matrices

Remarques
(1) On a (

1 0
0 0

)(
0 1
0 0

)
=
(

0 1
0 0

)
(

0 1
0 0

)(
1 0
0 0

)
=
(

0 0
0 0

)
Ce qui prouve qu’en général A · B 6= B · A et A · B = O n’implique pas
forcément A = O ou B = O (O désigne la matrice nulle).
(2) Pour tout A ∈Mn(K) on a (exercice)

A · In = In · A = A.
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Opérations sur les matrices

Propriétés
Les propriétés suivantes sont vraies sous hypothèse que les produits
considérés ont un sens :

(A · B) · C = A · (B · C) ;
(A + B) · C = A · C + B · C ;
A · (B + C) = A · B + A · C ;
λ(A · B) = (λA) · B = A · (λB).
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Opérations sur les matrices

Notations & conventions
Pour tout A ∈Mn(K)

A0 = In, A1 = A, An = A · A · · ·A︸ ︷︷ ︸
n fois

.
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Opérations sur les matrices

Remarque
On a

(A + B)2 = A2 + AB + BA + B2

et si AB 6= BA alors

(A + B)2 6= A2 + 2AB + B2.

Proposition 5 (Formule du binôme pour les matrices)
Soient A,B ∈Mn(K) tels que AB = BA.
Alors pour tout n ≥ 0 on a

(A + B)n =
k=n∑
k=0

(
n
k

)
An−kBk

où
(n

k
)
est le coefficient binomial :

(n
k
)

= Ck
n = n!

k!(n−k)!
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Matrice de passage

Matrice de passage
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Matrice de passage

Définition
Soit E un K-e.v de dimension finie n et soit B1 = (~e1, . . . ,~en) une base de
E . Soit ~u ∈ E ayant comme composantes dans la base B, (λ1, . . . , λn).
(Donc ~u = λ1~e1 + · · ·+ λn~en).
On appelle matrice des composantes du vecteur ~u dans la base B, la
matrice colonne  λ1

...
λn


On écrit

MB(~u) =

 λ1
...
λn

 ou ~u =

 λ1
...
λn


B
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Matrice de passage

Définition (suite)
Plus généralement, soit (~u1, . . . , ~um) une famille de vecteurs de E .
On appelle matrice des composantes de la famille (~u1, . . . , ~um) dans la
base B, la matrice n ×m dont les colonnes sont MB(~u1), . . . ,MB(~um).
Elle est notée MB(~u1, . . . , ~um).
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Matrice de passage

Exemple
Soit B = (~e1, . . . ,~en) la base canonique de Rn. Alors

MB(~e1, . . . ,~en) =


1 0 · · · 0
0 1 · · · 0
... . . .

...
...

0 0 · · · 1

 = In.
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Matrice de passage

Définition
Soit E un K-e.v de dimension finie n. Soient B1 = (~e1, . . . ,~en) et
B2 = (~f1, . . . ,~fn) deux bases de E .

On appelle matrice de passage de la base B1 à la base B2, la matrice
carrée n × n, MB1(~f1, . . . ,~fn).
Elle est notée PB1,B2 .

Donc c’est la matrice dont la jème colonne est formée des composantes de
~fj dans la base B1.
C’est donc la matrice carrée n × n, A = (aij)1≤i≤n,1≤j≤n tel que pour tout
j ∈ {1, . . . , n}

~fj = a1j~e1 + · · ·+ anj~en.
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Matrice de passage

Exemple
Dans R2 considérons les deux bases B1 = (~u, ~v) et B2 = (~w ,~r) où

~u =
(

2
3

)
, ~v =

(
4
5

)
, ~w =

(
3
4

)
, ~r =

(
2
2

)
.

Calculons la matrice PB1,B2 . Les composantes de ~w et ~r dans B1 sont
(exercice)

~w = 1
2
~u + 1

2
~v ; ~r = −~u + ~v .

Donc

MB1(~w) =
(

1
2
1
2

)
, MB1(~r) =

(
−1
1

)
, PB1,B2 =

(
1
2 −1
1
2 1

)
.
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Matrice de passage

Proposition
Soit E un K-e.v de dimension finie et soient B1 et B2 deux bases de E .
Alors pour tout ~u ∈ E

MB1(~u) = PB1,B2 ·MB2(~u).

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 87 / 401



Matrice de passage

Exemple
Reprenons l’exemple précédent : B1 = (~u, ~v), B2 = (~w ,~r)

~u =
(

2
3

)
, ~v =

(
4
5

)
, ~w =

(
3
4

)
, ~r =

(
2
2

)
.

On avait trouvé
PB1,B2 =

(
1/2 −1
1/2 1

)
.

Soit ~f = ~w +~r et calculons ses composantes dans la base B1. On a

MB2(~f ) =
(

1
1

)
, MB1(~f ) =

(
1/2 −1
1/2 1

)
·
(

1
1

)
=
(
−1/2
3/2

)
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Matrice d’une application linéaire

Matrice d’une application linéaire
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Matrice d’une application linéaire

Définition
Soient E et F des K-e.v munis respectivement des bases B = (~u1, . . . , ~un)
et C = (~v1, . . . , ~vp). Soit f ∈ L(E ,F ) une application linéaire.
On appelle matrice de f , par rapport aux bases B et C, la matrice

MC(f (~u1), . . . , f (~un)).

Elle est notée MB,C(f ).
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Matrice d’une application linéaire

Exemple
On munit R3 de la base canonique, notée ici B = (~u1, ~u2, ~u3) et R2 de la
base canonique, notée ici C = (~v1, ~v2). Soit f : R3 → R2 l’application
linéaire définie par

f (x , y , z) = (x + 2y − z , x − y).

On a
f (~u1) = (1, 1) = ~v1 + ~v2, f (~u2) = (2,−1) = 2~v1 − ~v2,

f (~u3) = (−1, 0) = −~v1 + 0 · ~v2.

Donc
MB,C(f ) =

(
1 2 −1
1 −1 0

)
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Matrice d’une application linéaire

Proposition
Soient E et F des K-e.v (de dimension finie) munis respectivement des
bases B et C. Soit f ∈ L(E ,F ) une application linéaire. Alors pour tout
~u ∈ E

MC(f (~u)) = MB,C(f ) ·MB(~u).

Remarque
Autrement dit, si Y désigne la matrice colonne des composantes de f (~u)
dans la base C et X désigne la matrice colonne des composantes de ~u dans
la base B, alors

Y = AX , où A = MB,C(f ).
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Matrice d’une application linéaire

Exemple
En reprenant l’exemple précédent, par rapport aux bases canoniques,

f (x , y , z) = (x + 2y − z , x − y), MB,C(f ) =
(

1 2 −1
1 −1 0

)
,

on a (
x + 2y − z

x − y

)
=
(

1 2 −1
1 −1 0

)
·

 x
y
z


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Matrice d’une application linéaire

Définition
Soient E et F deux K-e.v de dimension respectives n et m. Soient
B = (~e1, . . . ,~en) une base de E et C = (~f1, . . . ,~fm) une base de F .
Soit A = (aij)1≤i≤m,1≤j≤n ∈Mm,n(K). L’application linéaire associée à A,
relative aux bases B et C, est l’application définie par : au vecteur ~u ∈ E
de composantes (x1, · · · , xn) dans B, elle associé le vecteur ~v dont les
composantes (y1, · · · , ym) dans la base C sont données par

yi = ai1x1 + ai2x2 + · · ·+ ainxn

Autrement dit
y1
...
...

ym

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
... . . .

...
...

am1 am2 · · · amn

 ·


x1
...
...

xn


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Matrice d’une application linéaire

Exemple
Soit

A =
(

1 2
3 4

)
.

L’application linéaire associée à A, relativement à la base canonique de R2,
f : R2 → R2 est

f (x , y) = A ·
(

x
y

)
=
(

1 2
3 4

)
·
(

x
y

)
=
(

x + 2y
3x + 4y

)
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Matrice d’une application linéaire

Théorème
Soit E (respectivement F ) un K-e.v de dimension finie n (respectivement
m), muni d’une base B (respectivement C). L’application

M : L(E ,F )→Mm,n(K); f 7→ M(f ) = MB,C(f )

est un isomorphisme de K-e.v.

Remarque
Donc fondamentalement en dimension finie, une fois que les bases sont
fixées, il n’existe pas de différence réelle entre applications linéaires et
matrices.
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Matrice d’une application linéaire

Proposition
Soient E ,F ,G trois K-e.v de dimension finie, munis respectivement des
bases B, C,D. Pour tout f ∈ L(E ,F ) et g ∈ L(F ,G), on a

MB,D(g ◦ f ) = MC,D(g) ·MB,C(f ).
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Matrices inversibles

Matrices inversibles
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Matrices inversibles

Définition
Une matrice carrée A ∈Mn(K) est dite inversible s’il existe une matrice
B ∈Mn(K) vérifiant A · B = B · A = In.
Cette matrice est alors unique, est appelée l’inverse de A et est notée A−1.

Exemple
On a (

1 3
0 2

)
×
(

1 −3
2

0 1
2

)
=
(

1 0
0 1

)
= I2

et donc A =
(

1 3
0 2

)
est inversible, d’inverse

A−1 =
(

1 −3
2

0 1
2

)
.

Léon Matar Tine Cours Mathématiques 3 (MAT2012L) L2 PCSI 2025-2026 Automne 2025 99 / 401



Matrices inversibles

Proposition
Soient A,B ∈Mn(K).

Si A et B sont inversibles, il en de même de A · B et on a

(A · B)−1 = B−1 · A−1.

Si A est inversible, alors A−1 est inversible et (A−1)−1 = A.
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