Feuille d'exercices 9 : Polynômes d'endomorphismes

Exercices à traiter en TD

Exercice 1 Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'endomorphisme défini par

$$f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \left(\begin{pmatrix} 3x - 2y \\ 4x - 3y \end{pmatrix}\right).$$

On note $\mathcal{B}_{can} = (e_1, e_2)$ la base canonique de \mathbb{R}^2 .

- a) On pose $P(X) = X^2 1$. Calculer $P(f)(e_i)$ pour tout $1 \le i \le 2$. En déduire que $f \circ f = \mathrm{Id}_{\mathbb{R}^3}$.
- b) Soit $A = \text{Mat}_{\mathcal{B}_{can}}(f)$. Calculer P(A) et retrouver le résultat de la question a.

Exercice 2 Soit $\mathbb{R}_3[X]$ le \mathbb{R} -espace vectoriel des polynômes de degré ≤ 3 . On pose $D(X) = X^4 - 7X^3 + 18X^2 - 20X + 8 = (X-2)^3(X-1)$ et on note f l'application de $\mathbb{R}_3[X]$ dans lui-même définie par : pour tout $Q(X) \in \mathbb{R}_3[X]$, f(Q(X)) est le reste de la division euclidienne de XQ(X) par D(X).

- a) Vérifier que f est un endomorphisme de $\mathbb{R}_3[X]$.
- b) Déterminer la matrice de f dans la base $(1, X, X^2, X^3)$.
- c) Soit F le sous-espace vectoriel de $\mathbb{R}_3[X]$ engendré par les vecteurs (X-1), X(X-1), $X^2(X-1)$. Vérifier que F est stable par f.
- d) Vérifier que $((X-1), X(X-1), X^2(X-1))$ est une base de F et donner la matrice de l'endomorphisme f_F induit par f sur F dans cette base.

Exercice 3 Soit V un K-espace vectoriel de dimension finie. Soit $f \in \mathcal{L}(V)$ et soit $P(X) \in K[X]$ un polynôme annulateur de f. Si $\lambda \in \mathrm{Sp}(f)$, montrer que $P(\lambda) = 0$.

Exercice 4 Soit V un K-espace vectoriel de dimension finie. On pose $P(X) = X^2 - 1$. On se propose de déterminer tous les endomorphismes f de V tels que $P(f) = 0_{\mathcal{L}(E)}$.

- a) Montrer que les seules valeurs propres de f sont 1 et -1.
- b) Si $v \in V$, calculer l'image par f de $\frac{1}{2}(v f(v))$ et de $\frac{1}{2}(v + f(v))$.
- c) Montrer que V est somme directe de $E_1(f)$ et $E_{-1}(f)$.
- d) En déduire que f est diagonalisable. Déterminer dim $E_1(f)$ et dim $E_{-1}(f)$ en fonction de Tr(f) et dim(V).

Exercice 5 Soit $A \in \mathcal{M}_n(\mathbb{C})$. On suppose qu'il existe un polynôme $P \in \mathbb{C}[X]$ de degré 2 tel que P(A) = 0. Soit Δ le discriminant de P.

a) On suppose que $\Delta \neq 0$. Montrer que A est diagonalisable.

- b) On suppose que $\Delta = 0$. Montrer que si A est diagonalisable, alors A est une matrice scalaire (de la forme λI_n pour un certain $\lambda \in \mathbb{C}$).
- c) Donner un exemple de matrice $A \in \mathcal{M}_n(\mathbb{C})$ non diagonalisable et d'un polynôme $P \in \mathbb{C}[X]$ de degré 2 tels que P(A) = 0.

Exercice supplémentaire d'entraînement

Exercice 6 Soit

$$M = \begin{pmatrix} 1+i & 2 & 3 & 4375 \\ 0 & 1-i & \pi & 6389 \\ 0 & 0 & -1+i & e+\pi \\ 0 & 0 & 0 & -1-i \end{pmatrix} \in \mathcal{M}_4(\mathbb{C}).$$

- a) Déterminer Sp(M).
- b) Montrer que M est annulée par le polynôme $X^4 + 4$.
- c) Montrer que $X^4 + 4$ est le polynôme de plus petit degré annulant M.

Exercice 7 Soit V un K-espace vectoriel de dimension finie. On pose $P(X) = X^2 - X$. On se propose de déterminer tous les endomorphismes f de V tels que $P(f) = 0_{\mathcal{L}(E)}$.

- a) Montrer que les seules valeurs propres de f sont 1 et 0.
- b) Montrer que V est somme directe de $E_1(f)$ et Ker(f).
- c) En déduire que f est diagonalisable. Déterminer dim $E_1(f)$ et dim Ker(f) en fonction de Tr(f) et dim(V).

Exercice 8 Soit E un K-espace vectoriel de dimension finie et soit f un endomorphisme de E. Soit λ une valeur propre de f.

- a) Montrer que le sous-espace $E_{\lambda}(f)$ est stable par P(f).
- b) Soit $P \in K[X]$ tel que $P(\lambda) \neq 0$. Montrer que $P(f)_{E_{\lambda}(f)}$ est inversible, où $P(f)_{E_{\lambda}(f)}$ désigne l'endomorphisme de $E_{\lambda}(f)$ induit par P(f).
- c) En déduire que, si P(X) est un polynôme annulateur de f, alors λ est une racine de P(X).

Exercice à préparer pour la prochaine séance

Exercice 9 On considère la matrice $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{Q}).$

- a) Vérifier que $A^2 = A + 2I_3$.
- b) La matrice A est-elle diagonalisable?
- c) En calculant son polynôme caractéristique, déterminer les dimensions de ses sousespaces propres.