Feuille d'exercices 7 : Endomorphismes et matrices diagonalisables

Exercices à traiter en TD

Exercice 1 On considère les matrices suivantes de \mathbb{R}^2 :

$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}.$$

Déterminer si ces matrices sont diagonalisables. Si c'est le cas, les écrire sous la forme PDP^{-1} où P est une matrice inversible et D une matrice diagonalisable.

Exercice 2 Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique $\mathcal{B}_{\operatorname{can}}$ est donnée par

$$\operatorname{Mat}_{\mathcal{B}_{\operatorname{can}}}(f) = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- a) Donner les valeurs propres de f.
- b) Est-ce que f est diagonalisable? Si oui, en donner une base propre.
- c) Déterminer la matrice de $f^n = \underbrace{f \circ f \circ \cdots \circ f}_n$ dans une base bien choisie.

Exercice 3 Déterminer si les matrices suivantes sont diagonalisables.

$$\begin{pmatrix} 5 & 1 & 3 \\ 4 & 3 & 4 \\ -1 & -1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Exercice 4 On pose $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & -1 \end{pmatrix}$.

- a) Déterminer les valeurs propres de A.
- b) Déterminer le rang de $A + I_3$ et en déduire la dimension de $E_{-1}(A)$.
- c) Pour quelles valeurs de $a, b, c \in \mathbb{C}$ la matrice A est-elle diagonalisable?

Exercice 5 Soit $V = \mathcal{M}_2(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices réelles de taille 2×2 . Soit f l'endomorphisme de V défini par $f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

a) Quelle est la dimension de V? Donner la matrice de f dans la base $\mathcal{B} = (E_{11}, E_{12}, E_{21}, E_{22})$.

b) Montrer que l'endomorphisme f est diagonalisable et déterminer une base propre de f.

Exercice 6 On note $\mathbb{R}_n[X]$ le \mathbb{R} -espace vectoriel des polynômes de degré $\leq n$. Soit fl'endomorphisme de $\mathbb{R}_n[X]$ défini par

$$f(P) = (X^2 - 1)P'' + 3XP'.$$

- a) Donner la matrice de f dans la base $(1, X, X^2, \dots, X^n)$.
- b) Montrer que f est diagonalisable.
- c) Résoudre l'équation f(P) = 3P dans $\mathbb{R}_n[X]$.

Exercices supplémentaires d'entraînement

Exercice 7 Soit E un \mathbb{R} -espace vectoriel de dimension finie. On appelle symétrie de Eun endomorphisme f de E tel que $f \circ f = \mathrm{Id}_E$. Fixons f une symétrie de E.

- a) Montrer que les sous-espaces $E_1(f)$ et $E_{-1}(f)$ sont en somme directe.
- b) Montrer tout vecteur de E s'écrit comme somme d'un vecteur de $E_1(f)$ et d'un vecteur de $E_{-1}(f)$.
- c) Déterminer la trace de f en fonction de la dimension de $E_1(f)$ et de la dimension de
- d) Déterminer le polynôme caractéristique de f en fonction de la dimension de $E_1(f)$ et de la dimension de $E_{-1}(f)$.

Exercice 8 Décomposer les matrices de l'exercice 3 sous la forme PDP^{-1} avec P matrice inversible et D matrice diagonale.

Exercice 9 Pour quelles valeurs de $a,b,c \in \mathbb{C}$ la matrice $A = \begin{pmatrix} 1 & a & 1 \\ 0 & 1 & b \\ 0 & 0 & c \end{pmatrix}$ est-elle diagonalisable?

Exercice à préparer pour la semaine suivante

Exercice 10 On considère la suite réelle $(u_n)_{n\geqslant 0}$ définie par

$$\forall n \geqslant 0, \quad u_{n+2} = 5u_{n+1} - 4u_n, \quad u_0 = 1, \quad u_1 = 1.$$

- $\forall n \geqslant 0, \quad u_{n+2} = 5u_{n+1} 4u_n, \qquad u_0 = 1, \quad u_1 = 1.$ a) On pose $X_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$ pour tout $n \geqslant 0$. Donner une matrice A telle que $X_{n+1} = AX_n$
- b) Si A est diagonalisable, diagonaliser A.
- c) En déduire les coefficients de A^n en fonction de n pour tout $n \ge 0$ et en déduire une expression de u_n en fonction de n pour tout $n \ge 0$.