Feuille d'exercices 6 : Sous-espaces propres, valeurs propres

Exercices à traiter en TD

Exercice 1 Pour chacun des endomorphismes $f: E \to E$ suivants et chacune des valeurs données au réel λ , donner une base de $E_{\lambda}(f)$ (= Ker $(f - \lambda Id_E)$), et dire si λ est valeur propre de f ou non :

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 définie par $f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 3x + 2y \\ -2x - y \end{pmatrix}$; $\lambda = 0$, puis $\lambda = 1$;

b)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 définie par $f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} 5x - 3y - 3z \\ 3x - y - 3z \\ 3x - 3y - z \end{pmatrix}$; $\lambda = -1$, puis $\lambda = 2$.

Exercice 2 Soit
$$A = \begin{pmatrix} 5 & 4 & 2 \\ -6 & -5 & -2 \\ 0 & 0 & -1 \end{pmatrix}$$
. Soit $U = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $V = \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$, $W = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ et soit $\mathcal{B} = (U, V, W)$.

- a) Montrer que \mathcal{B} est une base de \mathbb{R}^3 constituée de vecteurs propres de A.
- b) Quelles sont les valeurs propres de A? Déterminer A^2 .

Exercice 3 Soit
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
. Soit $U_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $U_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et soit $\mathcal{B} = (U_1, U_2)$.

- a) Montrer que \mathcal{B} est une base de \mathbb{R}^2 constituée de vecteus propres de A.
- b) Soit $U = 2U_1 U_2$. Résoudre AX = U.

Exercice 4 Soit $E = \mathbb{C}_2[X]$ le \mathbb{C} -espace vectoriel des polynômes à coefficients complexes de degré ≤ 2 . On considère l'endomorphisme de E défini par

$$f(P) = (X^2 + 1)P'' + (X + 1)P' + P.$$

- a) Déterminer le polynôme caractéristique de f.
- b) Déterminer les valeurs propres et vecteurs propres de f.

Exercice 5 Soit f l'endomorphisme de \mathbb{R}^4 représenté dans la base canonique (e_1, e_2, e_3, e_4) par la matrice

- a) Déterminer le rang de f et la dimension de son noyau. En déduire que 0 est valeur propre de f.
- b) Vérifier que le vecteur $e_1 + e_2 + e_3 + e_4$ est vecteur propre de f.
- c) Construire une base \mathcal{B} constituée de vecteurs propres de f, donner la matrice de f dans cette base et déterminer toutes les valeurs propres de f.

Exercices supplémentaires d'entraînement

Exercice 6 Soit
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$
.

- a) Quelles sont les valeurs propres de A?
- b) Montrer que tous les sous-espaces propres de A sont des droites vectorielles et en donner des vecteurs directeurs.
- c) Donner une matrice inversible P telle que $P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 7 Soit E l'espace vectoriel des fonctions \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{R} . Pour tout $f \in E$, on nose $\Phi(f)$ la fonction $g \in E$ définie par

$$\forall x \in \mathbb{R}, \quad g(x) = \int_0^1 e^{x-t} f(t) \, \mathrm{d}t.$$

Montrer que Φ est un endomorphisme de E. Déterminer ses valeurs propres et vecteurs propres.

Exercice 8 Soient f et g deux endomorphismes d'un espace vectoriel de dimension finie. Montrer que $f \circ g$ et $g \circ f$ ont les mêmes valeurs propres.

Exercice à préparer pour la semaine suivante

Exercice 9 On considère les matrices suivantes de \mathbb{R}^2 :

$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}.$$

Déterminer si ces matrices sont diagonalisables. Si c'est le cas, les écrire sous la forme PDP^{-1} où P est une matrice inversible et D une matrice diagonalisable.