Feuille d'exercices 10 : Polynôme minimal

Exercices à traiter en TD

Exercice 1 On considère la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{Q}).$$

- a) Vérifier que $A^2 = A + 2I_3$.
- b) La matrice A est-elle diagonalisable?
- c) En calculant son polynôme caractéristique, déterminer les dimensions de ses sousespaces propres.

Exercice 2 Soient a et b deux nombres complexes distincts. Déterminer le polynôme minimal des matrices suivantes.

$$\begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}, \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}, \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}, \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}, \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}, \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & b \end{pmatrix}$$

$$\begin{pmatrix} a & 1 & 0 & 0 \\ 0 & a & 1 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a \end{pmatrix}, \begin{pmatrix} a & 1 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a \end{pmatrix}, \begin{pmatrix} a & 1 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & b \end{pmatrix}, \begin{pmatrix} a & 1 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & b & 1 \\ 0 & 0 & 0 & b \end{pmatrix}.$$

Exercice 3 Soit
$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{C}).$$

- a) Calculer J^i pour $1 \leq i \leq 4$.
- b) Montrer que les matrices I_4, J, J^2, J^3 sont linéairement indépendantes dans $\mathcal{M}_4(\mathbb{C})$.
- c) En déduire que le polynôme minimal de J est de degré 4.
- d) Déterminer le polynôme minimal de J et les valeurs propres de J.
- e) La matrice J est-elle diagonalisable dans $\mathbb C$? Déterminer son polynôme caractéristique.

Exercice 4 a) Donner un exemple de matrice M telle que $\pi_M(X) \neq \chi_M(X)$. On donnera un exemple de matrice diagonalisable et un exemple de matrice non diagonalisable.

b) Donner un exemple de matrice M telle que $\pi_M(X) = \chi_M(X)$. On donnera un exemple de matrice diagonalisable et un exemple de matrice non diagonalisable.

Exercice 5 Soit E un espace vectoriel de dimension 3 et soit $f \in \mathcal{L}(E)$ tel que $f^4 = f^2$. On suppose que 1 et -1 sont valeurs propres de f.

- a) Quelles sont les possibilités pour le polynôme minimal de f?
- b) Montrer que f est diagonalisable.
- c) Soit D une matrice diagonale correspondant à f dans une base de E. Quelles sont les possibilités pour D?
- d) Quelles sont les possibilités pour le polynôme caractéristique de f?

Exercices supplémentaires d'entraînement

Exercice 6 Soit E un K-espace vectoriel de dimension finie n. Soit $f \in \mathcal{L}(E)$ un endomorphisme tel que $f^2 = \mathrm{Id}_E$. On note F l'ensemble des vecteurs $v \in E$ tels que f(v) = v et G l'ensemble des vecteurs $v \in E$ tels que f(v) = -v.

- a) Monter que $E = F \oplus G$ (on pourra remarquer que $F = E_1(f)$).
- b) Montrer qu'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & -I_{n-r} \end{pmatrix}$ pour un entier $0 \leq r \leq n$.
- c) Déterminer les dimensions de F et G en fonction de dim E et de Tr(f).

Exercice à préparer pour la prochaine séance

Exercice 7 Pour chacune des matrices suivantes déterminer les sous-espaces propres, les sous-espaces caractéristiques et le polynôme minimal.

$$A = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$