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Entraînement hivernal, corrigé

Exercice 1 a) Soit A =

 8 12 −6
−3 −4 3
3 6 −1

 une matrice carrée de M3(C).

i) Calculer les valeurs propres de A.
Le polynôme caractéristique de A est χA(X) = (X +1)(X −2)2, d’où les valeurs
propres de la matrice A sont −1 et 2.

ii) Pour chaque valeur propre λ de A, calculer le rang de la matrice A − λI3.
rg(A + I3) = 2 et rg(A − 2I3) = 1.

iii) En déduire que la matrice A est diagonalisable.
D’après la question précédente (et le théorème de rang), dim E−1(A) = 3−2 = 1
et dim E2(A) = 3 − 1 = 2 ainsi les multiplicités algébrique et géométrique de
chaque valeur propre coïncident. Donc, la matrice A est diagonalisable.

iv) Donner une base B de C3 formée de vecteurs propres.
Par exemple, on a

E−1 = Vect


 2

−1
1


 , E2 = Vect


1

0
1

 ,

0
1
2


 ,

donc, on peut prendre B =


 2

−1
1

 ,

1
0
1

 ,

0
1
2


.

v) Donner une matrice inversible P et une matrice diagonale D vérifiant D =
P −1AP .

Posons P =

 2 1 0
−1 0 1
1 1 2

. On a D = P −1AP =

−1 0 0
0 2 0
0 0 2

.

b) Ensuite, on considère le système d’équations différentielles suivant

x′(t) = 8x(t)+ 12y(t)+ −6z(t)
y′(t) = −3x(t)− 4y(t)+ 3z(t)
z′(t) = 3x(t)+ 6y(t)− z(t)

avec les conditions initiales x(0) = 2, y(0) = 0, z(0) = 1.

i) Exprimer le vecteur

2
0
1

 dans la base B.

Par calcul direct, on a

2
0
1

 = −

 2
−1
1

+ 4

1
0
1

−

0
1
2

.
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ii) En déduire la solution du système d’équations différentielles ci-dessus.
D’après la Question 1. v), on a

exp(tA) = P exp(tD)P −1 = P

e−t 0 0
0 e2t 0
0 0 e2t

P −1.

Notons que la question précédente implique

2
0
1

 = P

−1
4

−1

, on obtient

x(t)
y(t)
z(t)

 = exp(tA)

x(0)
y(0)
z(0)

 = exp(tA)

2
0
1

 = (P exp(tD)P −1)P

−1
4

−1


=P exp(tD)

−1
4

−1

 =

−2e−t + 4e2t

e−t − e2t

−e−t + 2e2t

 .

Exercice 2 Soit A =

−13 10 10
15 −8 −10

−30 20 22

. Nous allons calculer An (n ∈ Z) de deux

manières différentes.
a) Déterminer le rang de la matrice A − 2I3.

Par définition, A − 2I3 =

−15 10 10
15 −10 −10

−30 20 20

, d’où rg(A − 2I3) = 1.

b) Montrer que la matrice A est diagonalisable.
D’après la Question 1., la multiplicité géométrique associée à la valeur propre 2 est
2. Le calcul du polynôme caractéristique de A nous donne χA(X) = (X +3)(X −2)2.
Les valeurs propres de A sont donc −3 et 2 avec malg(−3) = 1 et malg(2) = 2. On en
déduit que mgeo(−3) = 1 et mgeo(2) = 3. Ainsi la matrice A est diagonalisable.

c) Calculer An pour n ∈ Z à l’aide
i) d’une diagonalisation de la matrice A, et

Par calcul direct, on a

E−3 = Vect


 1

−1
2


 , E2 = Vect


2

3
0

 ,

 0
1

−1


 .

Posons P =

 1 2 0
−1 3 1
2 0 −1

. On a D := P −1AP =

−3 0 0
0 2 0
0 0 2

. Ces matrices
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sont inversibles, en particulier, on a Dn =

(−3)n 0 0
0 2n 0
0 0 2n

 pour tout n ∈ Z.

On en déduit que, pour tout n ∈ Z,

An =PDnP −1 =

 1 2 0
−1 3 1
2 0 −1


(−3)n 0 0

0 2n 0
0 0 2n


 3 −2 −2

−1 1 1
6 −4 −5


=

 1 2 0
−1 3 1
2 0 −1


−(−3)n+1 −2(−3)n −2(−3)n

−2n 2n 2n

6 · 2n −2n+2 −5 · 2n


=

 −(−3)n+1 − 2n+1 −2(−3)n + 2n+1 −2(−3)n + 2n+1

(−3)n+1 + 3 · 2n 2(−3)n+1 − 2n 2(−3)n − 2n+1

−2(−3)n+1 − 3 · 2n+1 −4(−3)n + 2n+2 −4(−3)n + 5 · 2n

 .

ii) du reste de la division euclidienne de Xn par χA(X) pour n ∈ N.
(hors programme) On effectue la division euclidienne de Xn par χA(X). Soit
(Q, R) ∈ R[X]2 l’unique couple de polynômes vérifiant tel que Xn = χA(X)Q(X)+
R(X) et deg(R) < 3. Le Théorème de Cayley–Hamilton, implique que An =
χA(A)Q(A) + R(A) = R(A). Donc, il suffit de déterminer le polynôme R.
Notons R(X) = aX2 + bX + c. Comme −2 est racine simple de χA et 2 ra-
cine double, il paraît judicieur d’évaluer R en −3, en 2 et R′ en 2. Comme
χA(X) = (X + 3)(X − 2)2, cela donne

9a − 3b + c = (−3)n,

4a + 2b + c = 2n,

4a + b = n · 2n−1.

On en déduit que

a = 1
25((−3)n + (5n − 2)2n−1), b = 1

25(−4(−3)n + (5n + 8)2n−1),

c = 1
25(4(−3)n + (−30n + 42)2n−1).

Exercice 3 Soit a ∈ C et soit A =

a 1 0
2 a 2
0 1 a

.

a) Donner une condition nécessaire et suffisante pour que la matrice A soit inversible.
Comme det(A) = a3 − 4a = a(a + 2)(a − 2), une condition nécessaire et suffisante est
a ̸= 0, ±2.
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b) Supposons que A est inversible. Calculer An pour n ∈ Z.
Le polynôme caractéristique de A vaut (X −a)(X −(a+2))(X −(a−2)) et est scindé
à racines simples. La matrice A est donc diagonalisable. On calcule :

Ea+2 = Vect


1

2
1


 , Ea = Vect


 1

0
−1


 , Ea−2 = Vect


 1

−2
1


 .

Posons P =

1 1 1
2 0 −2
1 −1 1

. On a D := P −1AP =

a + 2 0 0
0 a 0
0 0 a − 2

. On a alors

An = PDnP −1 et on déduit, pour n ∈ Z,

An = 1
4

(a + 2)n + 2 · an + (a − 2)n (a + 2)n − (a − 2)n (a + 2)n − 2 · an + (a − 2)n

2(a + 2)n − 2(a − 2)n 2(a + 2)n + 2(a − 2)n 2(a + 2)n − 2(a − 2)n

(a + 2)n − 2 · an + (a − 2)n (a + 2)n − (a − 2)n (a + 2)n + 2 · an + (a − 2)n

 .

Exercice 4 Soit A =

 1 3 −2
−3 13 −7
−5 19 −10

.

a) Déterminer les valeurs propres de A.
Le polynôme caractéristique de la matrice A est χA(X) = (X − 2)(X − 1)2, d’où les
valeurs propres de A sont 1 et 2.

b) Pour chaque valeur propre λ, déterminer son sous-espace caractéristique Fλ(A).

On a dim F1(A) = 2 et dim F2(A) = 1. Notons que (A − I3)2 =

 1 −2 1
−1 2 −1
−2 4 −2

.

le sous-espace caractéristique F1 est donné par Vect


2

1
0

 ,

0
1
2


. Pour la valeur

propre 2, le sous-espace caractéristique F2 coïncide avec le sous-espace propre E2 =

Vect


 1

−1
−2


 .

c) Trigonaliser A.

D’abord, on pose b′
1 =

 1
−1
−2

 qui forme une base de F2 = E2. Ensuite, on sélectionne

une base de F1. Comme E1 = Vect


1

2
3


, par exemple, le vecteur

 0
−1
−2

 ∈ F1

4



n’appartient pas à E1. Alors, posons b′
3 =

0
1
2

 et b′
2 =

1
2
3

. En particulier, avec la

matrice P =
(
b′

1 b′
2 b′

3

)
=

 1 1 0
−1 2 1
−2 3 2

, on obtient T := P −1AP =

2 0 0
0 1 x
0 0 1

 .

Il reste à déterminer la valeur de x. On peut utiliser l’égalité PT = AP pour trouver
x = −1.

d) Donner une formule de An pour n ∈ Z.

Les matrices I2 et
(

0 1
0 0

)
commutent, donc pour tout pour tout n ∈ N, on a

(
1 −1
0 1

)
=
(

1 −n
0 1

)
. Ainsi, pour tout n ∈ N, T n =

2n 0 0
0 1 −n
0 0 1

. En utili-

sant la formule de Cramer pour inverser T n, on obtient que, pour tout n ∈ Z, on a

T n =

2n 0 0
0 1 −n
0 0 1

. D’où

An = PT nP −1 =

 2n − n −2n+1 + 5n + 2 2n − 3n − 1
−2n − 2n + 1 2n+1 + 10n − 1 −2n − 6n + 1

−2n+1 − 3n + 2 2n+2 + 15n − 4 −2n+1 − 9n + 3

 .

Exercice 5 Soit A =

 3 −3 −1
3 −4 −2

−4 7 4

.

a) Montrer que le polynôme caractéristique de la matrice A a une racine triple, disons
λ.
Par calcul direct, on a χA(X) = (X − 1)3.

b) Calculer rang(A − λI3), et décrire la réduction de Dunford–Jordan de A.
Posons E = R3. Comme A − I3 est nilpotente et commute avec I3 qui est diago-
nalisable, la réductiond e Dunford–Jordan de A est A = B + N avec B = I3 et
N = A − I3.

Exercice 6 Soit A ∈ Mn(C). Le but de cet exercice est de prouver que la décomposition
de Dunford–Jordan A = B + N où B est diagonalisable, N nilpotente et BN = NB est
unique.
a) Soit λ une valeur propre de A. Montrer que Fλ(A) est stable par B et par N .
b) Soit fλ l’endomorphisme de Fλ(A) induit par B. Justifier que fλ est diagonalisable.
c) Montrer que λ est l’unique valeur propre de fλ. En déduire que fλ = λIdFλ

.
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d) Supposons que A = B1 + N1 = B2 + N2 avec B1 et B2 diagonalisables, N1 et N2
nilpotentes, B1N1 = N1B1 et B2N2 = N2B2. Montrer que B1 = B2 et N1 = N2.
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