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Exercice 1 a) Soit A= |—-3 —4 3 | une matrice carrée de M3(C).
3 6 -1

i) Calculer les valeurs propres de A.

Le polynome caractéristique de A est xa(X) = (X +1)(X —2)2, d’ott les valeurs
propres de la matrice A sont —1 et 2.

ii) Pour chaque valeur propre A de A, calculer le rang de la matrice A — .
rg(A+I3) =2 et rg(A —2I3) = 1.

iii) En déduire que la matrice A est diagonalisable.
D’apres la question précédente (et le théoreme de rang), dim F_;(A) =3-2=1
et dim Fy(A) = 3 — 1 = 2 ainsi les multiplicités algébrique et géométrique de
chaque valeur propre coincident. Donc, la matrice A est diagonalisable.

iv) Donner une base B de C? formée de vecteurs propres.
Par exemple, on a

2 1 0
FE_1 = Vect —1 , Foy = Vect 01,11 ,
1 1 2
2 1 0
donc, on peut prendre B = —11,10],]1
1 1 2
v) Donner une matrice inversible P et une matrice diagonale D vérifiant D =
P1AP.
2 10 -1 0 0
Posons P=|-1 0 1|.OnaD=P'AP=[0 2 0
1 1 2 0 0 2

b) Ensuite, on consideére le systéme d’équations différentielles suivant

'(t)
y'(t)
2'(t)

avec les conditions initiales z(0) = 2,y(0) =0, 2(0) = 1.

8x(t)+ 12y(t)+ —62(t)
=3z(t)— 4dy(t)+  3z(¢)
3z(t)+  6y(t)—  2(¢)

2
i) Exprimer le vecteur [0 | dans la base B.
1
2 2 1 0
Par calcul direct, ona (0| =—|—-1|+4|0] - |1
1 1 1 2



ii) En déduire la solution du systéme d’équations différentielles ci-dessus.
D’apres la Question 1. v), on a

exp(tA) = Pexp(tD)P~! = P O th 0 |PL

Notons que la question précédente implique , on obtient

—1

=Pexp(tD) t et

x(t) (0) 2 ~1
y(t) | = exp(tA) | y(0) | =exp(tA) [0 | = (Pexp(tD)P™ )P | 4
1
( +262t

—-13 10 10
Exercice 2 Soit A = [ 15 —8 —10|. Nous allons calculer A" (n € Z) de deux
-30 20 22

manieres différentes.

a) Déterminer le rang de la matrice A — 213.

—-15 10 10
Par définition, A —2I3 =] 15 —10 —10 |, d’ou rg(A — 21I3) = 1.
—-30 20 20

b) Montrer que la matrice A est diagonalisable.
D’apres la Question 1., la multiplicité géométrique associée a la valeur propre 2 est
2. Le calcul du polynome caractéristique de A nous donne x4 (X) = (X +3)(X —2)2.
Les valeurs propres de A sont donc —3 et 2 avec mgq(—3) = 1 et mgqy(2) = 2. On en
déduit que mgeo(—3) =1 et myeo(2) = 3. Ainsi la matrice A est diagonalisable.

c¢) Calculer A™ pour n € Z a l'aide

i) d’une diagonalisation de la matrice A, et
Par calcul direct, on a

1 2 0
E_3 = Vect -1 , FEs = Vect 31,1 1
2 0 -1
1 2 0 -3 0 0
Posons P=|—-1 3 1 |[.OnaD:=P1AP=| 0 2 0]. Ces matrices
2 0 1 0 0 2



(=3 0 0
sont inversibles, en particulier, on a D" = 0 2" 0 | pour tout n € Z.
0 0o 27
On en déduit que, pour tout n € Z,

1 2 0 (=3 0 0 3 -2 =2

A" =pD"P'=|-1 3 1 0 2" 0 -1 1 1
2 0 -1 0 0 2n 6 —4 -5

1 2 0 —(=3)ntt  —2(=3)" —2(-3)"

=l-1 3 1 —on i 2"

2 0 -1 62" —on+2 —5.27
( 3)n+1 2n+1 _2(_3>n+2n+1 _2(_3)n+2n+1
— ( )n +1 + 3.9n 2(_3)n+1 _9n 2(_3)71 _ 2n+1
—2(=3)ntt —3.ontl  _4(-3)n 4 2n+2 _4(-3)" +5.2"

ii) du reste de la division euclidienne de X" par x 4(X) pour n € N.

(hors programme) On effectue la division euclidienne de X™ par x4(X). Soit
(Q, R) € R[X]? 'unique couple de polynémes vérifiant tel que X™ = y 4(X)Q(X)+
R(X) et deg(R) < 3. Le Théoréeme de Cayley-Hamilton, implique que A™ =
xAa(A)Q(A) + R(A) = R(A). Dong, il suffit de déterminer le polynéome R.
Notons R(X) = aX? + bX + c. Comme —2 est racine simple de x4 et 2 ra-
cine double, il parait judicieur d’évaluer R en —3, en 2 et R’ en 2. Comme
xA(X) = (X +3)(X —2)?, cela donne

9a —3b+c=(-3)",

da+2b+c = 2",

da+b=mn-2""1
On en déduit que

1 1

a= %((—3)" + (5n —2)2" Y, b= %(—4(—3)" + (5n +8)2" 1),
c= 2715(4(—3)” + (—30n +42)2"1).

a 1 0
Exercice 3 Soitae Cetsoit A=1[2 a 2
01 a

a) Donner une condition nécessaire et suffisante pour que la matrice A soit inversible.
Comme det(A) = a® —4a = a(a+ 2)(a — 2), une condition nécessaire et suffisante est
a#0,42.



b) Supposons que A est inversible. Calculer A™ pour n € Z.
Le polynome caractéristique de A vaut (X —a)(X —(a+2))(X —(a—2)) et est scindé
a racines simples. La matrice A est donc diagonalisable. On calcule :

1 1 1
Ey49 = Vect 2 , E, = Vect 0 , E, o = Vect —2
1 —1 1
1 1 1 a+2 0 0
Posons P= |2 0 —2|.OnaD:=PlAP = 0 a 0 . On a alors
1 -1 1 0 0 a—2

A" = PD"P~! et on déduit, pour n € Z,

(a+2)"+2-a"+ (a—2)"
2(a+2)" —2(a —2)"
(a+2)"—=2-a" 4 (a—2)"

(2" — (@2
2(a+2)" +2(a — 2)"
(042"~ (a2

(a+2)"—=2-a"+ (a—2)"
2(a+2)" —2(a —2)"

At ==
1 (a+2)"+2-a"+ (a—2)"

1 3 -2
Exercice 4 Soit A=|-3 13 -7
-5 19 -10

a) Déterminer les valeurs propres de A.
Le polynome caractéristique de la matrice A est x4(X) = (X —2)(X — 1), d’o1 les
valeurs propres de A sont 1 et 2.

b) Pour chaque valeur propre A, déterminer son sous-espace caractéristique F)(A).

1 -2 1
On a dim F;(A4) = 2 et dim F(A) = 1. Notons que (A —I3)? = | -1 2 -1
-2 4 =2
2 0
le sous-espace caractéristique I} est donné par Vect 11,11 |. Pour la valeur
0 2
propre 2, le sous-espace caractéristique F5 coincide avec le sous-espace propre Fo =
1
Vect —1
-2
c¢) Trigonaliser A.
1
D’abord, on pose b} = [ —1 | qui forme une base de F, = E. Ensuite, on sélectionne
-2
1 0
une base de F;. Comme E; = Vect 2| |, par exemple, le vecteur | —1 | € F}
3 -2



0 1
n’appartient pas a Ej. Alors, posons by = [ 1| et b5 = | 2 . En particulier, avec la
2 3
1 10 2 00
matrice P = (b’l b, bg) =|-1 2 1|, onobtient 7:=P1AP=|0 1 =z
-2 3 2 0 0 1

Il reste a déterminer la valeur de x. On peut utiliser I'égalité PT = AP pour trouver
r=—1.

d) Donner une formule de A™ pour n € Z.

. 01
Les matrices I et ( 0) commutent, donc pour tout pour tout n € N, on a

0
20 0
1 -1 1 —n . e
= . Ainsi, pour tout n € N, 7" = | 0 1 —n|. En utili-
0 1 0 1
0 0 1
sant la formule de Cramer pour inverser 1", on obtient que, pour tout n € Z, on a
20 0
™ =10 1 —n|.Dou
0 0 1
2" —n —2"tl 4 5n+2 2" —3n-—1
A" =PT"P'=| —2"-2n+1 2""1410n—1 —2"—6n+1
-2l _3p+2 2724150 -4 —2nFl_9p 43
3 -3 -1
Exercice 5 Soit A= 3 —4 -2
-4 7 4

a) Montrer que le polynéme caractéristique de la matrice A a une racine triple, disons
A
Par calcul direct, on a x4(X) = (X —1)3.

b) Calculer rang(A — AI3), et décrire la réduction de Dunford-Jordan de A.
Posons E = R3. Comme A — I3 est nilpotente et commute avec I3 qui est diago-
nalisable, la réductiond e Dunford—Jordan de A est A = B + N avec B = I3 et
N=A-1Is.

Exercice 6 Soit A € M, (C). Le but de cet exercice est de prouver que la décomposition
de Dunford—Jordan A = B 4+ N ou B est diagonalisable, N nilpotente et BN = N B est
unique.

a) Soit A une valeur propre de A. Montrer que F)(A) est stable par B et par N.
b) Soit f) ’endomorphisme de F)(A) induit par B. Justifier que f) est diagonalisable.
c) Montrer que A est I'unique valeur propre de fy. En déduire que f\ = Aldp,.



d) Supposons que A = By + N1 = By + Ny avec B et By diagonalisables, N et N
nilpotentes, B1 N1 = N1Bj et BoNo = NoBy. Montrer que By = By et N = No.



