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1 Espaces vectoriels et applications linéaires

Dans ce cours, la lettre K désigne I'ensemble Q des nombres rationnels ou I’ensemble
R des nombres réels ou ’ensemble C des nombres complexes.

1.1 Espaces vectoriels

1
Soit n € N un entier. On note R" I’ensemble des n-uplets | : | ou x1,...,x, sont
Tn
des nombres réels. Cet ensemble est muni de deux opérations
1 (1 1+
— laddition : siv=| : |[etw=] : |, on pose v+w = : ;
Tn, Yn Tn + Yn
T AT
— la multiplication par un scalaire A\€ R:siv=| : |, on pose A-v =
Tn Az,
Ces opérations ont les propriétés suivantes. Notons, pour des raisons de référence dans
0
la suite, K =R, E=R" et Op = | : |. On vérifie alors les propriétés suivantes.
0
ExE — E KxFE — FE
(v,w) — v+w (ANv) — Ao

Ces deux lois doivent vérifier les propriétés suivantes

a) La loi + est associative :
Vu,v,w € E, (u+v)+w=u+ (v+w).
b) La loi 4+ est commutative :

Yo,w e E, v4+w=w++v.



c¢) Il existe un unique élément neutre Op € E pour la loi + :
Yve E, v+0g=0g+v=nuw.
d) Tout élément v € E possede pour symétrique —v = (—1)-v € E :
v+ (—v) = (—v) +v=0g.
e) La loi - est distributive par rapport aux lois + de F et K :

Ve K, YoweE, A (v+w)=A-v)+ (A w)
VA ue K, YoE, (A+p)-v=>A-v)+ (u-v).

f) La loi - est compatible & la multiplication dans K :
Vipue K, YweE, A-(u-v)=Ap)-v, 1l-v=no.

Voici un autre exemple. Rappelons que K désigne Q, R ou C.

Définition 1.1. Soient m > 1 et n > 1 deuzx entiers. Une matrice de taille m X n a
coefficients dans K est un tableau rectangulaire A ayant m lignes et n colonnes contenant
des €éléments de A. On note a; j ses coefficients et on les indexe de la facon suivante

a1 a2 - Qi
a1 asp asn
A= (aw)léiém =
1<j<n ’
am,1 Om,2 Gm.n

On note M, ,,(K) I'ensemble des matrices a m lignes et n colonnes. On définit les
opérations suivantes :
— A= (ai7j)1<i<m, B = (bi,j)léigma alors C = A + Bou(C = (am + b@j)lgigm-
1<j<

1<j<n 1<y<n <n
— A= (a@jhgigm, A€ K, alors A- A= (Aai,j)1<z<m-
1<j<n 1<jsn

Alors en posant ' = M, ,(K), les propriétés a) a f) sont vérifiées.

Si m = n, une matrice de My, (K) = M, ,(K) est appelée matrice carrée de taille

n.

Définition 1.2. On appelle K-espace vectoriel, ou simplement espace vectoriel, un
ensemble E muni de deuzx opérations

ExE +— FE KxFE — E
(u,v) +— u+wv (ANv) — Ao

vérifiant les propriétés a) a f).



Les éléments de ’ensemble E sont appelés vecteurs et les éléments du corps K sont
appelés scalaires. Il faut bien prendre garde au fait que les lois + et - sont définies sur
des ensembles différents. La loi + part de deux vecteurs et produit un vecteur alors que
la loi - part d’un scalaire et d’un vecteur et produit un vecteur. Si A est un scalaire et
v un vecteur, il faut imaginer le vecteur A - v comme étant le vecteur v dilaté au moyen
du coefficient A.

Remarque 1.3. Soit F un K-espace vectoriel. Siv € E, ona 0-v+0-v = (0+0)-v = 0-v.
On en déduit 0-v = O pour tout v € E.

Si (v1,...,v,) est une famille d’éléments de E, on appelle combinaison linéaire de
V1,...,U, un élément de la forme Ay -v1 + -+ + Ay - v pour Aq,..., A\, € K.

1.2 Bases et coordonnées

Soit £ un espace vectoriel.

Définition 1.4. On appelle famille génératrice de E une famille finie de vecteurs
(v1,...,v,) telle que tout vecteur de E est combinaison linéaire de vi,...,v,. On dit
qu’un espace vectoriel est de dimension finie s’l posséde une famille génératrice finie.

0

Exemple 1.5. Si £ = K", pour 1 < i < n, notons e; I’élément | 1 | ot 1 apparait sur

la i-ieme ligne. Tout élément de E peut s’écrire
I
=x1-€1+x2e2+ -+ Ty ep
xn
donc (eq,...,ey) est une famille génératrice de K.

Dans I'exemple précédent, on a envie de dire que K" est en fait de dimension n. Pour
définir correctement la notion de dimension, il est nécessaire d’introduire les notions de
familles libres et de bases.

Définition 1.6. Soit (v1,...,v,) une famille finie d’éléments de E. On dit que la famille

(v1,...,v,) est libre si pour tout n-uplet de scalaires (A1,...,\p,) € K™, on a
)\1‘U1+“'+)\n'vn:0E:>)\l :)\2::)\n:0
Autrement dit, la seule combinaison linéaire nulle des vecteurs vy, ...,v, est la combi-

naison dont les coefficients sont nuls.



Exemple 1.7. Si E = K", la famille (ej,...,e,) est libre. En effet, supposons que
Ar-er+ -+ Ay - en = Ogn, alors

A1 0

: =A-er+- -+ Ay ey =0rn = |

An 0
donc Ay =---= X, =0.

Définition 1.8. Une base de F est une famille finie d’éléments de E qui est a la fois
libre et génératrice.

Exemple 1.9. Dans R", la famille (eq,...,e,) est une base appelée base canonique.

Soit B = (v1,...,v,) une base de F et soit v € E. Comme la famille B est génératrice,
il existe des scalaires x1,...,x, tels que v = 1 - vy + - -+ + Ty - v,. Comme de plus la
famille B est libre, les scalaires x1,...,x, sont uniquement déterminés par v. On les
appelle les coordonnées de v dans la base B.

Il peut étre commode, du point de vue du calcul matriciel, de noter les coordonnées
d’un vecteur sous forme de vecteur colonne. Si E est un espace vectoriel, B une base de
FE et v € E, on note

T
[v]s =
In

le vecteur colonne des coordonnées de v dans la base B.

X1
Exemple 1.10. Notons Bean = (€1, . .., €,) la base canonique de K™. Siv = | : | € R",
In
on a
V=Xx1-€1+ - Ty-Ey
donc les scalaires x1,...,z, sont les coordonnées du vecteur (x1,...,z,) dans la base
Bean. Ainsi on a
Z1 1
T T
n Bcan n

Mais attention, il existe bien d’autres bases dans R™ et cette égalité ne vaut que pour la
base canonique !

Exemple 1.11. Soit E = K?2. Posons u = (1) et v = ( 11>. La famille (u,v) est libre.

En effet, si x-u+y-v = 0g2, alors

T+y 0 r+y =0 z =0
= - =
rT—Y 0 rz—y =0 y =0



De plus si x,y € K, on a

T\ T4y Tr—y
<y>_ 5 u+72 v

Ainsi la famille (u, v) est génératrice. C’est donc une base de K?2. De plus, les coordonnées

du vecteur <:;> dans la base (u,v) sont z,y. On a donc

)]~ ()

Exemple 1.12. Soit m,n > 1 deux entiers. On note E; ; € M, ,(K) la matrice dont
toutes les entrées sont nulles, sauf 'entrée sur la i-éme ligne et j-éme colonne qui vaut
1. Par exemple, si m =2 et n = 3,

1 0 0 000 00 0
E“_(o 0 0)’ E271_<1 0 0)’ E2’3_<0 0 1)'

La famille B = (E1,1, E1,2, E13, E21, E22, E2 3) est une base de My 3(K) et on a

ail ai2 a3
=a11-Ei1+are - Fig+---+azsz- Eags.
as1 a2 a23

ai

a2

Ainsi l(am a1,2 a1,3>] _ a1,3
a1 @22 23] |, a1

az 2

a3

Exemple 1.13. Soit K[X] I’ensemble des polynémes en une variable a coefficients dans

K. Sin >0, on note K,[X] 'ensemble des polynoémes de degré inférieur ou égal a n. La
famille B = (1, X, X2..., X™) est une base de K,,[X]. De plus on a

ag
al
[a0+a1X+ ~--+aan]B =

an,

Théoréme 1.14. Soit E un K-espace vectoriel de dimension finie.
1) Il existe au moins une base de E.
2) Toutes les bases de E ont le méme nombre d’éléments.
3) On peut toujours compléter une famille libre de E en une base.

4) On peut toujours extraire une base d’une famille génératrice de E.



Si E est un K-espace vectoriel de dimension finie. La longueur d’une base de E
est appelée dimension de E. On la note dimg E (ou encore dim E lorsque le corps des
scalaires est défini sans ambiguité).

Exemple 1.15. L’exemple 1.9 montre que la famille des vecteurs élémentaires (eq, . .., e,)
est une base de K", on en conclut que dimyx K™ = n.

Exemple 1.16. Dans 'exemple 1.12, on a vu que la famille (Ey 1, ..., E23) est une base
d eMy 3(K). Ainsi dimg My 3(K) = 6. Plus généralement, on a dimg M, ,,(K) = mn.

Exemple 1.17. Dans I'exemple 1.13, on a vu que la base (1, X,X?2,..., X") est une
base du K-espace vectoriel K,[X]. On en conclut que dimg K, [X] =n + 1.

1.3 Produit matriciel, changement de base

Rappelons que 1’on peut multiplier les matrices.
SiAe Mpyn(K) et Be M,p(K), on définit le produit de A avec B par
AB = (cij)i<icm € Mmp(K)

NN

ou Cij = 22:1 ai’kbk’j.
Proposition 1.18. Si A € M, ,(K), B € M, ((K) et C € My, (K), on a

— A(BC) = (AB)C;

— A(B+C)=(AB) + (AC) ;

— (A+ B)C = (AC) + (BC);

— si A€ K, on a A(AB) = (AMA)B = A(AB).

Sin > 1, on note I, la matrice (a;j)1<i<n de My (K) définie par a;; =0 sii # j et

1<j<n

a;; = 1 si i = j. On l'appelle la matrice identité. On vérifie que Al, = A = I,, A pour
toute matrice A € M, ,(K).

Remarque 1.19. Le produit matriciel n’est pas commutatif. Voici un exemple dans

Définition 1.20. Une matrice A € M, (K) est dite inversible sl existe une matrice
B € M, (K) telle que AB = BA = I,,. Si elle existe, la matrice B est unique et est
appelée inverse de A. On la note alors A~".

Si A et B sont inversibles alors AB est aussi inversible et

(AB) ' =B7tA"L



Soit F un K-espace vectoriel de dimension finie n. Soient B et B’ deux bases de E.
La matrice de passage de B & B’ est la matrice carrée de taille n dont la j-éme colonne
est donnée par les coordonnées du j-éme vecteur de B’ dans la base B. Autrement dit,
si B=(vi,...,v,) et B = (v],...,0v)), et que

e n
n
. /
V1 g .7 g n, Uj = Zai,jviu
=1

alors
P=Pf = Pscp = (ai)1cicn = (il -+ [v)]s).
1<4<

SYS

Proposition 1.21. Siv € E, on a alors
[v]g = Ppp[v]5-

I Ty
Démonstration. En effet, supposons que [v]g = [ @ | et [v]g = | : |, cest-a-dire

Tn x
v =30 Tiv = DG T

Comme v} = > i1 @i v, on en conclut

n

n n n
T;U; = l‘j CLL]"Ui = aiijj V;.
=1

j=1 =1 i=1 \j=1
Comme (v1,...,v,) est une base de E, on a bien
n
- /
Vi<i<n, x;= Zamxj
i=1
c’est-a-dire [U]B = PB(—B/ [’U]B/. O

Si B, B’ et B” sont trois bases de E, on a alors
P pr = P pPpep.
Remarque 1.22. Si B= B, on a Pg. 3 = I,. On a donc, en général
Pg. g Ppop= Pgep = In.

Ainsi la matrice Pg.p est inversible et Py, iB’ = Pgi. 5.



1.4 Applications linéaires

Soient E et F' deux espaces vectoriels.

Définition 1.23. Une application linéaire de E dans F' est une application f de & dans
F' telle que

— Y,w, fv+w) = fv)+ fw);
— VYAe K, YweE, f(A-v)=A-f(v).

Si E et F sont deux espaces vectoriels, on note L(E, F') ’ensemble des applications
linéaires de F dans F.

Lorsque E = F, on note L(F) = L(E, E). Un élément de L(E) est appelé endomor-
phisme de E.

Exemple 1.24. L’application f : R? — R? définie par f <<§>> = (;_:é’i) est

linéaire.

Si f et g sont deux applications linéaires de E dans F', on note f + g 'application
de E dans F' définie par

Yo € E, (f+g)w) = f(v) +g(v).

Il s’agit d’une application linéaire de E dans F. De méme si A € K, on note A - f
I’application de F dans F' définie par

YoeE, (A f)lv)=X-f(v).

Il s’agit encore d’une application linéaire de F dans F. Muni des opérations + et -
définies ci-dessus, I'ensemble L£(E, F') est un espace vectoriel.

Soient E et F' deux K-espaces vectoriels de dimension finie. On fixe Bg = (v, ..., vy)
une base de E et Bp = (wi,...,w,,) une base de F. Soit f € L(F, F) une application
linéaire de £ dans F'. Pour 1 < j < n, on note (a; ;)1<i<m les coordonnées de f(v;) dans
la base Br. Autrement dit

at,j
f(vj) = a1 jwr + -+ amjw, ouencore [f(v;)] =
am’]
La matrice de taille m x n de termes (a;;)1<i<m est appelée matrice de f dans les bases

1<j<n

B et Br. On la note Mat(g, g,)(f). Si E = F et Bg = Br, on note Matg,(f) =
Mat s, 5 (f)-
Remarque 1.25. D’autres notations sont parfois utilisées pour la matrice Mat s, 5,.) (f)-

On peut la noter Matg, 5, (f) ou encore Matg,. 5, (f). La derniére notation est par-
ticulierement bien adaptée aux formules de changement de base et de composition.



Proposition 1.26. Soit f € L(E, F). Soit B une base de E et soit Br une base de F.
Alors, pour tout v € E, on a

[f(v)]Br = Mat(s, 5, (f)[v]Bs-

Remarque 1.27. On note Idg ’endomorphisme identité de 1’espace vectoriel F, c’est
Papplication linéaire de E dans F définie simplement par Idg(v) = v pour tout v € E.
Si B est une base de E, on vérifie facilement que Matg(Idg) = I,,. Il faut prendre garde
au fait que si B et B’ sont deux bases de E (potentiellement différentes), alors

Mat g ) (Idg) = Psp(= Matp 5(Idg)).

1.5 Composition des applications linéaires

Soient E, F' et G trois espaces vectoriels. Si f € L(E, F) et g € L(F,G), application
composée g o f est une application linéaire de E dans G.

Proposition 1.28. Soient E, F' et G trois espaces vectoriels de dimension finie. Soient
Br une base de E, Br une base de F' et Bg une base de G. Alors si f € L(E,F) et
g€ L(F,G), ona

Mat(z, 5,)(9 © f) = Mat(z, .y (9) Mat (s, 5. (f)-

Ou encore, en notations alternatives

MatpgeBg(g 0 f) = Matp,esy(9) Matg, s, (f).

Définition 1.29. Une application linéaire f de E dans F' est appelée isomorphisme si
elle est bijective.

Si f est un isomorphisme de E dans F son application réciproque f~! de F dans F est
linéaire et bijective et est donc également un isomorphisme. Rappelons que I’application
réciproque f~! d’une application bijective est I'unique application telle que fof~! = Id.
On a alors, de facon équivalente, f~' o f = Id.

Si f est un isomorphisme de E dans F, si B est une base de E et Br une base de
F', on a alors

Ma‘t(BE,BF)(f) Ma’t(BF,BE)(f_l) = Ma’t’BF (IdE) = In

Ainsi Matg, 5,)(f) est inversible et son inverse est Mat(z, 5,)(f ). La réciproque est
vraie également.

Proposition 1.30. Soit B une base de E et soit Br une base de F. Une application
linéaire f de E dans F est inversible si et seulement si Matg, 5,)(f) est inversible.
Dans ce cas

Mat (g, 5. (f) " = Mat(g, 5, (f )



Proposition 1.31. Soient By et By, deuz bases de E et B et By, deuz bases de F. Si
feL(EF), ona

-1
Mat (g, g1y (f) = P, Matsg 5,)(f) Py,
En particulier, si E = F, B = Br et By = B, on a
—1
MatBjE (f) = PBE<—B’E Matg,, (f)PBEeB;j
Démonstration. On peut en effet écrire

Mats, 5,)(f) = Matg . 5 (Idp o foldg)
= MatB%(—Bp (Idr) Matg,« B, (f) MatBEHB}E (Idg)
= Ppr« 5, Mats, 8, (f)Ppge

—1
= PBF<—B§, Mat(BE,BF)(f)PBEﬁB’E

ou l'on a utilisé les résultats de la proposition 1.28 et des remarques 1.27 et 1.22. O

1.6 Sous-espaces vectoriels

Définition 1.32. Soit E un K-espace vectoriel. Un sous-K -espace vectoriel de E (ou
simplement sous-espace vectoriel lorsque K est sous-entendu) est une partie F' de E
vérifiant

(i) Op € F';

(ii) pour tous v et w dans F, onav+w € F ;

(iii) pour tout v dans F et tout A dans K, on a v € F.

T
Exemple 1.33. Dans R3, 'ensemble des éléments | o | vérifiant la relation 2z +3x2 +
x3
5z3 = 0 est un sous-espace vectoriel. Il s’agit d’'un exemple de sous-espace vectoriel défini
par une équation.

1 2
Exemple 1.34. Dans R3 posons v = [ 2| et w = [ 7 |. Alors I’ensemble
3 3
A+ 2u
Mt pw | (A p) €R?} = |22+ 7p | | (A, p) €R?
3N+ 3u

est un sous-espace vectoriel de R3. Il s’agit d’un exemple de sous-espace vectoriel engen-
dré par une famille de vecteurs, ici les vecteurs v et w.

10



Plus généralement si vy,...,v, € E, on note Vect(vy,...,v,) ensemble des com-
binaisons linéaires des vecteurs v1,...,v,. C’est un sous-espace vectoriel de E appelé
sous-espace engendré par vy, ..., Up.

Définition 1.35. Si E et F sont deux espaces vectoriels et si f est une application
linéaire de E dans F', on note Im f "image f(E) de f et Ker f le noyau de f, c’est-d-
dire Uensemble f1({0p}) = {x € E| f(z) = 0p}.

On vérifiera a titre d’exercice que Ker f est un sous-espace vectoriel de E et que Im f
est un sous-espace vectoriel de F'.

Proposition 1.36. Si f est une application linéaire entre deux espaces vectoriels, alors
f est injective si et seulement si Ker f = {Og}.

Démonstration. Si f est injective, alors Ker f est réduit a {Og}. Réciproquement sup-
posons que Ker f = {Og}. Si x et y sont deux éléments de E tels que f(z) = f(y), alors
f(x) = f(y) = Op. Par linéarité de f, on a alors f(z —y) = Op et donc = — y € Ker f.
Ainsi on doit avoir x — y = Og, c’est-a-dire x = y. On a prouvé que l'application f est
injective. O

La dimension de I'espace vectoriel Im f est appelé le rang de f et est notée rg f.
Ainsi on a, par définition, rg f = dimIm f.

Théoréme 1.37 (Théoreme du rang). Soit E un espace vectoriel de dimension finie et
soit F' un espace vectoriel. Si f est une application linéaire de E dans F, alors Im [ est
un sous-espace vectoriel de dimension finie de F' et on a

dimIm f = dim £ — dim Ker f.

Exemple 1.38. Considérons I'application linéaire f : R? — R? définie par

()= ()

, . 212 x . .
Déterminons son noyau. Un élément y) € R? est dans le noyau de f si et seulement si

il est solution du systeme d’équations linéaires homogene

x+y =0 r+y =0 x =0
= -
2r+y =0 x =0 y =0.
Ainsi Ker f = 0 et Papplication f est injective. Le théoréme du rang (théoreme 1.37)
nous donne alors rg f = 2.

11



1.7 Sommes de sous-espaces vectoriels

On peut effectuer des opérations sur les sous-espaces vectoriels afin d’en produire de
nouveaux.

Si E est un espace vectoriel et si F et F5 sont deux sous-espaces vectoriels, 'inter-
section F7 N F5 est un sous-espace vectoriel de E. L’ensemble

F1+F2:{U+’LU|(U,’U))€F1 XFQ}

est un sous-espace vectoriel de E appelé somme des sous-espaces F; et F5. Plus généra-
lement, si FY,..., F, sont des sous-espaces vectoriels, la partie

i+ +FE,={v+-~Fuv,| (v1,...,00) € Fy x - x F,}
est un sous-espace vectoriel de E appelé somme de la famille de sous-espaces (F1, . .., Fy,).

Soit F un K-espace vectoriel, ainsi que F; et Fo deux sous-espaces vectoriels de F.
Par définition, tout élément de F; + Fy s’écrit sous la forme v +w avec v € Fj et w € Fo.
Cette écriture n’est pas toujours unique. Considérons par exemple le cas de E = R? avec

e [ (3) (1)) e (2] (2] eren e e
()= () =-()=)

Cependant lorsque cette décomposition est unique, on dit que les sous-espaces Fi et Fh
sont en somme directe. Plus généralement, on peut définir la notion de somme directe
pour une famille finie de sous-espaces vectoriels.

Définition 1.39. Soit E un espace vectoriel. Si Fy, ..., F, sont des sous-espaces vecto-
riels de E, on dit qu’ils sont en somme directe si tout élément v € F1 + --- + F,, s’écrit
de fagon unique sous la forme x = vy + - -+ v, avec v; € F; pour 1 < i < n. Lorsque tel
est le cas, on note également Fy & --- @ F,, le sous-espace vectoriel Fy + --- + Fy,.

Pour vérifier que des sous-espaces vectoriels sont en somme directe, on peut utiliser
le critére suivant.

Proposition 1.40. Les sous-espaces F1+-- -+ F,, sont en somme directe si et seulement
st pour tout (vi,...,v,) € Fy X -+ X Fy, Uégalité vy + - - - + v, = 0 implique v1 = vy =
e =wvp, =0pg.

Démonstration. Le sens = est immédiat, il s’agit juste d’appliquer la définition d’une
somme directe a la décomposition de I’élément 0. Montrons que si ’égalité vy + --- +

v, = Op implique v = vg = -+ = v, = 0 pour tout (vi,...,v,) € F1 X -+ X Fp,
alors les sous-espaces Fi,...,F, sont en somme directe. Il faut donc prouver que si
(V1,...,0) € F1 X -+- X F, et si (wy,...,w,) € F} X --- x F, vérifient

v+t v, =w 4+ wy, (1)

12



alors v; = wy,...,v, = wy. Pour cela, réécrivons ’égalité (1) sous la forme
(v1 —wi) + (v2 —w2) + - + (vp —wpn) = Op.

L’hypothese implique alors v; —wy = - - - = v, — w, = 0, c’est-a-dire vi = wq,...,v, =
W, - O

Le cas de deux sous-espaces vectoriels est particulier.

Proposition 1.41. Soit E un K-espace vectoriels et soient Fy et Fy deur sous-espaces
vectoriels de E. Alors Fy et Fy sont en somme directe si et seulement si F1 N Fy = {0g}.

Démonstration. Supposons tout d’abord que F; et F; sont en somme directe. Soit v €
FiNFy Alors O = v—v = 0g — 0. Comme F; et F5 sont en somme directe, une
telle décomposition est unique, ainsi v = Og et donc F; N Fy» = {0g}. Réciproquement
supposons Fy N Fy, = 0. Soit (v1,v2) € Fy X Fy tel que v; + v2 = 0g. On a alors
v1 = —vy € Fy, donc v1 € F1 N Fy et donc v1 = 0. On en déduit vo = 0. Ainsi la
proposition 1.40 implique que Fj et F5 sont en somme directe. O

Remarque 1.42. Attention, la proposition 1.41 ne se généralise pas verbatim au cas
deux n sous-espaces vectoriels avec n > 3. Considérons par exemple le cas de E = R?,

Fi1 = Vect ((é)), Fy = Vect <<(1)>> et F3 = Vect (G)) On vérifie que F1 N Fy =

Fy N F3 = Fy N F3 = {Og2} (en particulier F} N Fy N F3 = {Or2}). Pourtant ces trois
sous-espaces ne sont pas en somme directe puisque

(=t ()= 3)+ 2) o

Proposition 1.43. Soit E un espace vectoriel et soient F' et G deux sous-espaces vec-
toriels de E. Si F' et G sont de dimension finie, alors F+G et FNG sont de dimension
finie et on a

dim(F + G) =dim F +dim F —dim F N G.

Proposition 1.44. Soit (Fy, ..., F,) une famille de sous-espaces vectoriels de dimension
finie de E. Si ces sous-espaces sont en somme directe, alors pour toute base By de Fy, Ba
de Fs,....B, de F,, la famille B obtenue en concaténant By, Bs,...,B, est une famille
libre de E. St de plus F1 ® --- @ F,, = E, alors B est une base de E.

Proposition 1.45. Soient F1i,..., F, des sous-espaces vectoriels de dimension finie de
E. Ces sous-espaces sont en somme directe si et seulement si

n
dim(Fy + -+ F,) = ) _dim F,.
=1
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1.8 Outils pratiques

Soit A = (a;j) € Mmn(K) une matrice. Le systéme linéaire homogéne associé est le
systeme
ajnr1+ -+ apr, =0

am1T1 + -+ amnry = 0.

La méthode du pivot permet de ramener ce systéme a un systeme de la forme

To(1) + b12T502) + -+ + D1 nTo(n) =0

0 + .TU(Q) + b2,3x0(3) + e+ b2,n;1;o_(n) =0

0+0+4 2,0 +--- =0 (2)

O+"'+0+«Tg(r)+"'+br,nxa(n) =0
OU Ty(1), -+, Ty(n) €St une permutation des variables z1,...,z, et r est un entier 0 <
r < n. On dit que le systeme a été mis sous forme échelonnée. Soit 0 < r < n Uentier tel
que les variables @, (1), ..., Zy(,;) apparaissent sur la diagonale du systeme échelonné. Les
variables (1), ..., T () sont appelées les variables principales et Ty(p i1y, .-, To@n) les

variables libres. On peut alors extraire les informations suivantes du systéeme mis sous
forme échelonnée :
— le range de la matrice A est r, le nombre de variables principales;

— on obtient une base du noyau de A en considérant (X1, ..., X, _,) ou X; est 'unique
solution du systeme telle que z,(,44) = 1 et Z515 = 0 pour 1 < j < n—r et
J# s

— on obtient une base de I'image de A en prenant

(Aeo(l), ... ,Aeg(r))

(on rappelle que (e, ..., e,) désigne la base canonique de R™).

Ces techniques peuvent s’appliquer au calcul du rang, du noyau et de I'image d’une
application linéaire entre espaces vectoriels de dimension finie. Soient E et F' deux es-
paces vectoriels de dimension finie. Soit f € L(R, F'). On fixe Bg une base de E et Bp
une base de F'. Posons A = Matg, ., (K). On a alors

— rg(f) = rg(A), ou rg(A) peut se déterminer par la méthode du pivot comme ci-
dessus;

— soit (X1,...,Xp—r) une base de Ker(A), on obtient une base de Ker(f) en prenant
(v1, ..., Un—r) telle que [v;]p, = Xi;

— soit (Y1,...,Y;) une base de Im(A), on obtient une base de Ker(f) en prenant
(v1,...,v,) telle que [vs]p, =Y.
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2 Le groupe symétrique

2.1 Définition

Soit X un ensemble. Une permutation de X est une application bijective f : X — X.
L’ensemble des permutations de X est noté &(X). Comme la composition de deux
applications bijectives est encore bijective, si f et g sont deux permutations de X, leur
composée f o g est encore une permutation de X. On a donc définit une opération sur
Pensemble &(X) : 'opération de composition qui prend deux éléments f et g de &(X)
et en fournit un troisieme f o g.

Nous nous intéresserons désormais uniquement au cas ou ’ensemble X est ’ensemble
{1,2,...,n} des entiers de 1 & n pour un entier n > 1.

Définition 2.1. On appelle groupe symétrique et on note &,, l’ensemble permutations
de l’ensemble {1,... ,n}.

Une fagon standard de décrire une permutation o est de I’écrire sous la forme d’un
tableau a deux lignes, la premiere ligne étant la liste 1,2,...,n et la deuxieme la liste
0(1),0(2),...,0(n). Voici un exemple si n = 4. La permutation

1 2 3 4
21 4 3

1—2
21
3—4
4—3

est la permutation

Théoréme 2.2. Soit n > 1 un entier. L’ensemble &, est fini de cardinal n!.

Démonstration. 1l faut compter combien de permutations de ’ensemble fini {1,...,n}
sont possibles. Se donner une permutation de {1,...,n} revient & se donner n entiers
o(1),...,0(n) deux & deux distincts et compris entre 1 et n. Il y a donc n choix possibles
pour o(1). Une fois (1) choisi, il n’y a plus que n — 1 choix pour ¢(2), puis n — 2 choix
pour o(3) etc. et une unique possibilité pour o(n). Au final, il y a donc n(n—1)(n—2)---1
choix possibles de permutations de {1,...,n}. O

2.2 Exemples d’éléments

Sil<i<j< n,onnote (i,j) 'unique permutation de {1,...,n} qui échange i et
j et fixe tous les autres éléments. Une telle permutation s’appelle une transposition.
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Si 2 < k < netsiay,...,ar sont des éléments distincts de {1,...,n}, on note
(a1,...,ax) la permutation o définie par

o(ay) = ay
O'(ag) = as
olag) = ay
o) =xsiz ¢ {a,...,ar}.

Une telle permutation est appelée un k-cycle.

Remarque 2.3. Les 2-cycles sont exactement les transpositions.

en=(1 5 3) wao=(3 1)

2.3 Structure de groupe

Exemple 2.4.

La loi de composition o de &,, posséde une propriété importante : elle est associative.
Ce la signifie que, pour o1, 09,03 dans &,, on a

010 (09 003) = (01 0032) 0 03.
Démontrons-le.

Proposition 2.5. La loi de composition de &, est associative.

Démonstration. Rappelons que par définition, la permutation o o o9 est la permutation
définie par (o1009)(z) = 01(02(x)). Le principe de la démonstration est donc de calculer,
pour tout € {1,...,n}, les éléments (o1 0(02003))(x) et ((o1002)003)(x) et de vérifier
qu’ils sont égaux. Commencons par

(010 (02003))(x) = 01((02 0 03) (7)) = 01(02(03(7))).
Et finissons par
((01002) 0 03)(x) = (01 0 02)(03(x)) = T1(02(03(2)))-

On a donc (010 (02003))(x) = ((61002) 0oo3)(x) pour tout x € {1,...,n}, ce qui signifie
que o1 o (09 003) = (01 0 03) 0 03. O

L’application identité Id; 3 (que nous noterons simplement Id par la suite) est
une permutation de X et vérifie o0 o Id = ¢ = Idoo. On dit que c’est un élément neutre
pour la loi o.
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Si 0 € &, lapplication réciproque o~ ! est un autre élément de &, qui vérifie
cgoo t=0"log=1Id.

Ces observations peuvent se résumer en disant que la paire (S, 0) est un groupe.
Définition 2.6. Un ensemble G muni d’une loi de composition interne x est appelé un
groupe S

(i) la loi x est associative : a * (b*c) = (a*b) * ¢ pour tous a,b,c dans G ;

(ii) la loi x posséde un élément neutre e € G : exa = a*e = a pour tout a € G ;

1 1

(iii) tout élément a de G posséde un symétrique a=* pour * :axa ! =a lxa=e.

Exemple 2.7. La paire (G,,0) est un groupe. Si E est un espace vectoriel, la paire
(E,+) posséde également une structure de groupe.
Ainsi tout élément posséde un inverse et (G(X),0) est un groupe.

Exemple 2.8. Considérons les éléments de S3

et calculons 0 oo’. On a (co0’)(1) =0(2) =3 et (6 00')(2) =0(1) = 2. Comme 000’
est une permutation, on a nécessairement (o oo0’)(3) =1 :

1175 2:% 3
2= 1—2
3—=+3—=1
1 2 3\ 1 2 3
/ . 5 . ) /.
et donc o0 oo’ = <3 9 1). A titre d’exercice, vérifier que o'c = 1 3 9 . On

remarque que o o o' # o' o o, le groupe S3 n’est donc pas commutatif! L’ordre de
composition est donc tres important.

Lorsqu’un groupe (G, *) vérifie de plus la propriété a * b = b * a pour tous a, b dans
G, on dit qu’il est commutatif. On vient de voir que le groupe G3 (et par extension le
groupe &,, pour n > 3) n’est pas commutatif.

Théoréme 2.9. Tout élément de &,, s’écrit comme un produit de transpositions.

Démonstration. Pour n > 2, soit H,, 'hypotheése de récurrence « toute permutation de
{1,...,n} est un produit de transpositions ». Alors Hs est vrai car &y = {Id, (12)}.
Supposons H,, vrai et démontrons H,, 1. Soit 0 € &, 11 et posons

, o sio(n+1)=n+1
“\l(n+1,0n+1) oo sicn+1)£n+1.

Alors 0/(n+1) = n+ 1. La restriction de ¢’ a {1,...,n} est un élément de &,, et s’écrit
comme un produit de transpositions par H,. Comme o = (n+ 1,0(n + 1)) oo/, on en
conclut que o est un produit de transpositions. ]
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2.4 Signature

Sio e &,, on pose

((o) = Card{(i,j) € {1,...,n}*|i < jet o(i) > o(4)}.
1l s’agit du nombre d’inversions de o. On pose alors £(0) = (—1)4)

s’appelle la signature de o.

. Le nombre (o)

Théoréme 2.10. Pour tous 0,7 € &, onae(coT) = e(0)e(7). De plus on a (1) = —1
st T est une transposition.

Démonstration. Soient o et 7 deux éléments de &,,. Il faut vérifier que e(co7) = (0 )e(T).
On utilise la formule suivante

e(o)= ][ sen(o(j)—oa(i))
1<i<j<n

pour tout o € &,,. On a

eoor)e(r)= [ senl(oor)(j) —(con)(@) ][ sen(r(j)—7(0)

1<i<j<n 1<i<j<n
= II [sen(oon)(5)) = (o 07)(@))sgn(r(j) — 7(:))]
1<i<j<n

symétrique en i et j

= II [senle(r(j) — o(r(i))sen(r(j) — 7(i))]

1<r ()< (j)<n
= I sen(o(r(h) - (1))
1<7(@)<T(4)<n
= I sen(o(i) - o(i)) = (o).
1<i<j<n

On a donc e(o o 7)e(7) = &(7). Comme &(7) € {£1}, on a &(7) = &(7)~! et donc
g(coT)=c¢e(o)e(r).

Il reste a vérifier si 7 est une transposition, on a €(7) = —1. Supposons que 7 = (4, j)
avec ¢ < j et soient k < /.

kg {ijy  tk)=k<l=1(0)

k=i, t#j5 7(k)y<t)sil>j 1k)>71{)sii<l<j

kti,0=7 7tk)y<t@)sik<i,7(k)>7{)sii<k<y
() > (0)

(k,0) = (i,4) T

(
(
(
Ainsi ((1) =2(j —i—1) 4+ 1 et donc &(

T)=—1. O

Si (G, ) et (H, ') sont deux groupes. On appelle morphisme d’un groupe G vers un
groupe H une application f : G — H telle que f(g*h) = f(g) «' f(h) pour tous g et h
dans G.
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Exemple 2.11. Considérons le cas ou G = (S,,0) et H = ({£1}, x). Alors la signature
¢ est un morphisme du groupe &,, vers le groupe {+1}.

Proposition 2.12. Pour tout o € G,,, on a

e(c™) =¢(o)7 ! = ¢(0).

Démonstration. On a £(Id) = 1. Par ailleurs si 0 € &,,, on a

g(o)e(c™ ) =e(coo™t) =¢(d) = 1.
Ainsi e(0) 7! = e(07 ). Comme (o) € {£1}, on a g(0)? = 1 et donc e(0) = (o)™, O
Corollaire 2.13. Soit 0 € &,,. La parité du nombre de transposition dans une décom-

position de o en produit de transpositions ne dépend que de o.

Démonstration. Soient ¢ = 71 0--- 07, et 0 = 7] 0 --- o 7, deux décomposition de o
en produit de transposition. Comme &(7;) = €(7}) = —1 pour tous i et j, on a £(0) =
(=1)" = (—1)*. On en déduit que r et s ont la méme parité. O

3 Déterminants

3.1 Définition

Définition 3.1. Soit A = (a;;)1<i<n € Mp(K). On appelle déterminant de la matrice
1<j<n

A la quantité

n

det(A) = > (@) [[avyi = D €(0)ao(1)100(2)2" o) n-

0€G, =1 ce6G,
On utilise également la notation

a1 - Alp
det(A) =
Gp1 - QAnn
Exemple 3.2. Sin =2, ona &y ={Id,(1,2)} et £((1,2)) = —1. Ainsi

a b
d

‘:ad—bc.

On retrouve la notion de déterminant d’une matrice 2 X 2 vue en premieére année.

Sin =3, ona 6= {Id,(12),(23), (13), (123), (132)} et
e(Id) =e((123)) = e((132)) =1, e((12)) =e((23)) = &((13)) = —1.

19



Ainsi

a1l ai2 Q13
az1 G622 G623 = 011022033 — A21012033 — 01,1432023 — (31022013
asz1l G322 G33

+ ag1a32a13 + a3101,2a2 3.

Voici un cas particulierement simple de calcul du déterminant. On dit qu'une matrice
A € My (K) est triangulaire supérieure si a; j = 0 dés que 7 > j. Autrement dit il s’agit
d’une matrice de la forme

a1 ai2 - Aip
0 agsp -+ an
0 - 0 ann

Proposition 3.3. Soit A € M,,(K). Une matrice triangulaire supérieure. Alors

n
det(A) = H am' = a171a2,2 s an,n.
=1

Démonstration. Soit o € &,,. Si o # Id, il existe 1 < i < n tel que o(i) > 7. Comme A
est triangulaire supérieure, on a aq(;); = 0. On en déduit que [[;_; as(;); = 0 des que

o # 1d. On déduit alors la formule de la définition du déterminant. O

On admet également la formule suivante pour le calcul des matrices triangulaires par
blocs.

Proposition 3.4. Si Ay € M, (K), Ay € M;,,_(K) et B € M, p_r(K), alors

Ay B

Onfr,r A2 = det(Al) det(Ag).

Définition 3.5. Si A € M,,,(K), on appelle transposée de A et on note A la matrice
de My n(K) définie par
PA = (aji)1<i<p-
1<y<n

On a alors Y(AB) = 'B'A.
Proposition 3.6. Soit A € M,,(K) une matrice carrée. On a alors det(*A) = det(A).

Démonstration. Soit A = (a; j)1<i<n € My (K). Notons *A = (b; ;)1<i<n. Par définition
1<g<n 1<g<n
de la transposée, on a b; ; = a;; pour 1 < ¢,j < n. Ainsi, par définition du déterminant,

on a donc

n n

det(*A) = Z £(o) Hai,a(i) = Z £(o) l:llarl(i),z‘ = Z 5(0_1) Haa(i),i

ceG, =1 ceG, ceG, =1
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ot la derniére égalité provient du fait que I'application o — o~! est une bijection de &,,
sur &,,. On conclut en remarquant que (c~!) = (o) pour tout o € &,,. O

3.2 Opérations sur les lignes et les colonnes d’un déterminant

Théoreme 3.7. 1) Si on échange deux colonnes d’indices distincts d’une matrice
carrée, on multiplie son déterminant par —1.

2) Si deux colonnes d’indice distincts d’une matrice carrée A sont identiques, alors
det A = 0.

3) On ne change pas le déterminant d’une matrice carrée A en ajoutant d une de
ses colonnes une combinaison linéaire des autres colonnes. Autrement dit si 1 <i<n
et si (A\j)j2i est une famille de scalaires, on a

det(Cy -+ Cp) = det(Cy - Cim1(Ci + > AjCy) -+ Ch).
J#i

Comme la transposition échange les lignes et colonnes d’une matrice et que le déter-
minant ne change pas par transposition, tous les résultats portant sur les colonnes d’un
déterminant ont un analogue sur les lignes. On en déduit donc le résultat suivant.

Théoréme 3.8. Soitn > 1.
1) Si on échange deuz lignes d’indices distincts d’une matrice carrée A € My (K),
on multiplie son déterminant par —1.

2) Une matrice carrée A € My, (K) ayant deux lignes d’indices distincts qui sont
identiques vérifie det A = 0.

3) On ne change pas le déterminant d’une matrice carrée A en ajoutant a une de
ses lignes une combinaison linéaire des autres lignes.

Pour calculer un déterminant, on peut donc commencer par le mettre sous forme
triangulaire supérieure (ou inférieure) en effectuant des opérations élémentaires sur ses
lignes ou ses colonnes et utiliser la formule permettant de calculer le déterminant d’une
matrice triangulaire.

Nous allons & présent démontrer les énoncés ci-dessus.

Proposition 3.9. L’application det est linéaire en chaque colonne. Plus précisément,
étant donmén = 1, ainsi que 1 < j < n et n — 1 vecteurs colonnes

Cl,...,ijl,CjJrl,..-,Cn e K",
alors l'application

K" — K
C det(Cl,...,Cj_l,\g/,Cj+1,...,Cn)
J
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est linéaire, c’est-a-dire

VO,C" € K™, YA€ K, det(Cy,...,Cj_1,C+AC",Cjst, ..., Ch)
= det(Cl, ce 01;1, C, Cj+1, .. ,Cn) + )\det(Cl, R 70]'7170/70‘7'4»17 .. ,Cn)

Démonstration. Fixons C1,...,Cj_1,Cjt1,Cy, n— 1 vecteurs colonnes de K. Soient C'
et C’ deux autres vecteurs colonnes et A € K un scalaire. Il faut prouver que

det(C1Cy - Cj_1(C + XC")Cjy1---Ch)
= det(0102 e O]_lcjcj+1 e Cn) + )\det(Clc'Q e Cj—lc§Cj+1 . On)

Notons donc (a; k)1<i<n les coefficients de C, pour 1 < k < n, (a;)1<i<n les coeflicients
de C' et (a; ;)1<i<n les coefficients de C'. On a donc

det(C1Cy - - - 03;1(0 + )\C,)CjJrl e Cp) = Z 5(0)(aa(j)7j + )\a;(j)’j H Qg (k) k

UEGn k;ﬁj

= > 2(0) [ a0y [T aowy e + A6 5 1T aotwy
o€G, k#j k#i

= > &) [ totmyr + 2 D E(U)air(j)yj 11 aowme
geG, k=1 0€G, k#3

= det(C’ng tee Cj,100j+1 o Cn)

+ Adet(C1Co - Cj_1C'Clgr -+~ Cn). -

Proposition 3.10. 1) Soit A € My(K) une matrice de colonnes Cy,...,Cy. Si
T€G,, ona
det(C’T(l) RN CT(n)) = 6(7’) det(01 cee Cn)

2) Si on échange deuz colonnes distinctes d’une matrice carrée, on multiplie son
déterminant par —1.

3) Si deux colonnes distinctes d’une matrice carrée A sont égales, alors det A = 0.

Démonstration. Prouvons le point 1). Soit A = (a; ;) 1<i<n € My (K) et soit 7 € &, une
1<j<n
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permutation. Notons B la matrice (Cr(1)...Cr(,)). On a alors

det(B) =

(oor—1) ()

3 o e
ZH

- Z (oo Ha(UOT D).

ceS,

—e() Y < E[

o'e6,
= ¢e(1)det(A)

L’avant derniere égalité provient du fait que I'application o — oo ! est une permutation
de G,,. En effet sa réciproque est donnée par o — o o 7.

Prouvons 2). Sii < j et si 7= (i,j), on a e(r) = —1, on déduit donc de 1) que

det(Cy---Cj---Cj---Cp) = —det(Cy---Ci---Cj---Cy).

Prouvons a présent le point 3). Sii < j, et si C; = Cj, on a

det(Cr-+-Ci---Cj--Cp) = —det(Cy---Cj---Ci--- Cy)
=det(Cy - Cj---Ci---Cp)

ot la premiere égalité provient de 1) et la seconde égalité de C; = C;. On a donc bien

det(A) = —det(A) = 0. O
Exemple 3.11.

0 01 1 00

01 0/=—-10 1 0f.

1 00 0 01

Corollaire 3.12. On ne change pas le déterminant d’une matrice carrée A en ajoutant
d une de ses colonnes une combinaison linéaire des autres colonnes. Autrement dit si
1 <i<netsi(\)jz est une famille de scalaires, on a

det(Cy---Cp) = det(Cy - Cim1(Ci + > AjCj) -+ Chn).
J#
Démonstration. En effet on a
det(C1 -+ Cim1(Ci + D A;C)) -+ Cr) =det(Cy---Cy - Cp) Y Ajdet(Cy -+ CiyCj -+ Cy)
J#i J#i
= det(01 ce C’Z-_lC,- cee Cn) ]
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Comme la transposition échange les lignes et colonnes d’une matrice et que le déter-
minant ne change pas par transposition, tous les résultats portant sur les colonnes d’un
déterminant ont un analogue sur les lignes. On en déduit donc le résultat suivant.
Proposition 3.13. Soitn > 1.

1) L’application det : M, (K) est linéaire en chaque ligne.

2) Soit A € M, (K) une matrice de lignes Ly,...,Ly,. SiT € &,, on a

L1y Ly
det : =¢e(r)det | :
LT(n) Ly
3) Si on échange deux lignes d’une matrice carrée A € M, (K), on multiplie son
déterminant par —1.
4) Une matrice carrée A € My, (K) ayant deux lignes égales vérifie det A = 0.
5) On ne change pas le déterminant d’une matrice carrée A en ajoutant d une de
ses lignes une combinaison linéaire des autres lignes.

3.3 Développement d’un déterminant selon une ligne ou une colonne

Si Ae M, (K) et siietjsont deux entiers compris entre 1 et n, on note A4;; €
M,,—1(K) la matrice carrée de taille n — 1 obtenue a partir de A en supprimant dans A
la i-éme ligne et la j-éme colonne.

Théoréme 3.14. Soit n > 1 et soit A € M, (K).
1) Soit 1 <i<n. On a alors

det A = Z(—l)“‘jai,j det A; ;;
j=1

on dit qu’on a développé det A selon la i-ieme ligne.
2) Soit 1 < j <mn. On a alors

n
det A = Z(—l)i—i_jaz"j det AiJ‘;
i=1
on dit qu’on a développé det A selon la j-iéme colonne.

Démonstration. On prouve la formule de développement selon une colonee. La formule
selon une ligne s’en déduit en utilisant le fait que det(*A4) = det(A).

Soit 1 < j < n. La j-eme colonne C; de la matrice A peut s’écrire A = ay je; +---+
apjén OU e1,...,e, désigne les vecteurs colonnes formant la base canonique de K". On
déduit donc de la proposition 3.9 que

det(A) =ay,; det(6’1 - Cj_leleH - Cn) + -t an; det(Cl - Cj_lean+1 - Cn)
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Or en appliquant 3.10 1) avec 7 = (1,2,...,J), on obtient, pour tout 1 < i < n,

det(01 ce Cj_leiCjH N Cn) = 6(7’) det(eZCl NN Cj_leH e Cn)

0 ain -+ aj-1 aij1 - Gig
=1 a1 -+ Gj-1 Qi1 - Gip
0 ap1 **+ Angj—1 Gpj+1 - Gpn
La méme opération de permutation sur les lignes, en utilisant le cycle 7" = (1,2, ...,1),
donne
I a0 a1 Qi1 Qin
0 a1 -+ a1 aij+1 - Gin
/
det(C’1 cen Cj_leiCjH ce Cn) = E(T)é‘(T ) 0 ai—1,1 - Ai—1,5-1 A 5+1 o Ai—1n
0 ai411 "+ Qiy1j-1 Qit1j+1 " Gifln
0 Gn,1 ce an,j—1 An 541 te Gn.n
/ 1 * /
=e(7)e(r) = e(7)e(7") det(A; ;).
Op—11 Aij

Comme 7 est un cycle de longueur j et 7/ un cycle de longueur 4, on a (1) = (—1)7~}
et e(7') = (1)1 donc e(1)e(7") = (—=1)"772 = (=1)"*7. On en déduit la formule
recherchée. O

3.4 Multiplicativité du déterminant

Théoréme 3.15. Soit n > 1 et soient A et B deuzx matrices de My, (K). On a alors

det(AB) = det(A) det(B).

Démonstration. Fixons A = (a; ;) et B = (b; ;) dans M, (K). Notons Ci,...,C,, les
colonnes de B. Rappelons que ’on note eq,...,e, les vecteurs de la base canonique de
K™. On a donc, pour tout 1 < j < n,

n
Cj = Z bi,jei.
=1

Par définition du produit matriciel, les colonnes de AB sont les vecteurs colonnes ACY, ..., AC,.
Pour 1 < 5 < n, on a donc

ACj = Z bz-’jAei.
i=1
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On peut donc calculer le déterminant det(AB) en utilisant la linéarité par rapport a
chaque colonne (proposition 3.9). On a donc

i1=1

det(AB) = det(ACY, ..., AC,) = det (Z biy1Ae1, ACy, . .. ,AC’n>

Z iy 1det(Ae;,, ACy, ..., AC)

=
II

Z i1.1biy 2 det(Ae;, , Ae,, Cs, ..., Cy)

0 M: [ M:

szl’ oo by, ndet(Ae;, ..., Ae;,).

in=1
Calculons alors det(Aez-l, ..., Ae;, ) pour tout valeur de (i1,...,i,) € {1,...,n}".
— Siil existe k < £ tels que i, = iy, alors det(1e;,, ..., Ae;, ) = 0 d’apres la proposition
3.10 3).
— Sinon il existe o € &, tel que (i1,...,i,) = (0(1),...,0(n)) et alors

det(Ae;,, ..., Ae;,) = (o) det(Aey, ..., Aey)
d’apres la proposition 3.9 1).

On a donc

det(AB) = ( Z €(0)bg(1y,1 " -ba(n)7n> det(Aey, ..., Ae,) = det(B) det(Aeq, ..., Aey).

0'6677,
Comme Aey, ..., Ae, sont les colonnes de la matrice A, on a det(Aey, ..., Ae,) = det(A)
ce qui fournit det(AB) = det(B) det(A). O

Théoréme 3.16. Soit A € M, (K). Alors A est inversible si et seulement si det(A) # 0.
De plus, si A est inversible, alors

det(A™1) = det(A)™!
Démonstration. Supposons A inversible. Alors il existe A~ € M,,(K) telle que AA™! =
I,,. On en déduit
1 = det(I,) = det(AA™Y) = det(A) det(A™1).
En particulier det(A) # 0 et det(A™!) = det(A)™!

Réciproquement supposons que A n’est pas inversible. Alors Ker(A) # {Og»}. En

I
particulier il existe un vecteur X = | : [ € K™\ {0gn} tel que AX = Ogn. En notant
Tn
Cy,...,Cy les colonnes de A, on en déduit Y ;" x;C; = Oxn. Ainsi les colonnes de A
sont hees et det(A) = 0. O
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Corollaire 3.17. Considérons un systéme linéaire d n équations et n inconnues

1121+ -+ a1pTn = Y1
. . (3)

Ap 11+ -+ AppTn = Yn

et considérons A = (a;;) € My, (K). Si det(A) # 0, alors le systeme (3) posséde une et

une seule solution. En particulier siy; = --- = yp, = 0, la seule solution du systéme (3)
estxy =x90=---=0.
I Y1
Démonstration. Posons X = [ ¢ | et Y = | 1 |. Le systeme (3) est équivalent a
Tn Yn

Péquation AX =Y. Si det(A) # 0, la matrice A est inversible d’apres le théoreme 3.16.
On en déduit que I'équation AX = Y est équivalente X = A~'Y qui a pour unique
solution A~'Y". De plus, si Y = Oxn, on voit que X = Ogn. O

3.5 Formule de Cramer

Définition 3.18. Soit A € M, (K). La comatrice de A est la matrice Com(A) de
M, (K) définie par o
Com(A) = ((—1)"" det(As;))1<i<n-
1<5<

IIRN

Théoréme 3.19. 1) SiAe M,(K), ona
"Com(A)A = A' Com(A) = det(A)I,

2) Si A e My(K) est inversible, on a

1

t
= ot A Com(A).

Démonstration. Prouvons le point 1). Soit 1 < i < n et soit 1 < j < n. Calculons le
coefficient b; ; de la ligne i et de la colonne j de la matrice B =" Com(A A. 1l s’agit de
I’élément "

Z (—1)k+j det(A;.C,i)ak,j.
k=1

Sii = j, on a, par développement du déterminant de A selon colonne i = j,

Z 1)*H det(Ay jar, ; = det(A).
k=1
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Supposons & présent ¢ # j. Soit C' la matrice obtenue en remplacant la i-iéme colonne de
A par sa j-ieme colonne. En développant le déterminant de C selon sa i-ieme colonne,

on a donc
n

Z DF det(Ay i)ag ; = det(C).

Comme C' a deux colonnes égales (sa i-iéme et sa j-iéme), on a det(C) = 0 et donc
b;; =0 si i # j. Ainsi la matrice B est la matrice det(A)I,, ce qui prouve la formule.

Si A est inversible, on a alors det(A) # 0, et on déduit facilement de la formule 1) la
formule 2). O

Exemple 3.20. Soit A = (CZ Z

1 d -b
A7t = .
ad — be (—c a )

3.6 Déterminant d’une famille de vecteurs

) € GLy(K). Alors

Fixons un entier n > 1. Si vy, ..., v, sont n vecteurs de K™, on appelle déterminant
de la famille (v1,...,v,) et on note note det(vy,...,v,) le déterminant de la matrice
dont les colonnes sont vy, va, ..., vUy.

Théoréme 3.21. Soient vy,...,v, n vecteurs de K™. Alors det(vy,...,v,) # 0 si et
seulement si la famille (v1,...,v,) est une base de K™.

Démonstration. Comme K" est de dimension n, la famille (v1,...,v,) est une base de
K™ si et seulement si elle est libre, c’est-a-dire si et seulement si la matrice (vy,- -+ ,vp)
a un noyau réduit & Oxn, c’est-a-dire si et seulement si la matrice det(vy, -+ ,v,) # 0
d’apres le théoreme 3.16. O

Passons a présent au cas d’un espace vectoriel de dimension finie quelconque.

Définition 3.22. Soit E un K-espace vectoriel. Sin est un entier, une forme n-linéaire
sur E est une application

f:E" — K
telle que, pour tout 1 < i < n et tous vecteurs vy, ..., Vi—1,Vit1,- .-,V dans E, Uappli-
cation de E dans K définie par v — f(v1,...,0i—1,0,Vit1,...,Uy) est linéaire.

Une forme n-linéaire f sur E est dite alternée si, pour tous 1 < ¢ < j < n et tous
vecteurs vi,...,v, dans E, on a f(vi,...,v,) =0 dés que v; = vj.

Soit E un espace vectoriel de dimension finie n > 1 et soit B une base de FE.

28



Définition 3.23. Soit (v1,...,v,) une famille de n vecteurs de E. Le déterminant de
la famille (v1,...,v,) dans la base B est le scalaire

det g(v1, ..., v,) = det([v1]s, [v2]B; - - -, [Un]B)-

Autrement dit detg(vy,...,vy) est le déterminant de la matrice carrée de taille n X n
dont la j-ieme colonne est le vecteur colonne des coordonnées de v; dans la base B.

Remarque 3.24. L’application detg : E™ — K est n-linéaire alternée. C’est une consé-
quence des propositions 3.9 et 3.10 3).

Théoréme 3.25. Soit E un K-espace vectoriel de dimension n. Soit B une base de E.
Soit (vi,...,vn) € E™ une famille de n vecteurs de E. Alors detg(vi,...,v,) # 0 si et
seulement si la famille (v1,...,v,) est une base de E.

Démonstration. Comme E est de dimension n, la famille (v1, ..., v,) est une base de E si
et seulement si elle est libre, ¢’est-a-dire si et seulement si la matrice ([v1]p - - [vy]g) a un
noyau réduit a Ogn, c’est-a-dire si et seulement si la matrice ([v1]g- - [vn]B), c’est-a-dire
si et seulement si det([vi]g-- - [vn]B) # 0. O

Soit Bean la base canonique de K™. Si vq,...,v, sont n vecteurs de K™, on a bien
det(vy,...,v,) =detg.,, (V1,...,0,).

Ce paragraphe n’a pas été traité en cours mais figure dans ces notes comme complément.

Proposition 8.26. Soit f une forme n-linéaire alternée sur un K -espace vectoriel E. Alors si (vi1,...,vn) € EM etsil <i< j < n,
on a
FU1, 0 V1, V5, Vi 1y e V=15 Vi Vgl o5 On) = —F (V1500 oy Vi1, Vi Vil - o5 Vjm 15 Vg Vgl - -5 Un)-

Plus généralement si o € Sy, on a

F(We(1)s -2 Vo(n)) = (@) f(v1, .. vn).

Démonstration. 11 suffit de démontrer la premiére formule. On en déduit la seconde en décomposant o en produit de transposition
et en appliquant plusieurs fois la premiére formule.

Comme f est n-linéaire alternée, on a

0= f(v1, -y Vic1,V; FVj,Vih1, Vi1,V +Vj, V41, Un)
= (V1 Vi1, Vi Vi ls e -y V15V + V5, Vjgls o v s Un)
F (U1, Vi1, VG Vi e V=1, Vit VG Vg1, e Un)
= f(V1se e Vi1, Vi Vi Ly s V1, Vis Vjhds e Un)
fi fi
F F (V1 V1, Vi Vi Ty e V1, Vg VgL e s Un)
F (U1, Vi1, VG Vi1 - V15 Vi Vi1 - - 5 Un)
Ff (V1 V1V Vi T e, V15 Vs Vgl e e Un)
=04 (U1, V15 Vi Vidds e ooy Vjm15Vjs Ujdly -y Un)
+ (U1, V1, VG VT, s V51, Vi Vg1 Un) + 0.
On en déduit le résultat. O

Exemple 3.27. Si E est un K-espace vectoriel de dimension n et si B est une base de E, ’application detg définit une forme
n-linéaire alternée sur E.

Théoréme 3.28. Soit E un K-espace vectoriel de dimension n. Si f et g sont deux formes n-linéaires alternées sur E et si f # 0, il
existe un unique scalaire X € K tel que g = A\ f.
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Démonstration. Fixons B = (e, ..., en) une base de E. Soient v1, ..., vy, des vecteurs de E et décomposons-les dans la base B.
On a donc, pour tout 1 < j < n,

i=1
avec a; j € K. La multilinéarité de f implique alors
n
foi,...,vp) = Z a;qy,1f(eip,v2, ..., vn)

i1=1

n n
= Z Z @iq 10y 2f(€iq;€ip,v3, ..., vn)

i=1 ig=1

n n n
= E E E @iq 1Gig,2 @iy nf(€iq, . i)

ip=lig=1  ip=1

Calculons alors f(eil s+ €4, ) pour tout valeur de (i1,...,in) € {1,..., n}".
— Si il existe k < £ tels que i), = iy, alors f(e,;1 y...s€i,) = 0 puisque f est alternée.
— Sinon il existe o € &, tel que (i1,...,in) = (c(1),...,0(n)) et alors

fleigs---,ei,) =ce(o)f(er,... en).
On a donc

fvi, ..., on) = E e(0)ag(1),1 """ Go(n),n | fle1, .. en).
cEG,

Remarquons que le méme raisonnement nous donne

g(v1,...,vn) = E e(0)ag(1),1 " do(n),n | 9(e1,- .- en)

gEGy
En particulier, comme f # 0, on a nécessairement f(ei,...,en) # 0. Choisissons alors A\ = g(e1,...,en)f(e1,..., en)_l. Les
formules précédentes montrent alors que g(vi,...,vy) = Af(v1,...,vy) et ceci pour toute valeur de (vi,...,vn).
Corollaire 3.29. Soit E un K-espace vectoriel de dimension et soit B = (b1, ..., by ) une base de E. L’application detg est l'unique
application f : E™ — K qui est n-linéaire alternée et telle que f(by,...,bn) = 1.

3.7 Déterminant et volume

Dans cette section on suppose que K = R. Si vq,...,v, sont n vecteurs de K", le
parallélépipéde défini par les vecteurs vy, ..., v, est ’ensemble

P={a;-vi+ag-va+---+an-v,|(a1,...,a,) €[0,1]"}.

Théoréme 3.30. 1) Siu et v sont deuzx vecteurs de R?, l'aire du parallélogramme
défini par u et v vaut |det(u,v)].

2) Siu,v,w sont trois vecteurs de R3, le volume du parallélépipéde défini par u,v,w
vaut |det(u, v, w)]|.

; . . . b
Démonstration. Démontrons la formule 1). Soient u = Z et v = d deux vecteurs

de R? et soit P le parallélogramme défini par u et v. Soit § € [0, 7| 'angle entre u et v,

30



c’est-a-dire I'unique nombre 0 < 6 < 7 tel que u - v = ||ull||v|| cos(f). L’aide de P est
alors égale a ||ul|||v]|sin(f). On a donc

A(P) = [lull[[o][/1 — cos2(8) = y/llul 2[|o]2 —u - v
= /(a2 + )12 + d?) — (ab + cd)? = Va?d? + B2 — 2abed = \/(ad — be)?
= |ad — be| = |det(u,v)].

Prouvons a présent 2). On note uAv le produit vectoriel de u et v. Alors ||[uAv]| est égale a ’aire du parallélogramme défini par
u et v. Comme de plus u A v est orthogonal au plan Vect(u, v), ’aire du parallélépipede P défini par u, v, w est égale & |[(u Av) - w|.
Posons alors, pour tous vy, vs,v3 € [RS, f(vi,v2,v3) = (v1 A vg) - v3. On vérifie que f définit une forme 3-linéaire alternée sur
R3. On déduit du corollaire 3.29 qu’il existe donc un réel c tel que f(v1,v2,v3) = cdet(vy, v2,v3) pour tous vy, ve,v3 € R3. En
évaluant f sur la base canonique (e, e2, e3) et en remarque que e; A eg = e3, on vérifie que ¢ = 1. On peut donc bien conclure

que le volume de P coincide avec |[(u A v) - w| = |det(u, v, w)|. O]

4 Réduction des endomorphismes, premiére partie

On fixe F un K-espace vectoriel.

4.1 Sous-espaces propres et valeurs propres

Définition 4.1. Soit f € L(F) un endomorphisme de E. Un vecteur propre de f est
un vecteur v € E vérifiant les deux propriétés suivantes :

— v est non nul;
— il existe A € K tel que f(v) = Av.

Si v est un vecteur propre de f, le scalaire A tel que f(v) = Av est appelé valeur
propre de f correspondant a v. L’ensemble de toutes les valeurs propres de f est noté
Sp(f), il s’agit du spectre de f.

Exemple 4.2. a) Considérons I’endomorphisme f de R? défini par f <<z>> -
(i) Le vecteur u = G) est vecteur propre de f de valeur propre 1 car u # Ope

1
et f(u) = u. Le vecteur v = 1 est vecteur propre de f de valeur propre —1 car

f(v) = —v. Le vecteur w = 0

b) De fagon générale, les vecteurs propres d’un endomorphisme f qui sont associés
a la valeur propre 0 sont les éléments de Ker(f) ~ {Og}. Ainsi 0 € Sp(f) si et seulement

si Ker(f) # {0g}.

1
) n’est pas un vecteur propre de f car f(w) ¢ Vect(w).
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c¢) Soit E un K-espace vectoriel. Soit A € K. L’endomorphisme f de E défini par
f(w) = X-v pour tout v € E est appelé homothétie de rapport A de E. Un vecteurs v € E
est propre pour f si et seulement si v # 0. On a en effet f(v) = A - v pour tout v € E.
Dans ce cas, f posseéde une unique valeur propre, A, et Sp(f) = {A}.

d) Considérons E = C*°(RR, C) le C-espace vectoriel des fonctions de classe C*>° de R
dans C. Posons, pour h € E, f(h) = h'. Alors f est un endomorphisme de E. Si A € C,
les vecteurs propres de f associés a la valeur propre A sont les éléments h € E tels que
h! = Ah avec h # 0. Ce sont donc les fonctions de la forme t — Ce* avec C' # 0. On a
donc dans ce cas Sp(f) = C.

Définition 4.3. Si f € L(E) et si A € K, on note Ex(f) = Ker(f — Aldg). Si X est
une valeur propre de f, on l'appelle le sous-espace propre de f associé a .

4.2 Analogues matriciels

Définition 4.4. Soit A € M, (K). On appelle vecteur propre de A est un vecteur
colonne X € K™ vérifiant les deux propriétés suivantes :

— X est non nul;
— il existe A € K tel que AX = AX.

Si X est un vecteur propre de A, le scalaire A tel que AX = AX est appelé valeur
propre de A correspondant a X. L’ensemble de toutes les valeurs propres de A est noté
Sp(A), il s’agit du spectre de A. Si A € K, on note E)(A) = Ker(A — AI,). Si A est une
valeur propre de A, on I'appelle le sous-espace propre de A associé a A.

Remarque 4.5. Soit f4 'unique endomorphisme de K™ dont la matrice dans la base
canonique est A. Un vecteur colonne X € K™ est vecteur propre de A si et seulement si
il est vecteur propre de f4. De plus Sp(A) = Sp(fa) et, pour toute valeur propre A de
A, on a Ex\(A) = Ex\(fa).

Proposition 4.6. Soit E un K-espace vectoriel de dimension finie. Soit f € L(FE) un
endomorphisme de E. Soit B une base de E et soit A = Matg(f). Soit A € K. Alors
X € K" est un vecteur propre de de A de valeur propre A si et seulement si X = [v]g
pour v € E un vecteur propre de f de valeur propre X. En particulier Sp(f) = Spg(A).

Démonstration. Soit v € E. On a [f(v)]s = A[v]p. Si X = [v]g, on a donc AX = A\X si
et seulement si f(v) = Av. Comme de plus X # 0 si et seulement si v # 0, on obtient le
résultat. O

Corollaire 4.7. Soit A € M, (K) et soit P € M, (K) inversible. Alors, pour tout
A € K, on a E\(A) = PE\(P"YAP). En particulier dim E\(A) = dim E\(P~1AP) et
Sp(A) = Sp(P~1AP).
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Démonstration. Soit f4 'endomorphisme de K™ défini par f4(X) = AX et soit B la
base de K™ définie par les vecteurs colonnes de P. On a alors P"1AP = Matg(f4). Si
X € K", on a [X]|g = P~1X, de sorte que, par la proposition 4.6, on a

X € Ex(fa) & P7'X € E\(P'AP).

On a donc E)\(P7'AP) = P71E\(fa) = P7'E\(A). Comme X — P~1X est un auto-
morphisme de K™, on a dim Ey(A) = dim Ey(P~'AP). On en déduit que Ey(A) # {Oxn}
si et seulement si E)\(P7!AP) # {Ogn}, c’est-d-dire A € Sp(A) si et seulement si
A € Sp(P7YAP). Ainsi Sp(A) = Sp(P~1AP). O

4.3 Le polyndéme caractéristique

Soit A € M, (K). On note x4 la fonction de K dans K définie par
xa(x) = det(xl, — A).

Théoréme 4.8. Si A € M, (K), la fonction x4 est un polynome unitaire de degré n d
coefficients dans K.

Démonstration. Posons, pour 1 < 14,5 < n,
T—a;; sit=y
bij(x) = { AR
—ajj sii#j
Alors b; j est un polynome de degré 1 en = si ¢ = j et de degré 0 si ¢ # j. Par conséquent,
si 0 € &, le polyndme []7_; by(;),; est de degré Card{1 < j < n|o(j) = j}. Il est donc
de degré n quand o = Id et de degré < n — 1 dans les autres cas. Ainsi

n

xa(z) = [[(z — aii) + Q(x)

i=1
ou @ est un polynoéme de degré < n— 1. Comme [[;";(z — a;,;) est un polynéme unitaire
de degré n, on en conclut que x 4(z) est un polynéme unitaire de degré n. O
Le polynome x 4 est appelé polyndme caractéristique de A.

Définition 4.9. Soient A et B deur matrices de M, (K). On dit que A et B sont
semblables s’il existe une matrice P € M, (K) inversible telle que B = PAP™L.

Proposition 4.10. Si A et B sont deux matrices semblables de My, (K), alors xa(X) =

xB(X).

Démonstration. Soit x € K. On a alors

xB(x) = det(xl, — PAP™Y) = det(P(xI, — A)P™1) = det(P)xa(z) det(P)~! = ya(z).
O

33



Proposition 4.11. Soient A et B deuz matrices de My (K). Soit E un K-espace vec-
toriel de dimension n et soit B une base de E. Les matrices A et B sont semblables
si et seulement si il existe f € L(E) et une base B’ de E tels que A = Matg(f) et
B = Matg (f).

Démonstration. Supposons que A = Matg(f), B = Matg/(f) avec B’ base de E. Soit
P = Pg,_p. Alors on a B = P~'AP par la proposition 1.31, de sorte que A et B sont
semblables. Réciproquement supposons que A et B sont semblables. Soit P € M,,(K)
inversible telle que B = P~'AP. Soit f ’endomorphisme de E tel que Matg(f) = A.
Soit B’ la base de E telle que Pg, g = P. On a alors B = Matg/(f). O

Supposons que E est de dimension finie n. Soient B; et By deux bases de E. La
proposition 4.11 implique que les matrices Matp, (f) et Matg,(f) sont semblables et
donc, d’apres la proposition 4.10,

XMats, (£)(X) = Xatats, (£)(X)-

Le polyndme Xfat;(f) (X) ne dépend donc pas du choix de la base B mais uniquement
de f. On le note donc x¢(X) et on I'appelle le polynome caractéristique de f.

Théoréme 4.12. 1) Soit n > 1 un entier et soit A € My,(K). Alors les valeurs
propres de A sont exactement les racines de x 4(X) dans k.

2) Soit E un K -espace vectoriel de dimension finie et soit f € L(E). Alors les valeurs
propres de f sont exactement les racines de x (X)) dans K.

Démonstration. Soit A € My (K). Un élément A € K est une valeur propre de A si et
seulement si Ey(A) = Ker(A — AI,,) est non réduit a {Oxn}, c’est-a-dire si et seulement
si la matrice A — A\, n’est pas inversible, c’est-a-dire si et seulement si det(Al, — A) = 0.
On en déduit le résultat.

Soit a présent E un K-espace vectoriel de dimension finie et soit A € K. Soit B
une base de E. Alors \ est valeur propre de f si et seulement si A est valeur propre de
Matg(f). Comme X f(X) = XmMaty(f)(X), on déduit le résultat de la premiére partie du
théoreme. O

Corollaire 4.13. Soit A € M, (K). Alors A a au plus n valeurs propres.

Démonstration. En effet le polynéme x 4(X) est de degré n et posseéde donc au plus n
racines dans K. O

Remarque 4.14. Il faut prendre garde au fait que deux matrices peuvent avoir le méme
polynoéme caractéristique sans étre semblables. Considérons par exemple

) oY)

34



Alors x4(X) = xB(X) = (X — 1)2. Par contre A et B ne sont pas semblables. Si c¢’était
le cas, il existerait P € M3(R) telle que

A=PBP '=pPLP l=PP =1
ce qui est faux.
SiPeGLy(K),Ac My(K)etze K,ona
det(zI, — P~'AP) = det(P~ ' (xI, — A)P)
= det(P) ' det(xI, — A)det(P) = det(z1, — A),

donc
Xp-14pP = XA- (4)

Le polynéme caractéristique de deux matrices semblables est identique. La réciproque
est fausse!!! Deux matrices peuvent avoir le méme polynoéme caractéristique sans étre
semblables.

4.4 Influence du corps des scalaires sur les valeurs propres

Lors de I’étude des valeurs propres, le choix du corps des scalaires peut avoir de
I'importance.

Exemple 4.15. Supposons que K = R et E = R2. Soit f € £L(F) défini par

(()-12)

On a xf(X) = X% + 1. Ce polyndme n’a pas de racine dans R de sorte que Sp(f) = 0.

Exemple 4.16. Supposons maintenant que K = C et E = C2. Soit g € £(E) défini par

T I
o(()-(2)
On a y4(X) = X?+1=X —14)(X +1) de sorte que Sp(g) = {i, —i}.

Proposition 4.17. Si K = C, si E est de dimension finie non nulle, alors pour tout
feLE), onaSp(f)#0. Sin>1et Ae M,(C), on a Sp(A) # 0.

Démonstration. D’apres le théoreme 4.8, les polyndmes x; et x4 sont des polynomes de
degrés > 1 a coefficients dans C. Le théoreme fondamental de I'algebre implique qu’ils
possédent au moins une racine dans C. D’apres le théoreme 4.12, f et A possédent au
moins une valeur propre. O
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4.5 Endomorphismes diagonalisables

On suppose, dans cette partie, que E est un K-espace vectoriel de dimension finie.

Définition 4.18. Soit f € L(E) un endomorphisme de E. On apelle base propre de f
une base de E constituée de vecteurs propres de f.

On dit que l’endomorphisme f est diagonalisable s’il posséde une base propre.

Soit n > 1 et soit A € M, (K). On dit que la matrice A est diagonalisable dans K
si ’endomorphisme fa : X — AX de lespace K™ est diagonalisable.

Proposition 4.19. 1) Soit f € L(E) un endomorphisme de E. Une base B de E
est une base propre de f si et seulement si Matg(f) est une matrice diagonale.

2) Soit f € L(E) un endomorphisme de E. L’endomorphisme f est diagonalisable
si et seulement si il existe une base B de E telle que la matrice Matg(f) est diagonale.

3) Soit n > 1 et soit A € My (K). La matrice A est diagonalisable si et seulement
st elle est semblables a une matrice diagonale.

4) Soit f € L(E) un endomorphisme. Soit B est une base de E. L’endomorphisme f
est diagonalisable si et seulement si la matrice Matg(f) est une matrice diagonalisable

de Mdij(K) .

Démonstration. Démontrons le point 1). Soit B = (ey,...,e,) une base de E et soit
A = Matg(f) = (ai,)1<ij<n- Comme les vecteurs e; sont non nuls, ce sont des vecteurs
propres de f si et seulement si a;; = 0 pour ¢ # j, c’est-a-dire si et seulement si la
matrice A est diagonale.

Le point 2) est une conséquence immédiate du 1) et de la définition d’un endomor-
phisme diagonalisable.

Démontrons le point 3). Soit f4 'endomorphisme de K™ défini par f4(X) = AX
pour X € K". Par définition la matrice A est diagonalisable si et seulement si I’endo-
morphisme f4 est diagonalisable. On déduit du point 2) que f4 est diagonalisable si et
seulement si il existe une base B de K™ telle que Matp(fa) est diagonale. On déduit
de la proposition 4.11 qu’il existe une telle base si et seulement si A = Matp_, (f4) est
semblable a une matrice diagonale.

Démontrons le point 4). On déduit de 2) que 'endomorphisme f est diagonalisable
si et seulement si il existe une base B’ de E telle que Matp: (f) est diagonale. On déduit
alors de la proposition 4.11 que cette condition est équivalente & cé que Matg(f) soit
semblable & une matrice diagonale, c’est-a-dire a ce que Matp(f) soit diagonalisable
d’apres 3). O

4.6 Valeurs propres et sous-espaces propres d’une matrice diagonali-
sable

On suppose que F est un K-espace vectoriel de dimension finie.
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Théoréme 4.20. Soit A € M, (K) une matrice diagonalisable. 1l existe alors une ma-
trice inversible P € M, (K) et une matrice diagonale D € M, (K) telles que A =
PDP~L. De plus Sp(A) est l’ensemble des entrées diagonales de D et, pour A € Sp(A),
dim F\(A) est le nombre d’occurences de \ sur la diagonale de D.

Démonstration. L’existence de P et D est une conséquence de la proposition 4.19 3).
Comme Sp(A) = Sp(PDP~!) = Sp(D) et dim Ey(A) = dim Ey(D) d’aprés le corollaire
4.7, on est ramené a déterminer Sp(D) et dim E\(D). Soient (dy,...,d,) les entrées
diagonales de D (c’est-a-dire que d; = a;; si D = (a;)). Alors xp(X) = [[i=1(X — dy)
donc Sp(D) = {di,...,dn}. Soit A € {di,...,d,} et calculons la dimension de E\(D).
z1
Un vecteurs X = | : | est dans E)\(D) si et seulement si (z1,...,2,) est solution du
dn
systeéme
dlcl?l = )\1‘1 (dl - )\)3?1 =0
dnT, = Az, (dp — Nz, =

0
Ainsi dim Ey (D) est égal au nombre d’indices 1 < ¢ < n tels que d; = A, c’est-a-dire au
nombre d’occurences de A sur la diagonale de D. O

4.7 Indépendance linéaire des vecteurs propres

Théoréme 4.21. Soit f € L(E) un endomorphisme de E. Soit (vi,...,v,) une famille
de vecteurs de E. On suppose que chaque v; est un vecteur propre de f de valeur propre
associée A;. Si l’on suppose que les valeurs X, ..., A, sont deux d deux distinctes, ce qui
signifie i # X\; dés que i # j, alors la famille (v1,...,vy) est une famille libre.

Démonstration. On démontre le résultat par récurrence sur n > 1. Le cas n = 1 est
une conséquence directe du fait qu’un vecteur propre est non nul et engendre donc une
famille libre (a un élément). Supposons le résultat démontré au rang n et montrons-le au
rang n + 1. Soit (v1,...,vp4+1) une famille de vecteurs propres telle que v; est de valeur
propre A; pour 1 < ¢ < n+1et que \; # \j dés que 7 # j. Supposons qu’il existe des
scalaires z1,...,xn41 tels que z1v1 + - - - Tp11Upt1 = Op et montrons que 1 = -+ - Tpy1.
En appliquant f a 'égalité xqv1 + - - - xp419n4+1 = Op et en multipliant cette égalité par
An+1, on obtient

T1A101 + Tadovy + -+ + 1 Apr1Un+1 = O
T1An4101 + 2 102 + -+ + Tyt 1 An+10n+1 = Op.

En soustrayant ces deux égalité, on obtient
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L’hypothese de récurrence implique alors que z;(A;j — A\p4+1) = 0 pour tout 1 < i < n.
Comme \; # Apy1 pour 1 <4 < n, on en déduit que z; = 0 pour 1 < i < n. On a alors
Tn+1Vn+1 = O et, puisque v,41 # O, on a également x,4+1 = 0. ]

Corollaire 4.22. Soit E un K-espace vectoriel et soit f € L(E) un endomorphisme

de E. Soient \1,...,\, des valeurs propres de f deux d deux distinctes. Alors les sous-
espaces Ex,(f),...,Ex,(f) sont en somme directe.

Démonstration. Il faut prouver que si iy < --- < i, sont des éléments de {1,...,n} et
v1,...,v, des vecteurs non nuls tels que v; € E,\Z.j (f), alors v1 + -+ + v, # 0g. Or les
vecteurs vq, ..., v, sont des vecteurs propres associés a des valeurs propres deux a deux
distinctes. On déduit donc du théoréme précédent que la famille (vq,...,v,) est libre et
donc que vy + - + v, # 0g. O
Corollaire 4.23. 1) Soit E un K-espace vectoriel de dimension finie et soit f €
L(E). Alors

> dimEy(f) < dimE.
AESp(f)

2) Soit n > 1 un entier et soit A € M, (K). Alors

Z dim E)(A) < n.
AESP(A)

Démonstration. 11 suffit de démontrer le premier point. Comme les sous-espaces Ey(f)
sont en somme directe, on a

Y. EN= D B\

AESP(f) AESP(f)
et donc
dim( > E,\(f)) = dim E)(f).
XESP(f) AESP(f)
Comme > ycgp(s) Ea(f) est un sous-espace de E, on en déduit le résultat. O

4.8 Premier critere de diagonalisation

Théoréme 4.24. 1) Soit E un K-espace vectoriel de dimension finie et soit f €
L(E). Alors les assertions suivantes sont équivalentes

(i) Uendomorphisme f est diagonalisable ;
(it) on a Yoxesp(p) EA(f) = E;

(iii) on a @xresp(r) E(f) = E;

(i) on a P yegp(p) dim Ex(f) = dim E;
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(v) on a Y yegp(p) dim Ex(f) > dim E.
2) Soit n > 1 un entier et soit A € My(K). Alors les assertions suivantes sont

équivalentes
(i) la matrice A est diagonalisable ;
(6) on a Pzespia) Ea(4) = K" ;
(iii) on a @resp(a) Ex(A) = K™ ;
(i) on a3 yegpa) dim Ex(A) =n;
(v) on a P yegp(ay dim Ex(A4) = n.

Démonstration. On démontre uniquement le point 1), le point 2) s’en déduisant im-
médiatement. Comme les sous-espaces propres sont en somme directe, les points (ii) et
(iil) sont équivalents. De méme I'inégalité }°\cqp(p) dim Ex(f) < dim E' montre que les
points (iv) et (v) sont équivalents. De plus il est clair que les points (iii) et (iv) sont
équivalents. Il reste donc & prouver que (i) et (ii) sont équivalents. Supposons donc que
f est diagonalisable. Il existe donc une base propre (vi,...,v,) de f. Chaque v; est un
vecteur propre et appartient donc a un sous-espace propre Ey,(f). On a donc

n
E = Vect(vy,...,v,) C ZEM(f) Z E\(f) C E.
i=1 A€Sp(f)
On en déduit Iégalité (ii). Réciproquement supposons que E = 37\ cq,r) Ea(f)- Il existe
alors une famille génératrice de E constituée de vecteurs propres. On peut extraire une
base de E de cette famille pour obtenir une base propre. Ainsi f est diagonalisable. [

Corollaire 4.25. 1) Soit E un K-espace vectoriel de dimension finie et soit f €
L(E). Alors si Card(Sp(f)) = dim E, l’endomorphisme f est diagonalisable.

2) Soit n = 1 un entier et soit A € My(K). Si Card(Sp(4)) = n, alors A est
diagonalisable.

Démonstration. Nous prouvons uniquement le premier point. Si A € Sp(f), alors E\(f) #
{0g} et donc dim E)\(f) > 1. On a donc

Z dim E)(f) > Card(Sp(f)) = dim E
AESp(f)

de sorte que f est diagonalisable. O

Comme Sp( f) est I’ensemble des racines du polynoéme caractéristique x ¢(X'), on peut
reformuler ce corollaire sous la forme suivante.

Corollaire 4.26. 1) Soit E un K-espace vectoriel de dimension finie et soit f €
L(E). Si le polynome caractéristique de f est scindé a racines simples, alors ’endomor-
phisme f est diagonalisable.

2) Soit n > 1 un entier et soit A € My, (K). Si le polynéme caractéristique de A est
scindé a racines simples, alors A est diagonalisable.
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5 Quelques applications des matrices diagonalisables

5.1 Puissances des matrices diagonalisables

Soit K un corps égal & Q, R ou C. Soit n > 1 un entier et soit A € M,,(K).

Supposons a présent que A est diagonalisable. Il existe alors une matrice inversible
P € M, (K) et une matrice diagonalisable D € M,,(K) telles que A = PDP~!. Notons

ALy« .., Ap les entrées diagonales de D, de sorte que
M 0 - 0
D= (_) Az
()
0 -+ 0 M\,

Proposition 5.1. Pour tout entier k > 0, on a

Moo 0

Ak —p| Y A5 p!
SR |
0 --- 0 M

De plus A est inversible si et seulement si \; # 0 pour tout 1 < i < n, et dans ce cas

A0 -0
At—pl| Y Ay p1
: . .0
0 - 0 Mt

Démonstration. Prouvons par récurrence sur k > 0 que A¥ = PDFp~1,
Si k=0, ona A% = I,, par convention et \Y = 1 pour tout 1 < i < n de sorte que
I'on a bien I,, = PI, P~

Supposons le résultat prouvé pour un entier k > 0 et prouvons le pour £ + 1. On a

alors
AL = A4k = ppP~'PD*P~! = PDI,D*P~! = pDFTI P

On a alors .
M 0 -0 )\lf 0O --- 0
ph_ |0 A T N N DY
.. . 0 L 0
0 0 M\ 0 0 Mk
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Comme Ep(A) = Ker(A), la matrice A est inversible si et seulement si 0 n’est pas
valeur propre de A, c’est-a-dire si et seulement si tous les A; sont non nuls. Supposons
A inversible. Alors 'inverse de D est la matrice

A0 -0
. 0
0 - 0 Mt
et on vérifie que
(PD'PYA=(PD'PYPDP'=PD ', DP ' = PP ! =1, O

5.2 Systemes de suite récurrentes

On fixe K un corps égal a Q, R ou C. Soit A = (a;;)i<ij<n € Mp(K) une ma-
(1) (2)) (n)

trice carrée. On s’intéresse aux suites (uy ')k>0, (Uy )k>0,---, (U )k=0 & valeurs dans
K satisfaisant au systéme récurrent d’ordre 1 couplé :

Uz(cl+)1 = aLlu,(Cl) +toot al,nufj‘)
u,(ﬁr)l = an,lu,(:) +- 4 amnu,(f)
o)
Posons, pour tout £ > 0, X;; = | : |. Le systeme (5) est alors équivalent a
Q)
k

VE>0,  Xpi1 = AXp.

On suppose & présent que A est diagonalisable. On peut alors écrire A = PDP~! avec
P inversible et D diagonale de la forme

A O - 0

D 0 X
. 0
0 0 M

Posons, pour k > 0, Y, = P~'X},. On a alors, pour tout k > 0,

X1 = AXy & PYpy = APY}, & Y, = PTLAPY;,
& Yi = DYy
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Posons, pour tout £ > 0, Y} : |. Le systeéme (5) est donc équivalent au systéme
o
iy = )
Vk > 0, : : (6)
(n)  _ (n)
I:H = Aty

qui est a présent un systéme découplé de n suites récurrentes linéaires d’ordre 1. On en
déduit que

FER
VE>0, {:
v,(gn) = )\flv(()n)
On peut utiliser P~! pour exprimer U(()l), e v[()n) en fonction de u[(]n), .. ,uén) et utiliser
(1) (n)
P pour retrouver les valeurs de uy, /..., u; .

Théoréme 5.2. Soient ay,...,an—1 € K. On suppose que le polynome P(X) = X" —
1 X" — . — a1 X —ag est scindé d racines simples dans K, ¢’est-a-dire de la forme
P(X) =TI (X = )\) avec A1, ..., \, deux a deux distincts dans K. Alors l’ensemble S
des suites (ug)r>0 @ valeurs dans K et satisfaisant la relation

Vk > 0, Uktn = Qp—1Uk4n—1 + -+ + Q1UL+1 + aouy (7)

est l’ensembles des combinaisons linéaires, d coefficients dans K, des suites ()\f);@o pour
1=1,...,n.

Démonstration. Comme )\; est racine de P, on a A} = an,l)\?fl + -+ a1\ + ag. On
en déduit donc que la suite (\F)>0 est dans S. Toute combinaison linéaire de ces suites
est donc également dans S.

Uk
;. . Uk+1 )
Réciproquement soit (ug)r>0 € S. On pose Xy = . . La relation (7) est alors
Uk+n—1
équivalente a X1 = AX} ou A désigne la matrice
0 1 0 0
0 O 1 0
A= .
0 0 0 1
ay ay -+ Ap—2 Gp—1
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Le polynéme caractéristique de la matrice A est égal au polynéme P = X" —qa,_1 X" —
<+ —a1 X —ag. Ainsi Sp(A4) = {A1,..., A\, }. Comme les \; sont deux a deux distincts, on
a Card(Sp(A)) = n et la matrice A est diagonalisable d’aprés le corollaire 4.26. 11 existe
donc une matrice inversible P € M, (K) tel que A = PDP~! avec

A O - 0
0 A
D=|"
R 0
0 -+ 0 M\,
)\]fcl
En posant Y}, = P~1X}, pour tout k£ > 0, on a donc, comme précédemment Y, =
Nee,
pour certaines conditions initiales cy,...,c,. La relation X; = PY}; implique donc que
la suite (uy)k>0 est combinaison linéaire des suites (Af)x=0, . .-, (A¥)k=0- O

5.3 Systemes d’équations différentielles linéaires

On fixe K un corps égal a R ou C. Soit A = (a; ;)1<i j<n € My (K) une matrice carrée.
On se propose de résoudre le probleme suivant. On cherche des fonctions z1,...,x, de
R dans K, de classe C! telles que

zi(t) =aizi(t) + -+ a1, z,(t)
Vit € R, : : ' (8)
n(t) = anizi(t) + -+ appn(t)

2a(t) ()
Résoudre le systéme (8) revient a rechercher les fonctions ¢ — X(¢) de R dans K
dont les coordonnées sont de classe C! et telles que
Vt € R, X'(t) = AX(¢).

On suppose a présent que A est diagonalisable. On peut alors écrire A = PDP~!
avec P inversible et D diagonale de la forme

D = (_) A2
ST
0 0 A\,
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yi(t)
Posons, pour t € R, Y(t) = P71X(t) = . |. Alors les fonctions y; sont des

Yn(t)
fonctions de classe C' de R dans K et on a alors, pour tout ¢ € R,
X'(t) = AX(t) & PY(t) = APY (t) & Y (t) = P 'APY (t)
s Y/'(t) = DY (t)

Le systéeme (8) est donc équivalent au systéme

yi(t) = A ()
Vi € R, : : (9)

yiz (t) = An¥n (t)

qui est & présent un systéme découplé de n équations différentielles liénaires d’ordre 1.
On en déduit que
yi(t) = ety (0)
vVt € R, :

Yn(t) = ekntyn(o)

On peut utiliser P~ pour exprimer y;(0),...,¥,(0) en fonction de z1(0),...,z,(0) et
utiliser P pour expliciter z1, ..., x,.

Théoréme 5.3. Soient ay,...,an—1 € K. On suppose que le polynome P(X) = X" —
1 X" — o — a1 X —ag est scindé a racines simples dans K, ¢’est-d-dire de la forme
P(X) =TI 1(X = )\) avec A1, ..., \, deux a deux distincts dans K. Alors l’ensemble S
des fonctions x de classes C"™ de R dans K satisfaisant I’équation différentielle

vieR,  2(t) = an_12" V@) + - + a1’ (t) + aoz(t) (10)

est Uensembles des combinaisons linéaires, & coefficients dans K, des fonctions t — eMit

pouri=1,...,n.

Démonstration. Comme \; est racine de P, on a A}’ = an,l)\?’fl + -+ a1\ + ag. On
en déduit facilement que la fonction (¢ — e*i!) est dans S. Toute combinaison linéaire
de ces fonctions est donc également dans S.

x(t)

'(t)
Réciproquement soit € S. On pose, pour t € R, X () = . . La relation
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(10) est alors équivalente a X' = AX ou A désigne la matrice

0 1 0 0
0 0 1 0
A= -
o --- 0 0 1
a aip -+ Gp—2 0anp-1

Comme dans la démonstration du théoreme 5.2, le polynéme caractéristique de
la matrice A est égal au polynéme P = X" — a,_1 X" ' — .- — a1 X — ag. Ainsi
Sp(A) = {1, ..., A\ }. Comme les \; sont deux & deux distincts, on a Card(Sp(A)) =n
et la matrice A est diagonalisable d’apres le corollaire 4.26. 11 existe donc une matrice
inversible P € M,,(K) tel que A= PDP~! avec

A O - 0
D 0 Ao

0

0 0 M

En posant Y (t) = P~1X(t) pour tout t € R, on a donc, comme précédemment Y (t) =
eMtey
pour certaines conditions initiales c¢q,...,c¢, € K. La relation X = PY im-
erlcy,
plique donc que la focntion z est combinaison linéaire des fonctions (¢ — e t)icicp. O

6 Sous-espace stables et polynémes d’endomorphismes

6.1 Notion de sous-espace stable

Définition 6.1. Soit E un K-espace vectoriel et soit f € L(E) un endomorphisme de
E. Un sous-espace vectoriel F C E est dit stable par f si f(F) C F.

Proposition 6.2. 5i Fy et F» sont deux sous-espaces vectoriels de E stables par f, alors
Fi N Fy et Fy + Fy le sont aussi.

Exemple 6.3. — Les sous-espaces vectoriels {Og} et E sont toujours stables.

— Soit v € E avec v # 0g. Alors Vect(v) est stable par f si et seulement si v est un
vecteur propre de f.

— Pour tout scalaire A € K, le sous-espace propre E)(f) est stable par f.

Proposition 6.4. Soient f et g deux endomorphismes de E tels que go f = fog. Alors
les sous-espaces Ker(g) et Im(g) sont stables par f.
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Démonstration. Soit v € Ker(g). Alors g(f(v)) = f(g(v)) = f(0g) = O donc f(v) €
Ker(g) et Ker(g) est stable par f.

Soit v € Im(g). Alors il existe w € E tel que v = g(w). On a donc f(v) = f(g(w))
g(f(w)) de sorte que f(v) € Im(g). Ainsi Im(g) est stable par f.

oo

6.2 Endomorphisme induit

Soit F' C E un sous-espace vectoriel stable par f. On note fr I’endomorphisme de
F défini par fr(v) = f(v) pour tout v € F. Notons que fr est bien défini puisque F est
stable par f. On I'appelle I’endomorphisme de F' induit par f.

Remarquons que si f,g € L(FE) et si F est stable par f et g, alors pour tout A € K
le sous-espace F' est stable par f + Ag et par go f, et on a

(f +Xg)F = fr + \gr, (go f)r =gro fr.

Exemple 6.5. Soit E un espace vectoriel de dimension 4 et soit B = (v1,va, v3,v4) une
base de E. Soit f € L(FE) tel que

1 2 3 5
0 7 3 0
Mats(f) =19 1 5 o
41 -3 6 -2

Soit F' = Vect(v1,v4) et soit Bp = (v1,v4) une base de F. Alors F' est stable par f et

Mata, (fr) = (i _52> .

Remarque 6.6. Remarquons de plus que si v est un vecteur propre de fr, alors v est
un vecteur propre de f et que Sp(fr) C Sp(f).

6.3 Matrices triangulaires par blocs

Proposition 6.7. Soit E un K-espace vectoriel de dimension finie. Soit f € L(FE) un
endomorphisme de E. Soit B = (v1,...,v,) une base de E. Soit 1 < r < n et posons
F = Vect(vy,...,v,) et Bp = (v1,...,v,). Alors le sous-espace F' est stable par f si et
seulement si la matrice Matg(f) est de la forme

avec A € M,(K), B € Myp_r(K) et D € M,,_,(K). Dans ce cas on a de plus
A= MatBF(fF).
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Démonstration. Notons a; ; les coefficients de la matrice Matg(f). Alors, pour tout 1 <
7 <n,ona

flug) =" aijuvi.
=1

Ainsi F est stable par f si et seulement si, pour tout 1 < j < r, f(v;) € F, c’est-a-dire
a;j =0 pour r+1<i<n. OJ

Corollaire 6.8. Soit E un K -espace vectoriel de dimension finie et soit f € L(E). Soit
F u sous-espace vectoriel de E. Si I est stable par f, le polynome caractéristique de fr
divise le polynome caractéristique de f :

Xfe (X)) [ xp(X).

Démonstration. Soit (v1,...,v,) une base de F. On peut la compléter en une base B =
(v1,...,v,) de E. On a alors

M = Matp(f) = <§ g)

avec A = Mat(y, . . )(fr). On a alors
XF(X) = X0 (X) = det(X T, — M) = det(XI,— A) det(X I_,—D) = X, (X) det(X I_,—D).

Ainsi 7, (X) divise x¢(X) dans K[X]. O

6.4 Rappels sur les polyndmes

Voir cours de premiere année.

6.5 Polyndmes d’endomorphismes

Soit A € M, (K). Si P(X) =" ,a; X" € K[X], on pose

P(A) = zn: a; A" € M, (K)
=0

avec la convention A° = I, si A # 0, et 02 = 0,,.

11
11

p<A>=<§ ;)*G 1)*((1) ?):@ i)
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Exemple 6.9. Prenons A = < ) et P(X)=X?+ X +1. On a alors



On peut remplacer A par un endomorphisme f d’un espace vectoriel E en remplacant
A"™ par
fr=fo--of.
—_——

n
Par convention, on pose f0 = Idg.

Soit P =37 ya; X" € K[X] un polyndéme. On définit alors
P(f)=> aif' € L(E).
i=0

L’application de K[X] vers L(E) définie par P +— P(f) est linéaire, ce qui signifie
que, pour P et Q dans K[X]| et A € K, on a (P + AQ)(f) = P(f) + AQ(f). On a
également, pour P et ) dans K[X],

(PQ)(f) = P(f) e Q(f) = Q(f) o P(f).

Remarque 6.10. Si F est un espace vectoriel de dimension finie et si B est une base
de FE, on a les relations
P(Matg(f)) = Matpg P(f)

On peut déduire de cette formule que pour P(X) € K[X], A,B € M,(K) avec B
inversible,

P(BAB™') = BP(A)B™L.
Corollaire 6.11. Soit f € L(FE) et soit P(X) € K[X]. Alors Ker(P(f)) et Im(P(f))

sont des sous-espaces vectoriels de E stables par f.

Démonstration. En effet, f commute avec P(f). O

6.6 Polyndmes annulateurs

Soit £ un K-espace vectoriel et soit f € L£L(E) un endomorphisme de E. Un polynéme
P € K[X] est dit annulateur de f si P(f) = 0z (g).

Remarque 6.12. Si P est annulateur de f, alors PQ aussi pour tout @ € K[X]. En
effet, on a alors

(PQ)(f) = P(f) o Q(f) = Og(m) o Q(f) = Oz(m)-

Exemple 6.13. 1) Si A € K, alors (X —\) et X(X — \) sont des polynémes annu-
lateurs de 'endomorphisme Aldg.

2) Si A= <CCL Z) € My(K), alors X2 — (a + d)X + ad — bc est annulateur de A.
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Proposition 6.14. Soit E un K-espace vectoriel de dimension finie. Alors tout endo-
morphsime f de E posséde un polynéme annulateur non nul.

Démonstration. Le K-espace vectoriel £(E) est de dimension n? ou n = dim E. La
famille (Idg, f, f2,. .. ,f”2) est donc liée. 11 existe donc des scalaires ag, a1, ...,a,2 € K
non tous nuls tels que

aldp +ar1f+---+ anzfn2 = OE(E)-

Ainsi f est annulé par le polynéme non nul ag + a1 X + - 4+ a,2 X n?, O

Corollaire 6.15. Soit A € M,,(K). Alors il existe un polynéme non nul P € K[X] tel
que P(A) = 0.

Théoréme 6.16. Soit E un K-espace vectoriel et soit f € L(FE). Soit P € K[X] un
polyndéme annulateur de f, non nul et de degré minimal parms les polynémes annulateurs
non nuls de f. Alors Q € K[X| annule f si et seulement si P divise Q dans K[X].

Démonstration. On a déja vu que si P divise @, alors Q(f) = Oz (g). Montrons 'im-
plication réciproque. Supposons que Q(f) = Oz(g) et effectuons la division euclidienne
de @ par P. On a donc Q = PR+ S avec R, S € K[X] et degS < deg P. Comme
Q(f) = P(f) = 0z(g), on a aussi S(f) = Og(g). Comme deg S < deg P et comme P est
de degré minimal parmi les polyndémes annulateurs non nuls de f, on a nécessairement
S =0, c’est-a-dire que P divise Q. O

Corollaire 6.17. Soit E un K-espace vectoriel de dimension finie. Alors il existe un
unique polynome unitaire annulant f et de degré minimal parmi les polynémes annula-
teurs non nuls de f.

Démonstration. Supposons que P; et P, sont deux tels polynémes. Par minimalité de
leur degré, on a deg P, = deg P». De plus le théoreme implique que P; divise P». On
peut écrire P, = P1Q avec deg @ = 0. Ainsi ) est un polynéme constant de valeur .
Comme P; et P, sont unitaires, A =1 et P = P». ]

Corollaire 6.18. Soit n > 1 un entier et soit A € M, (K). Alors il existe un unique

polynome unitaire annulant A et de degré minimal parmi les polynémes annulateurs non
nuls de A.

Définition 6.19. Soit E un K-espace vectoriel de dimension finie et soit f € L(E).
On appelle polyndme minimal de f ['unique polynéme unitaire annulant f et de degré
minimal parmi les polynémes annulateurs non nuls de f. On le note m¢(X).

Sin>1etsi Ae My(K), on appelle polynéme minimal de A l'unique polyndme
unitaire annulant A et de degré minimal parmi les polynémes annulateurs non nuls de
A. On le note ma(X).
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On a alors, pour tout Q € K[X],

Q(A) = 0 < 74|Q.

Exemple 6.20. 1) Soit A € K non nul et considérons f = AId. Comme f est non
nul, f n’est pas annulé par un polynéme de degré 0. Par contre le polynéme unitaire
X — A, de degré 1 annule f, on a donc m¢(X) =X — .

2) Pour un endomorphisme f, on a deg(ms) = 0 si et seulement si f = Oz(z). En
effet dans ce cas mp = 1.

3) On a deg(my) = 1 si et seulement si f est une homothétie non nulle. Dans ce cas
on a en effet m;(X) = X — A\. Comme 7¢(f) = 0z(g), on a bien f = Mdg.

4) Considérons A =

—_ =

1 1
1 1].Comme A n’est pas une matrice d’homothétie, on a
1 1

[\

deg(71) > 2. Par ailleurs A? = 3A. Ainsi A est annulée par X2—3X et m4(X) = X?—3X.

6.7 Le lemme des noyaux

Soit E un K-espace vectoriel et soit f € L(E).

Théoréme 6.21. Soient P et QQ deux polynomes de K[X] premiers entre eux. On a
alors

Ker((PQ)(f)) = Ker(P(f)) © Ker(Q(f))-

Démonstration. Montrons dans un premier temps que Ker(P(f)) NKer(Q(f)) = {0g}.
Soit v € Ker(P(f)) N Ker(Q(f)). Comme P et ) sont premiers entre eux, le théoreme
de Bezout implique qu’il existe deux polynémes A, B € K[X] tels que AP + BQ = 1.
En appliquant cette égalité a f, on obtient

Idg = A(f) o P(f) + B(f) o Q(f).
On en déduit que
v =A(f)(P(f)(v) + B(f)(Q(f)(v)) = A(f)(0g) + B(f)(0p) = 0%

Ainsi Ker(P(f)) NKer(Q(f)) = {0g}.
Montrons & présent que Ker(P(f)) C Ker((PQ(f))). Soit v € Ker(P(f)). On a alors

(PQ)(N)(v) = (Q(f) o P(f))(v) = QUHP(f)(v)) = Q(f)(0r) = Op-

Ainsi v € Ker((PQ)(f)). On en déduit que Ker(P(f)) C Ker((PQ(f))).
On montre de méme que Ker(Q(f)) C Ker((PQ(f))) de sorte que

Ker(P(f)) + Ker(Q(f)) € Ker((PQ(f))).
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Montrons enfin que Ker((PQ)(f)) C Ker(P(f))+Ker(Q(f)). Soit v € Ker((PQ)(f))-
Rappelons que 'on a

= (AP)(f)(v) + (BQ)(f)(v).

)+
Posons v1 = (BQ)(f)(v) et vo = (AP)(f)(v). Il suffit de montrer que v, € Ker(P(f)) et
vy € Ker(Q(f)) pour conclure que v € Ker(P(f)) + Ker(Q(f)). Or on a

P(f)(v1) = (P(f)o(BQ)(f))(v) = (PBQ)(f)(v) = B(/)(PQ)(f)(v)) = B(f)(0r) = 0%
Ainsi v; € Ker(P(f)). On montre de fagon analogue que vy € Ker(Q(f)). O

Corollaire 6.22. Soient Py,..., P, € K[X] des polynémes premiers entre eux deuz d
deuz. On a alors

Ker((PPy--- Fr)(f)) = Ker(P1(f)) @ - - - @ Ker(Pr(f))-

Démonstration. La démonstration se fait par récurruence sur r en utilisant le théoreme.

O]

6.8 Un critére de diagonalisabilité

Soit E un K-espace vectoriel de dimension finie et soit f € L(E).

Théoréme 6.23. Les assertions suivantes sont équivalentes :

(i) U’endomorphisme f est diagonalisable ;
(ii) ’endomorphisme f est annulé par un polynéome scindé d racines simples ;

(iii) le polynéme minimal de f est scindé a racines simples.

Démonstration. Montrons que (i) implique (ii). Supposons f diagonalisable et posons
Sp(f) = {A1,..., Ar} avec Ay, ..., A\, distinctes. Posons P = [[;_;(X — A;). Montrons
que P(f) = 0z(p). Comme f est diagonlisable, on a

E=E\(f)® - ®Ex(f).

Soit 1 < i < 7. On peut écrire P = Q;(X)(X — A;) avec Qi(X) = [[; (X — Aj). Si
v e Ey(f),ona

P(f)(v) = Qi(/)((f — Aild)(v)) = Qi(f)(0r) = Op.
Plus généralement, pour tout v € E, on peut écrire
v=v1+" "+
avec v; € Ey,(f) pour tout 1 <i<retona

P(f)(v) = P(f)(v1) + -+ P(f)(v;) = 0.
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Comme P(f)(v) = 0p pour tout v € E, on a bien P(f) = 0z(g).

Montrons que (ii) implique (iii). Supposons donc que f est annulé par un polynéme
scindé a racines simples P(X). Alors d’apres le théoréme 6.16, le polynéme minimal
mp(X) de f divise P(X), ce qui implique que 7;(X) est également scindé & racines
simples.

Montrons que (iii) implique (i). En supposant (iii), on peut écrire mp(X) = (X —
A1) -+ (X — A\) avec les \; distincts. En particulier les polyndémes X — \; sont deux a
deux distincts. Comme 7f(f) =0 £(E) le lemme des noyaux implique alors qu’on a

E =Ker(m¢(f)) = éKer(f — Nldg) = éaEAz(f)
i=1 i=1

On en conclut, en utilisant le théoreme 4.24, que f est diagonalisable. O

Corollaire 6.24. Soit A € M, (K) une matrice carrée. Les assertions suivantes sont
équivalentes :

(i) la matrice A est diagonalisable sur K ;

(ii) la matrice A est annulé par un polynéome scindé da racines simples de K[X];

(iii) le polynome minimal de A est scindé da racines simples dans K[X].

Proposition 6.25. Les racines du polynome minimal 7y sont exactement les valeurs
propres de f.

Démonstration. Supposons que A € Sp(f). Il existe alors v € E, v # 0 tel que f(v)
Av. On a alors, pour tout n > 1, f"(v) = \"v et donc, pour tout P € K[X], P(f)(v)
P(A)v. En particulier, comme 7¢(f) = 0z (gy, on a 7 (A\)v = Og et donc, puisque v # O,
mr(A) =0.

Réciproquement supposons que 7¢(A) = 0. On peut écrire 7p(X) = (X — N)Q(X)
avec deg Q = degmy — 1. On a alors

Oy = m7(f) = (f = Mldg) 0 Q(f).

Comme deg@ < degmy et Q # 0, on a Q(f) # Og(g). En particulier 'endomorphisme
f—Aldg n’est pas inversible. On déduit alors du théoréme du rang que E)(f) = Ker(f —
Mdg) # 0. Ainsi A est valeur propre de f. O

Corollaire 6.26. Soit A € M,,(A). Les racines du polynome minimal w4 dans K sont
exactement les valeurs propres de A dans K.

Corollaire 6.27. Soit P un polynéome annulateur de f, alors les valeurs propres de f
sont des racines de P.
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7 Trigonalisation

7.1 Endomorphismes trigonalisables

Soit E un espace vectoriel de dimension finie et soit f € L£(F) un endomorphisme
de E. On dit que f est trigonalisable s’il existe une base B de E telle que Matp(f) est
triangulaire supérieure.

Soit n > 1 un entier et soit A € M, (K) une matrice carrée de taille n. On dit que
A est trigonalisable sur K si et seulement s’il existe une matrice inversible P € M,,(K)
telle que P~'AP est triangulaire supérieure.

Remarque 7.1. Soit B une base de E. Alors f est trigonalisable si et seulement si
Matg(f) est trigonalisable sur K.

Théoréme 7.2. Une matrice A € M, (K) est trigonalisable sur K si et seulement si
son polynome caractéristique est scindé sur K.

Démonstration. Supposons que A est trigonalisable. Il existe alors une matrice inversible
P et une matrice triangulaire supérieure T € M, (K) telle que A = PTP~!. On a
alors x4 = x7. Soit t11,...,tnn les entrées diagonales de T'. Le calcul du polynéme
caractéristique d’une matrice triangulaire supérieure nous donne

n

xa=xr=[[(X —ti,)
=1

ce qui montre que x4 est scindé sur K.

On va montrer par récurrence sur n > 1 que si x4 est scindé sur K, alors A est
trigonalisable sur K. Le cas ou n = 1 est trivial car toute matrice est alors trigonalisable
et tout polynéme de degré 1 est scindé. Supposons le résultat démontré au rang n et soit
A € My 41(K) telle que x4 est scindé. Soit A € K une racine de x4, c’est-a-dire une
valeur propre de A. Soit v € K™ un vecteur propre de A, c’est-a-dire un vecteur non
nul vérifiant Av = A\v. Soit B = (v, v, ...,v,+1) une base de K™ et soit P la matrice
de passage de la base canonique & la base B. La matrice P~ AP est alors une matrice

par blocs de la forme
A B
-1 o
par= (2 1)

avec B € My ,(K) et D € M, ,(K). De plus on a une factorisation de polynéme
caractéristiques x 4(X) = (X — A)xp(X). Ainsi xp est scindé également. Par récurrence
il existe une matrice inversible Q € M, (K) telle que Q' DQ soit triangulaire supérieure.

Posons
! 1 Oln
= € Mpy1(K).
Q (On,l Q > +l( )
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Il s’agit d’une matrice inversible et

(Q/)_IP_IAPQI = (O:I Q—?DQ>

est une matrice triangulaire supérieure. Ainsi A est trigonalisable, ce qui acheve la ré-
currence. 0

Corollaire 7.3. Soit E un K-espace vectoriel de dimension finie et soit f € L(E) un
endomorphisme. Alors f est trigonalisable si et seulement si xy est scindé sur K.

Corollaire 7.4. Si K = C, tout endomorphisme de E est trigonalisable et toute matrice
de M, (C) est trigonalisable sur C.

Démonstration. 11 suffit de remarquer que tout polynoéme de C[X] est scindé sur C
d’apres le théoréeme de d’Alembert—Gauss. O

7.2 Le théoréme de Cayley—Hamilton

Théoréme 7.5. Soit A € M,,(K) une matrice carrée. Alors xa(A) = 0.

Démonstration. Comme M, (Q) C M,(R) C M,(C), il suffit de prouver le théoréeme
lorsque K = C. On suppose donc que K = C. La matrice A est alors trigonalisable, cela
signifie qu’il existe une matrice inversibel P € M,,(C) telle que P~'AP est triangulaire
supérieure. Comme x4 = Xp-14p, il suffit de démontrer par récurrence sur n > 1 que
xA(A) =0 pour A € M,,(K) matrice triangulaire supérieure. Si n = 1, c’est évident car
A = aly et x4 = X —a. Supposons donc le résultat démontré au rang n et démontrons-le
au rang n+1. Soit A € M,,4;(K) triangulaire supérieure. On écrit A comme une matrice

triangulaire par blocs
A B

avec B € My, (K) et D € M, (K) triangulaire supérieure. Par récurrence on a xp(D) =
0. De plus x4 = (X — A)xp. On a alors

xXa(4) = (A = Mnp1)xp(4) = <0n1 D—AIn> ' (X(il(l) 0n n> B <0n1 0;"> -

Corollaire 7.6. Soit E un K -espace vectoriel de dimension finie et soit f € L(E). Alors
Xf(f) = 0z(m)-
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7.3 Endomorphismes nilpotents

Soit E un K-espace vectoriel. Un endomorphisme f de E est dit nilpotent s’il existe
un entier n > 0 tel que f™ = Oz(pg).

De méme si A € M,,(K) est une matrice carrée, on dit que A est nilpotente s’il existe
un entier n > 0 tel que A" = 0.

Remarque 7.7. Soit B une base de E. Il est clair que f est nilpotent si et seulement si
Matg(f) est nilpotente.

Théoréme 7.8. Soit E un K-espace vectoriel de dimension finie et soit f € L(F) un
endomorphisme de E. Les assertions suivantes sont équivalentes :

(i) U’endomorphisme f est nilpotent ;

(ii) le polynome minimal de f est de la forme X™ pour un entier 1 <n < dim FE ;

(iii) il existe une base B de E telle que Matg(f) est triangulaire supérieure avec des
zéros sur la diagonale ;

(iv) le polynome caractéristique de f est égal & X4™P,

Démonstration. Montrons que (i) implique (ii). Si f est nilpotent, il existe un entier m
tel que f™ = O(g). Cela signifie que f est annulé par X™. Ainsi le polynome minimal
de f divise X™. Il doit donc étre de la forme X* avec k < m.

L’implication (ii) implique (i) est évidente car le polynéme minimal est un polynéme
annulateur de f.

Montrons que (i) implique (iii). Soit n = dim E' et soit m l'indice de nilpotence de
f- On note i, = dimKer f” pour 1 < r < m. On construit alors une base de E de la
fagon suivante : on choisit une base B = (ey,...,e; ) de Ker f que 'on compléte en une
base (e1, ..., e;,) de Ker f2 etc. jusqu’a obtenir une base (e1, ..., e,) de E = Ker f™ telle
que, pour tout 1 < j < 7, ¢; € Ker f7 pour i < ij. En particulier, si ij_1 <7 < ¢j, on a
e; € Ker(f7) et donc

f(e) € Ker fi71 = Vect(ey, . . . ,€i;_y) C Vect(er,...,ei-1).

Ainsi Matg(f) est triangulaire supérieure avec des 0 sur la diagonale.

Montrons que (iii) implique (iv). Soit B une base de E telle que Matp(f) est trian-
gulaire supérieure avec des zéros sur la diagonale. Alors

X7 = Xutats() = X

Enfin (iv) implique (i) en utilisant le théoreme de Cayley-Hamilton. O

Corollaire 7.9. Soit E un K-espace vectoriel de dimension finie et soit f € L(E).
Supposons qu’il existe N\ € K et n > 1 tels que (f — AMdg)" = Oggy. Alors f esr
trigonalisable.
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Démonstration. En effet on déduit du théoréeme 7.16 que f — Aldg est nilpotent et donc
trigonalisable. Ainsi f est trigonalisable. O

7.4 Sous-espaces caractéristiques

Soit E un K-espace vectoriel et soit f € L(E). Soit A € K un scalaire. On appelle
sous-espace caractéristiqgue de f associé a A le sous-espace vectoriel

Ef)={veE|[3n>0, (f—Adg)"(v) =05} = | Ker((f — \dg)").
n=0
On remarque que 'on a (f — Aldg)™ = P(f) avec P(X) = (X — \)", ainsi chaque sous-
espace Ker((f — Mdg)™) est stable par f et F\(f) est donc aussi un sous-espace stable
par f.

Proposition 7.10. Si E est de dimension finie, il existe n > 0 tel que F)(f) = Ker((f—
Adg)™).

Démonstration. En effet on a Ker((f — Mdg)") C Ker((f — Mdg)"*!) pour tout n > 0.
La suite de sous-espaces vectoriels (Ker((f — AMdg)™))n>0 est donc croissante, de méme
que la suite d’entiers (dim Ker((f — AIdg)™))n>0- Or cette derniére suite est bornée par
dim E. Elle est donc constante pour n assez grand, ce qui implique que la suite de
sous-espaces (Ker((f — Aldg)™))n>0 est constante pour n assez grand. Ceci implique le
résultat. O

Supposons désormais E est de dimension finie et notons ¢y le plus petit entier tel
que F(f) = Ker((f — Aldg)?).

Nous allons & présent donner une autre caractérisation de ’entier g).

Lemme 7.11. Soit E un espace vectoriel et soit f un endomorphisme de E. Soitn > 0
un entier. Supposons que Ker(f") = Ker(f"*t1). Alors Ker(f™) = Ker(f") pour tout
m = n.

Démonstration. En raisonnant par récurrence, on se rameéne a montrer que Ker(f"+2)

Ker(f™*1). Soit v € Ker(f™n + 2) et posons w = f(v). Alors w € Ker(f"*!) = Ker(f").
Ainsi f*(w) = Og, ce qui implique f"**(v) = 0g et donc v € Ker(f"*1). O
Proposition 7.12. L’entier qy est le plus petit entier tel que Ker((f — Mdg)?) =
Ker((f — AMldg)T1).

Démonstration. On applique simplement le lemme 7.11 & f — Aldg. 0

Proposition 7.13. On a E\(f) # {0g} si et seulement si FX\(f) # {0g}.
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Démonstration. On a Ex(f) C F\(f) pour tout A € K donc E\(f) # {0g} implique
F)\(f) # 0g. Réciproquement supposons E\(f) = {0g}. Alors {0} = Ker(f — Mdg)? =
Ker(f —Aldg) et donc Ker(f —Aldg)™ = {0g} pour tout n > 0, donc F)\(f) = {0g}. O

Ainsi les sous-espaces caractéristiques Fy(f) sont non nuls exactement pour A €

Sp(f).

Proposition 7.14. Les sous-espaces caractéristiques de f sont en somme directe.

Démonstration. Pour tout A € Sp(f), il existe un entier ¢y tel que F)\(f) = Ker((f —
Aldg)?). Comme les polynémes (X — \)? sont premiers entre eux deux-a-deux, on
déduit du lemme des noyaux (corollaire 6.22) que

Ker( [[ (f—AMdp)®)= € Ker((f— Mdg)»).

AESPp(f) AESPp(f)

Ainsi les sous-espaces caractéristiques sont en somme directe. O

7.5 Multiplicité d’une valeur propre

Soit E' un K-espace vectoriel de dimension finie et soit f € £L(E). Si A est une valeur
propre de f, on appelle multiplicité algébrique de X\ la multiplicité de A comme racine
du polynéme caractéristique de f. On la note mg, ()

On appelle multiplicité géométrique de la valeur propre A l'entier dim Ey(f). On la
note mgy(A).

Proposition 7.15. Soit A une valeur propre de f. On a alors
F(f) = Ker((f — Aldg)™™).

Autrement dit mq(X) = qy.

Démonstration. Par définition de Fy(f), on a Ker((f — Mdg)™ ™) c F\(f). Prouvons
I'inclusion réciproque. On peut écrire x f(X) = (X — N)™MNQ(X) avec Q(N\) # 0. Le
corollaire 6.22 et le corollaire 7.6 nous donnent une décomposition £ = Ker(xs(f)) =
Ker((f — Aldg)™ M) & Ker(Q(f)) de sorte que dim E = dim Ker((f — Adg)™™) +
dim Ker(Q(f)). Posons V = F)\(f)NKer(Q(f)). Comme F\(f) et Ker(Q(f)) sont stables
par f, il en est de méme de V. Considérons fy € L(V). On a alors Q(fy) = Oz, ce
qui implique (par le corollaire 6.27) que A n’est pas valeur propre de fy . Ainsi fyy — Aldy
est un endomorphisme inversible de V. Comme par ailleurs il existe un entier N > 1 tel
que (fr,(5) — AIdFA(f))N = 0z(ry(f), on a (fv — AMdy )N = Oz(v), de sorte que fy — Aldy
n’est pas injective. Ceci n’est possible que si V' = {0g}. Ainsi les sous-espaces F(f) et
Ker(Q(f)) sont en somme directe. On a donc

dim F\(f) =< dim(E) — dim Ker(Q(f)) = dim(Ker((f — Aldg)™=M)).
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Comme Ker((f — Mdg)™WM ¢ F\(f), on a dimKer((f — Mdg)™® = dim F)(f) et
donc Ker((f — Mdg)™®™) = Fy\(f). -

Théoréme 7.16. Soit A une valeur propre de f. Alors la multiplicité algébrique de f
est égale a la dimension du sous-espace caractéristique de \. En particulier on a

mg(A) < ma(A).

Démonstration. Soit F' = Fy(f). Il s’agit d’un sous-espace stable par f, soit fr I'endo-
morphisme de F induit par f. Par définition de Fy(f), 'endomorphisme fr est annulé
par (X —X)%. On en déduit que 7 (X) divise (X —A\)?. Ainsi A est 'unique valeur propre
de fr et fr — Mdp est nilpotent. On déduit du théoreme 7.8 que X f.—_x1d, = XdimF ot
donc xf., = (X — N EmF - Soit m la multiplicité algébrique de A. On peut alors écrire
X#(X) = (X =N)"Q(X) avec Q(X) # 0. Ainsi les polynomes (X —\)™ et Q(X) sont pre-
miers entre eux. Le théoréme de Cayley—Hamilton, le lemme des noyaux et la proposition
7.15 impliquent donc que

E = Ker(x;(f)) = Ker((f — Aldg)™) & Ker(Q(f)) = Fa(f) & Ker(Q(f)).

On a donc prouvé que E = F @ S ou S = Ker(Q(f)) est un supplémentaire stable par
f tel que A n’est pas valeur propre de fg. On a donc

Xf = XfrXfs-
Comme X4 (A) # 0 et xf = (X — N4 on en déduit que m = dim F)(f). O
Corollaire 7.17. Soit E un K-espace vectoriel de dimension finie et soit f € L(E). Les

assertions suivantes sont équivalentes.

(i) L’endomorphisme f est diagonalisable.

(71) Le polynome caractéristique x5 est scindé et, pour tout racine X de x¢, la mul-
tiplicité géométrique de \ est égale a sa multiplicité algébrique.

(iit) Le polynome caractéristique x5 est scindé et, pour tout racine A de xf, on a

Ex(f) = Fx(f).
Démonstration. Supposons que x s est scindé. Alors le corollaire 6.22 et le corollaire 7.6

impliquent que @
E= EX(f).

AE€Sp(f)
De plus, comme E\(f) C F)\(f), la multiplicité algébrique de \ est égal & sa multiplicité
géométrique si et seulement si Ex(f) = F)\(f). On en déduit le résultat. O

Théoréme 7.18. L’endomorphisme f est trigonalisable si et seulement si

E= P B

XeSp(f)
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Démonstration. Supposons dans un premier temps que f est trigonalisable. D’apres le
corollaire 7.3, le polynéme x¢(X) est scindé. On peut donc écrire x¢(X) = [ (X —
)\)m“(A. Le lemme des noyaux et le théoreme de Cayley—Hamilton impliquent alors que

E=Ker(xs(f)) = P Ker((f—Aldg)™M)= P Fu(f)

AeSP(f) AeSp(f)

en utilisant la proposition 7.15.

Réciproquement supposons que F est égal a la somme directe des sous-espaces F(f).
La restriction de f & F)(f) est annulée par (X — X)) d’aprés la proposition 7.15. On
déduit du corollaire 7.9 que fr,(y). Alors E est somme directe de sous-espaces stables
par f sur lesquels f est trigonalisable. On en déduit que f est trigonalisable. 0

Corollaire 7.19. L’endomorphisme f est trigonalisable si et seulement si il est annulé
par un polyndme scindé.

Démonstration. Si f est trigonalisable, alors f est annulé par x¢(X) qui est scindé
d’apres le corollaire 7.3. Réciproquement si f est annulé par un polynéme scindé P(X) =
[1,(X — A)™* alors le lemme des noyaux implique que

E = Ker(P(f)) = @ Ker((f — \ldg)™).
A

Ainsi F est égal a la somme de ses sous-espaces caractéristiques et donc f est trigonali-
sable d’apres le théoréme 7.18. ]

7.6 Décomposition de Dunford—Jordan d’un endomorphisme trigona-
lisable

Théoréme 7.20. Soit E un K-espace vectoriel de dimension finie et soit f € L(E)
un endomorphisme trigonalisable. On peut alors décomposer f, de facon unique, sous
la forme f =d+n ou d est un endomorphisme diagonalisable et n un endomorphisme
nilpotent tels que don =nod.

Démonstration. On commence par décomposer F sous la forme

Chaque sous-espace caractéristique F)\(f) est alors stable par f. L’endomorphisme ny =
fEv(r) — Aldp, (5) est alors un endomorphisme nilpotent de F)(f).

Soit v € E. On peut écrire v, de fagon unique, sous la forme v = Z)\GSp(f) V) avec
vy € F)\(f). On pose alors
d(v) = Z AUy.

XeSp(f)
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On vérifie facilement que d est un endomorphisme de E. De plus d est diagonalisable car
tout vecteur de F)\(f) est vecteur propre de d et E est égal la somme des sous-espaces

FX(f)-

On pose alors n = f — d. Montrons que n est nilpotent. Chaque sous-espace Fy(f)
est stable par f et par d, il est donc stable par n et on a ng,(5) = ny. Comme tout
vecteur de E est somme de vecteurs appartenant aux différents F)\(f), il suffit de vérifier
qu’il existe un entier m > 1 tel que, pour tout A € Sp(f) et pour tout v € Fy(f), on a
n™(v) = 0g. Siv € Fx(f), on a donc n(v) = ny(v) et, puisque ny est nilpotent, il existe
my = 1 tel que n\"* = 0z, (). Posons m = max{my | A € Sp(f)}. On a alors, pour
tout A € Sp(f) et pour tout v € F\(f), n™(v) = 0, ce qu'il fallait démontrer.

Vérifions enfin que d on = n o d. Comme tout vecteur de E est somme de vecteurs
appartenant aux différents F)(f), il suffit de vérifier que, pour tout A € Sp(f) et pour
tout v € F\(f), on a

d(n(v)) = n(d(n)).
Or F)\(f) est stable par n, donc n(v) € F)\(f). Ainsi
d(n(v)) = A(n(v)) = n(€v) = n(d(v)).
On admet l'unicité de la décomposition. O

Corollaire 7.21. Soit A € M,,(C). On peut alors décomposer A, de fagon unique, sous
la forme A = B+ N ou B est une matrice diagonalisable et N une matrice nilpotente
telles que BN = NB.

8 Exponentielles de matrices

Dans cette partie on suppose que K = R ou = C.

8.1 Définition

Si A € M, (R), on admet que la série suivante converge dans M, (R) (en un sens qui
sera rendu précis dans une UE ultérieure) :

An
On note exp(A) sa limite. Il s’agit de l’ezponentielle de la matrice A.
Proposition 8.1. Si A, B € M,,(K) sont deur matrices qui commutent, alors

k _ a k i Rk—1
(A+B)F=>" L |A'B
=0

7
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Démonstration. La preuve se fait de facon immédiate par récurrence. ]

Remarque 8.2. L’hypothése de commutation des matrices est indispensable. Par exemple,
sik=2 ona
(A+ B)?>=A?+ AB+ BA + B?

de sorte que la formule est valable si et seulement si AB + BA = 2AB, c’est-a-dire si et
seulement si AB = BA.

Proposition 8.3. Si A, B € M, (K) sont deur matrices qui commutent, alors

exp(A + B) = exp(A) exp(B).

Démonstration. Nous en donnons une preuve en admettant que toutes les inversions de
séries sont bien légitimes (les outils permettant de le vérifier sont hors programme).

exp(A) exp(B) = (Z f;:) (Z lj:)

(A+ B)* = exp(A + B). O

Corollaire 8.4. Pour toute matrice A € M, (K), la matrice exp(A) est une matrice
inversible, d’inverse exp(—A).

Proposition 8.5. Si A € M, (K) et si P € My (K) est inversible, alors

exp(PAP™Y) = Pexp(A)P~L.

Démonstration.

(une justification rigoureuse de la derniére étape est hors programme). O
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Supposons a présent que la matrice A € M, (A) est trigonalisable. On peut donc
I’écrire sous la forme A = B + N avec B diagonalisable et N nilpotente telles que
BN = NB. On a alors exp(A) = exp(B) exp(V).

La matrice exp(N) est simple & calculer. En effet, si m désigne I'indice de nilpotence
de N, alors
Nm—l

On peut calculer exp(B) de la facon suivante. Comme B est diagonalisable, il existe
une matrice P inversible telle que D = P~!BP est diagonale. On a alors exp(B) =
Pexp(D)P~! et le calcul de exp(D) se fait terme & terme :

A 0 - 0 eM 0 .- 0

0 X -+ 0 0 e ... 0
exp . . . =1 . . .

0 0 M 0 0 e

On peut aussi commencer par décomposer A sous la forme A = PTP~! avec T
triangulaire supérieure et utiliser la formule

exp(A) = Pexp(T)P~ L.

8.2 Application aux équations différentielles linéaires

On suppose toujours que K = R ou K = C. On admet le théoreme suivant.

Théoréme 8.6. Soit A € M, (K). Pour tout Xg € K", il existe un unique n-uplet
(z1,...,2,) d’applications de classe C' de R dans K tel que, pour tout t € R,

21 (1) z1(t) 21(0)
=A ) = Xo.
(1) Tn (1) zn(0)

De plus, on a, pour toutt € R,

xl(t)
= exp(tA)Xp.
Tn(t)

Exemple 8.7. Supposons que A € M3(R) est trigonalisable et non diagonalisable avec
une unique valeur propre A. Il existe alors une matrice inversible P € Ms(R) telle que

-1 (A1
B=P AP—<O NE
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On a alors, pour tout ¢t € R,

exp(tB) = ex tA 0 (0 ) _ M0\ (1 t) _ [eM teM
PURI=SP 0 i )J%Plo o) “\o M) lo 1) 7 o M)
Soit X une application de R dans R? telle que X'(t) = AX(t) pour tout ¢t € R et

X(0) = Xo. Posons Y (t) = P71 X (t) et Yy = P~ X,. Cette application vérifie I'équation
différentielle Y’ (t) = BY (t) de sorte que

A g At At
e te Y1 ey +teys
Y(t) =exp(tB)Yy = = .
( ) p( ) 0 ( 0 6)\t> <y2> ( 6)\ty2 >

9 Un petit complément sur la trace

Soit A = (a;,j)1<i<n € Mp(K). La trace de A est le scalaire
1<j<n

TI'(A) = Zam.
=1

Pour A et B dans M,,(K), on a Tr(AB) = Tr(BA). En particulier si P € GL,(K),
alors
Tr(PAP™Y) = Tr(A).

Théoréme 9.1. Soit A € M, (K) une matrice trigonalisable. On a alors

Tr(A) = Y mag(M)A, det(4) = [ Amae®.
AESp A AESP A
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