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1 Espaces vectoriels et applications linéaires

Dans ce cours, la lettre K désigne l’ensemble Q des nombres rationnels ou l’ensemble
R des nombres réels ou l’ensemble C des nombres complexes.

1.1 Espaces vectoriels

Soit n ∈ N un entier. On note Rn l’ensemble des n-uplets

x1
...

xn

 où x1, . . . , xn sont

des nombres réels. Cet ensemble est muni de deux opérations

— l’addition : si v =

x1
...

xn

 et w =

y1
...

yn

, on pose v + w =

x1 + y1
...

xn + yn

 ;

— la multiplication par un scalaire λ ∈ R : si v =

x1
...

xn

, on pose λ · v =

λx1
...

λxn

.

Ces opérations ont les propriétés suivantes. Notons, pour des raisons de référence dans

la suite, K = R, E = Rn et 0E =

0
...
0

. On vérifie alors les propriétés suivantes.

E × E −→ E
(v, w) 7−→ v + w

K × E −→ E
(λ, v) 7−→ λ · v.

Ces deux lois doivent vérifier les propriétés suivantes
a) La loi + est associative :

∀u, v, w ∈ E, (u + v) + w = u + (v + w).

b) La loi + est commutative :

∀v, w ∈ E, v + w = w + v.
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c) Il existe un unique élément neutre 0E ∈ E pour la loi + :

∀v ∈ E, v + 0E = 0E + v = v.

d) Tout élément v ∈ E possède pour symétrique −v = (−1) · v ∈ E :

v + (−v) = (−v) + v = 0E .

e) La loi · est distributive par rapport aux lois + de E et K :

∀λ ∈ K, ∀v, w ∈ E, λ · (v + w) = (λ · v) + (λ · w)
∀λ, µ ∈ K, ∀vE, (λ + µ) · v = (λ · v) + (µ · v).

f) La loi · est compatible à la multiplication dans K :

∀λ, µ ∈ K, ∀v ∈ E, λ · (µ · v) = (λµ) · v, 1 · v = v.

Voici un autre exemple. Rappelons que K désigne Q, R ou C.

Définition 1.1. Soient m ⩾ 1 et n ⩾ 1 deux entiers. Une matrice de taille m × n à
coefficients dans K est un tableau rectangulaire A ayant m lignes et n colonnes contenant
des éléments de A. On note ai,j ses coefficients et on les indexe de la façon suivante

A = (ai,j)1⩽i⩽m
1⩽j⩽n

=


a1,1 a1,2 · · · a1,n

a2,1 a2,2
. . . a2,n

... . . . . . . ...
am,1 am,2 · · · am,n

 .

On note Mm,n(K) l’ensemble des matrices à m lignes et n colonnes. On définit les
opérations suivantes :

— A = (ai,j)1⩽i⩽m
1⩽j⩽n

, B = (bi,j)1⩽i⩽m
1⩽j⩽n

, alors C = A + B où C = (ai,j + bi,j)1⩽i⩽m
1⩽j⩽n

.

— A = (ai,j)1⩽i⩽m
1⩽j⩽n

, λ ∈ K, alors λ · A = (λai,j)1⩽i⩽m
1⩽j⩽n

.

Alors en posant E = Mm,n(K), les propriétés a) à f) sont vérifiées.
Si m = n, une matrice de Mn(K) = Mm,n(K) est appelée matrice carrée de taille

n.

Définition 1.2. On appelle K-espace vectoriel, ou simplement espace vectoriel, un
ensemble E muni de deux opérations

E × E 7−→ E
(u, v) 7−→ u + v

K × E −→ E
(λ, v) 7−→ λ · v

vérifiant les propriétés a) à f).
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Les éléments de l’ensemble E sont appelés vecteurs et les éléments du corps K sont
appelés scalaires. Il faut bien prendre garde au fait que les lois + et · sont définies sur
des ensembles différents. La loi + part de deux vecteurs et produit un vecteur alors que
la loi · part d’un scalaire et d’un vecteur et produit un vecteur. Si λ est un scalaire et
v un vecteur, il faut imaginer le vecteur λ · v comme étant le vecteur v dilaté au moyen
du coefficient λ.

Remarque 1.3. Soit E un K-espace vectoriel. Si v ∈ E, on a 0·v+0·v = (0+0)·v = 0·v.
On en déduit 0 · v = 0E pour tout v ∈ E.

Si (v1, . . . , vn) est une famille d’éléments de E, on appelle combinaison linéaire de
v1, . . . , vn un élément de la forme λ1 · v1 + · · · + λn · vn pour λ1, . . . , λn ∈ K.

1.2 Bases et coordonnées

Soit E un espace vectoriel.

Définition 1.4. On appelle famille génératrice de E une famille finie de vecteurs
(v1, . . . , vn) telle que tout vecteur de E est combinaison linéaire de v1, . . . , vn. On dit
qu’un espace vectoriel est de dimension finie s’il possède une famille génératrice finie.

Exemple 1.5. Si E = Kn, pour 1 ⩽ i ⩽ n, notons ei l’élément



0
...
1
...
0


où 1 apparaît sur

la i-ième ligne. Tout élément de E peut s’écrirex1
...

xn

 = x1 · e1 + x2e2 + · · · + xn · en

donc (e1, . . . , en) est une famille génératrice de Kn.

Dans l’exemple précédent, on a envie de dire que Kn est en fait de dimension n. Pour
définir correctement la notion de dimension, il est nécessaire d’introduire les notions de
familles libres et de bases.

Définition 1.6. Soit (v1, . . . , vn) une famille finie d’éléments de E. On dit que la famille
(v1, . . . , vn) est libre si pour tout n-uplet de scalaires (λ1, . . . , λn) ∈ Kn, on a

λ1 · v1 + · · · + λn · vn = 0E ⇒ λ1 = λ2 = · · · = λn = 0.

Autrement dit, la seule combinaison linéaire nulle des vecteurs v1, . . . , vn est la combi-
naison dont les coefficients sont nuls.
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Exemple 1.7. Si E = Kn, la famille (e1, . . . , en) est libre. En effet, supposons que
λ1 · e1 + · · · + λn · en = 0Rn , alorsλ1

...
λn

 = λ1 · e1 + · · · + λn · en = 0Rn =

0
...
0


donc λ1 = · · · = λn = 0.

Définition 1.8. Une base de E est une famille finie d’éléments de E qui est à la fois
libre et génératrice.

Exemple 1.9. Dans Rn, la famille (e1, . . . , en) est une base appelée base canonique.

Soit B = (v1, . . . , vn) une base de E et soit v ∈ E. Comme la famille B est génératrice,
il existe des scalaires x1, . . . , xn tels que v = x1 · v1 + · · · + xn · vn. Comme de plus la
famille B est libre, les scalaires x1, . . . , xn sont uniquement déterminés par v. On les
appelle les coordonnées de v dans la base B.

Il peut être commode, du point de vue du calcul matriciel, de noter les coordonnées
d’un vecteur sous forme de vecteur colonne. Si E est un espace vectoriel, B une base de
E et v ∈ E, on note

[v]B =

x1
...

xn


le vecteur colonne des coordonnées de v dans la base B.

Exemple 1.10. Notons Bcan = (e1, . . . , en) la base canonique de Kn. Si v =

x1
...

xn

 ∈ Rn,

on a
v = x1 · e1 + · · · xn · en

donc les scalaires x1, . . . , xn sont les coordonnées du vecteur (x1, . . . , xn) dans la base
Bcan. Ainsi on a 

x1
...

xn



Bcan

=

x1
...

xn

 .

Mais attention, il existe bien d’autres bases dans Rn et cette égalité ne vaut que pour la
base canonique !

Exemple 1.11. Soit E = K2. Posons u =
(

1
1

)
et v =

(
1

−1

)
. La famille (u, v) est libre.

En effet, si x · u + y · v = 0K2 , alors(
x + y
x − y

)
=
(

0
0

)
⇔
{

x + y = 0
x − y = 0

⇔
{

x = 0
y = 0.
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De plus si x, y ∈ K, on a (
x
y

)
= x + y

2 · u + x − y

2 · v.

Ainsi la famille (u, v) est génératrice. C’est donc une base de K2. De plus, les coordonnées

du vecteur
(

x
y

)
dans la base (u, v) sont x, y. On a donc

[(
x
y

)]
B

=
(

x+y
2

x−y
2

)
.

Exemple 1.12. Soit m, n ⩾ 1 deux entiers. On note Ei,j ∈ Mm,n(K) la matrice dont
toutes les entrées sont nulles, sauf l’entrée sur la i-ème ligne et j-ème colonne qui vaut
1. Par exemple, si m = 2 et n = 3,

E1,1 =
(

1 0 0
0 0 0

)
, E2,1 =

(
0 0 0
1 0 0

)
, E2,3 =

(
0 0 0
0 0 1

)
.

La famille B = (E1,1, E1,2, E1,3, E2,1, E2,2, E2,3) est une base de M2,3(K) et on a(
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

)
= a1,1 · E1,1 + a1,2 · E1,2 + · · · + a2,3 · E2,3.

Ainsi
[(

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

)]
B

=



a1,1
a1,2
a1,3
a2,1
a2,2
a2,3


.

Exemple 1.13. Soit K[X] l’ensemble des polynômes en une variable à coefficients dans
K. Si n ⩾ 0, on note Kn[X] l’ensemble des polynômes de degré inférieur ou égal à n. La
famille B = (1, X, X2 . . . , Xn) est une base de Kn[X]. De plus on a

[a0 + a1X + · · · + anXn]B =


a0
a1
...

an

 .

Théorème 1.14. Soit E un K-espace vectoriel de dimension finie.
1) Il existe au moins une base de E.
2) Toutes les bases de E ont le même nombre d’éléments.
3) On peut toujours compléter une famille libre de E en une base.
4) On peut toujours extraire une base d’une famille génératrice de E.
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Si E est un K-espace vectoriel de dimension finie. La longueur d’une base de E
est appelée dimension de E. On la note dimK E (ou encore dim E lorsque le corps des
scalaires est défini sans ambiguïté).

Exemple 1.15. L’exemple 1.9 montre que la famille des vecteurs élémentaires (e1, . . . , en)
est une base de Kn, on en conclut que dimK Kn = n.

Exemple 1.16. Dans l’exemple 1.12, on a vu que la famille (E1,1, . . . , E2,3) est une base
d eM2,3(K). Ainsi dimK M2,3(K) = 6. Plus généralement, on a dimK Mm,n(K) = mn.

Exemple 1.17. Dans l’exemple 1.13, on a vu que la base (1, X, X2, . . . , Xn) est une
base du K-espace vectoriel Kn[X]. On en conclut que dimK Kn[X] = n + 1.

1.3 Produit matriciel, changement de base

Rappelons que l’on peut multiplier les matrices.
Si A ∈ Mm,n(K) et B ∈ Mn,p(K), on définit le produit de A avec B par

AB = (ci,j)1⩽i⩽m
1⩽j⩽p

∈ Mm,p(K)

où ci,j =
∑n

k=1 ai,kbk,j .

Proposition 1.18. Si A ∈ Mn,p(K), B ∈ Mp,q(K) et C ∈ Mq,r(K), on a
— A(BC) = (AB)C ;
— A(B + C) = (AB) + (AC) ;
— (A + B)C = (AC) + (BC) ;
— si λ ∈ K, on a λ(AB) = (λA)B = A(λB).

Si n ⩾ 1, on note In la matrice (ai,j)1⩽i⩽n
1⩽j⩽n

de Mn(K) définie par ai,j = 0 si i ̸= j et

ai,j = 1 si i = j. On l’appelle la matrice identité. On vérifie que AIn = A = ImA pour
toute matrice A ∈ Mm,n(K).

Remarque 1.19. Le produit matriciel n’est pas commutatif. Voici un exemple dans
M2(K) : (

0 1
2 3

)(
0 1
0 0

)
̸=
(

0 1
0 0

)(
0 1
2 3

)
.

Définition 1.20. Une matrice A ∈ Mn(K) est dite inversible s’il existe une matrice
B ∈ Mn(K) telle que AB = BA = In. Si elle existe, la matrice B est unique et est
appelée inverse de A. On la note alors A−1.

Si A et B sont inversibles alors AB est aussi inversible et

(AB)−1 = B−1A−1.
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Soit E un K-espace vectoriel de dimension finie n. Soient B et B′ deux bases de E.
La matrice de passage de B à B′ est la matrice carrée de taille n dont la j-ème colonne
est donnée par les coordonnées du j-ème vecteur de B′ dans la base B. Autrement dit,
si B = (v1, . . . , vn) et B′ = (v′1, . . . , v′n), et que

∀1 ⩽ j ⩽ n, v′j =
n∑

i=1
ai,jvi,

alors
P = PB

′
B = PB←B′ = (ai,j)1⩽i⩽n

1⩽j⩽n
=
(
[v′1]B · · · [v′n]B

)
.

Proposition 1.21. Si v ∈ E, on a alors

[v]B = PB←B′ [v]B′ .

Démonstration. En effet, supposons que [v]B =

x1
...

xn

 et [v]B′ =

x′1
...

x′n

, c’est-à-dire

v =
∑n

i=1 xivi =
∑n

j=1 x′jv′j .
Comme v′j =

∑n
i=1 ai,jvi, on en conclut

n∑
i=1

xivi =
n∑

j=1
x′j

n∑
i=1

ai,jvi =
n∑

i=1

 n∑
j=1

ai,jx′j

 vi.

Comme (v1, . . . , vn) est une base de E, on a bien

∀1 ⩽ i ⩽ n, xi =
n∑

j=1
ai,jx′j

c’est-à-dire [v]B = PB←B′ [v]B′ .

Si B, B′ et B′′ sont trois bases de E, on a alors

PB←B′′ = PB←B′PB′←B′′ .

Remarque 1.22. Si B = B′, on a PB←B = In. On a donc, en général

PB←B′PB′←B = PB←B = In.

Ainsi la matrice PB←B′ est inversible et P−1
B←B′ = PB′←B.
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1.4 Applications linéaires

Soient E et F deux espaces vectoriels.

Définition 1.23. Une application linéaire de E dans F est une application f de E dans
F telle que

— ∀v, w, f(v + w) = f(v) + f(w) ;
— ∀λ ∈ K, ∀v ∈ E, f(λ · v) = λ · f(v).

Si E et F sont deux espaces vectoriels, on note L(E, F ) l’ensemble des applications
linéaires de E dans F .

Lorsque E = F , on note L(E) = L(E, E). Un élément de L(E) est appelé endomor-
phisme de E.

Exemple 1.24. L’application f : R2 → R2 définie par f

((
x
y

))
=
(

x + y
y + 2x

)
est

linéaire.

Si f et g sont deux applications linéaires de E dans F , on note f + g l’application
de E dans F définie par

∀v ∈ E, (f + g)(v) = f(v) + g(v).

Il s’agit d’une application linéaire de E dans F . De même si λ ∈ K, on note λ · f
l’application de E dans F définie par

∀v ∈ E, (λ · f)(v) = λ · f(v).

Il s’agit encore d’une application linéaire de E dans F . Muni des opérations + et ·
définies ci-dessus, l’ensemble L(E, F ) est un espace vectoriel.

Soient E et F deux K-espaces vectoriels de dimension finie. On fixe BE = (v1, . . . , vn)
une base de E et BF = (w1, . . . , wm) une base de F . Soit f ∈ L(E, F ) une application
linéaire de E dans F . Pour 1 ⩽ j ⩽ n, on note (ai,j)1⩽i⩽m les coordonnées de f(vj) dans
la base BF . Autrement dit

f(vj) = a1,jw1 + · · · + am,jwm ou encore [f(vj)] =

a1,j
...

am,j

 .

La matrice de taille m × n de termes (ai,j)1⩽i⩽m
1⩽j⩽n

est appelée matrice de f dans les bases

BE et BF . On la note Mat(BE ,BF )(f). Si E = F et BE = BF , on note MatBE
(f) =

Mat(BE ,BE)(f).

Remarque 1.25. D’autres notations sont parfois utilisées pour la matrice Mat(BE ,BF )(f).
On peut la noter MatBE→BF

(f) ou encore MatBF←BE
(f). La dernière notation est par-

ticulièrement bien adaptée aux formules de changement de base et de composition.
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Proposition 1.26. Soit f ∈ L(E, F ). Soit BE une base de E et soit BF une base de F .
Alors, pour tout v ∈ E, on a

[f(v)]BF
= Mat(BE ,BF )(f)[v]BE

.

Remarque 1.27. On note IdE l’endomorphisme identité de l’espace vectoriel E, c’est
l’application linéaire de E dans E définie simplement par IdE(v) = v pour tout v ∈ E.
Si B est une base de E, on vérifie facilement que MatB(IdE) = In. Il faut prendre garde
au fait que si B et B′ sont deux bases de E (potentiellement différentes), alors

Mat(B,B′)(IdE) = PB′←B(= MatB′←B(IdE)).

1.5 Composition des applications linéaires

Soient E, F et G trois espaces vectoriels. Si f ∈ L(E, F ) et g ∈ L(F, G), l’application
composée g ◦ f est une application linéaire de E dans G.

Proposition 1.28. Soient E, F et G trois espaces vectoriels de dimension finie. Soient
BE une base de E, BF une base de F et BG une base de G. Alors si f ∈ L(E, F ) et
g ∈ L(F, G), on a

Mat(BE ,BG)(g ◦ f) = Mat(BF ,BG)(g) Mat(BE ,BF )(f).

Ou encore, en notations alternatives

MatBG←BE
(g ◦ f) = MatBG←BF

(g) MatBF←BE
(f).

Définition 1.29. Une application linéaire f de E dans F est appelée isomorphisme si
elle est bijective.

Si f est un isomorphisme de E dans F son application réciproque f−1 de F dans E est
linéaire et bijective et est donc également un isomorphisme. Rappelons que l’application
réciproque f−1 d’une application bijective est l’unique application telle que f◦f−1 = IdF .
On a alors, de façon équivalente, f−1 ◦ f = IdE .

Si f est un isomorphisme de E dans F , si BE est une base de E et BF une base de
F , on a alors

Mat(BE ,BF )(f) Mat(BF ,BE)(f−1) = MatBF
(IdE) = In.

Ainsi Mat(BE ,BF )(f) est inversible et son inverse est Mat(BF ,BE)(f−1). La réciproque est
vraie également.

Proposition 1.30. Soit BE une base de E et soit BF une base de F . Une application
linéaire f de E dans F est inversible si et seulement si Mat(BE ,BF )(f) est inversible.
Dans ce cas

Mat(BE ,BF )(f)−1 = Mat(BF ,BE)(f−1).
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Proposition 1.31. Soient BE et B′E deux bases de E et BF et B′F deux bases de F . Si
f ∈ L(E, F ), on a

Mat(B′
E ,B′

F )(f) = P−1
BF←B′

F
Mat(BE ,BF )(f)PBE←B′

E
.

En particulier, si E = F , BE = BF et B′E = B′F , on a

MatB′
E

(f) = P−1
BE←B′

E
MatBE

(f)PBE←B′
E

.

Démonstration. On peut en effet écrire

Mat(B′
E ,B′

F )(f) = MatB′
F←B

′
E

(IdF ◦ f ◦ IdE)
= MatB′

F←BF
(IdF ) MatBF←BE

(f) MatBE←B′
E

(IdE)
= PB′

F←BF
MatBF←BE

(f)PBE←B′
E

= P−1
BF←B′

F
Mat(BE ,BF )(f)PBE←B′

E

où l’on a utilisé les résultats de la proposition 1.28 et des remarques 1.27 et 1.22.

1.6 Sous-espaces vectoriels

Définition 1.32. Soit E un K-espace vectoriel. Un sous-K-espace vectoriel de E (ou
simplement sous-espace vectoriel lorsque K est sous-entendu) est une partie F de E
vérifiant

(i) 0E ∈ F ;
(ii) pour tous v et w dans F , on a v + w ∈ F ;
(iii) pour tout v dans F et tout λ dans K, on a λv ∈ F .

Exemple 1.33. Dans R3, l’ensemble des éléments

x1
x2
x3

 vérifiant la relation 2x1 +3x2 +

5x3 = 0 est un sous-espace vectoriel. Il s’agit d’un exemple de sous-espace vectoriel défini
par une équation.

Exemple 1.34. Dans R3 posons v =

1
2
3

 et w =

2
7
3

. Alors l’ensemble

{λv + µw | (λ, µ) ∈ R2} =


 λ + 2µ

2λ + 7µ
3λ + 3µ

 | (λ, µ) ∈ R2


est un sous-espace vectoriel de R3. Il s’agit d’un exemple de sous-espace vectoriel engen-
dré par une famille de vecteurs, ici les vecteurs v et w.
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Plus généralement si v1, . . . , vn ∈ E, on note Vect(v1, . . . , vn) l’ensemble des com-
binaisons linéaires des vecteurs v1, . . . , vn. C’est un sous-espace vectoriel de E appelé
sous-espace engendré par v1, . . . , vn.

Définition 1.35. Si E et F sont deux espaces vectoriels et si f est une application
linéaire de E dans F , on note Im f l’image f(E) de f et Ker f le noyau de f , c’est-à-
dire l’ensemble f−1({0F }) = {x ∈ E | f(x) = 0F }.

On vérifiera à titre d’exercice que Ker f est un sous-espace vectoriel de E et que Im f
est un sous-espace vectoriel de F .

Proposition 1.36. Si f est une application linéaire entre deux espaces vectoriels, alors
f est injective si et seulement si Ker f = {0E}.

Démonstration. Si f est injective, alors Ker f est réduit à {0E}. Réciproquement sup-
posons que Ker f = {0E}. Si x et y sont deux éléments de E tels que f(x) = f(y), alors
f(x) − f(y) = 0F . Par linéarité de f , on a alors f(x − y) = 0F et donc x − y ∈ Ker f .
Ainsi on doit avoir x − y = 0E , c’est-à-dire x = y. On a prouvé que l’application f est
injective.

La dimension de l’espace vectoriel Im f est appelé le rang de f et est notée rg f .
Ainsi on a, par définition, rg f = dim Im f .

Théorème 1.37 (Théorème du rang). Soit E un espace vectoriel de dimension finie et
soit F un espace vectoriel. Si f est une application linéaire de E dans F , alors Im f est
un sous-espace vectoriel de dimension finie de F et on a

dim Im f = dim E − dim Ker f.

Exemple 1.38. Considérons l’application linéaire f : R2 → R2 définie par

f

((
x
y

))
=
(

x + y
2x + y

)
.

Déterminons son noyau. Un élément
(

x
y

)
∈ R2 est dans le noyau de f si et seulement si

il est solution du système d’équations linéaires homogène{
x + y = 0
2x + y = 0

⇔
{

x + y = 0
x = 0

⇔
{

x = 0
y = 0.

Ainsi Ker f = 0 et l’application f est injective. Le théorème du rang (théorème 1.37)
nous donne alors rg f = 2.
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1.7 Sommes de sous-espaces vectoriels

On peut effectuer des opérations sur les sous-espaces vectoriels afin d’en produire de
nouveaux.

Si E est un espace vectoriel et si F1 et F2 sont deux sous-espaces vectoriels, l’inter-
section F1 ∩ F2 est un sous-espace vectoriel de E. L’ensemble

F1 + F2 = {v + w | (v, w) ∈ F1 × F2}

est un sous-espace vectoriel de E appelé somme des sous-espaces F1 et F2. Plus généra-
lement, si F1, . . . , Fn sont des sous-espaces vectoriels, la partie

F1 + · · · + Fn = {v1 + · · · + vn | (v1, . . . , vn) ∈ F1 × · · · × Fn}

est un sous-espace vectoriel de E appelé somme de la famille de sous-espaces (F1, . . . , Fn).
Soit E un K-espace vectoriel, ainsi que F1 et F2 deux sous-espaces vectoriels de E.

Par définition, tout élément de F1 +F2 s’écrit sous la forme v +w avec v ∈ F1 et w ∈ F2.
Cette écriture n’est pas toujours unique. Considérons par exemple le cas de E = R2 avec

F1 = Vect
((

1
0

)
,

(
1
1

))
et F2 = Vect

((
0
1

)
,

(
1
1

))
. Alors on peut écrire

(
2
1

)
=
(

1
0

)
+
(

1
1

)
= −

(
0
1

)
+ 2

(
1
1

)
.

Cependant lorsque cette décomposition est unique, on dit que les sous-espaces F1 et F2
sont en somme directe. Plus généralement, on peut définir la notion de somme directe
pour une famille finie de sous-espaces vectoriels.

Définition 1.39. Soit E un espace vectoriel. Si F1, . . . , Fn sont des sous-espaces vecto-
riels de E, on dit qu’ils sont en somme directe si tout élément v ∈ F1 + · · · + Fn s’écrit
de façon unique sous la forme x = v1 + · · · + vn avec vi ∈ Fi pour 1 ⩽ i ⩽ n. Lorsque tel
est le cas, on note également F1 ⊕ · · · ⊕ Fn le sous-espace vectoriel F1 + · · · + Fn.

Pour vérifier que des sous-espaces vectoriels sont en somme directe, on peut utiliser
le critère suivant.

Proposition 1.40. Les sous-espaces F1 + · · ·+Fn sont en somme directe si et seulement
si pour tout (v1, . . . , vn) ∈ F1 × · · · × Fn, l’égalité v1 + · · · + vn = 0E implique v1 = v2 =
· · · = vn = 0E.

Démonstration. Le sens ⇒ est immédiat, il s’agit juste d’appliquer la définition d’une
somme directe à la décomposition de l’élément 0. Montrons que si l’égalité v1 + · · · +
vn = 0E implique v1 = v2 = · · · = vn = 0 pour tout (v1, . . . , vn) ∈ F1 × · · · × Fn,
alors les sous-espaces F1, . . . , Fn sont en somme directe. Il faut donc prouver que si
(v1, . . . , vn) ∈ F1 × · · · × Fn et si (w1, . . . , wn) ∈ F1 × · · · × Fn vérifient

v1 + · · · + vn = w1 + · · · + wn, (1)
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alors v1 = w1, . . . , vn = wn. Pour cela, réécrivons l’égalité (1) sous la forme

(v1 − w1) + (v2 − w2) + · · · + (vn − wn) = 0E .

L’hypothèse implique alors v1 − w1 = · · · = vn − wn = 0E , c’est-à-dire v1 = w1, . . . , vn =
wn.

Le cas de deux sous-espaces vectoriels est particulier.

Proposition 1.41. Soit E un K-espace vectoriels et soient F1 et F2 deux sous-espaces
vectoriels de E. Alors F1 et F2 sont en somme directe si et seulement si F1 ∩F2 = {0E}.

Démonstration. Supposons tout d’abord que F1 et F2 sont en somme directe. Soit v ∈
F1 ∩ F2. Alors 0E = v − v = 0E − 0E . Comme F1 et F2 sont en somme directe, une
telle décomposition est unique, ainsi v = 0E et donc F1 ∩ F2 = {0E}. Réciproquement
supposons F1 ∩ F2 = 0. Soit (v1, v2) ∈ F1 × F2 tel que v1 + v2 = 0E . On a alors
v1 = −v2 ∈ F2, donc v1 ∈ F1 ∩ F2 et donc v1 = 0E . On en déduit v2 = 0E . Ainsi la
proposition 1.40 implique que F1 et F2 sont en somme directe.

Remarque 1.42. Attention, la proposition 1.41 ne se généralise pas verbatim au cas
deux n sous-espaces vectoriels avec n ⩾ 3. Considérons par exemple le cas de E = R2,

F1 = Vect
((

1
0

))
, F2 = Vect

((
0
1

))
et F3 = Vect

((
1
1

))
. On vérifie que F1 ∩ F2 =

F2 ∩ F3 = F1 ∩ F3 = {0R2} (en particulier F1 ∩ F2 ∩ F3 = {0R2}). Pourtant ces trois
sous-espaces ne sont pas en somme directe puisque(

1
1

)
) = 0R2 + 0R2 +

(
1
1

)
=
(

1
0

)
+
(

0
1

)
+ 0R2 .

Proposition 1.43. Soit E un espace vectoriel et soient F et G deux sous-espaces vec-
toriels de E. Si F et G sont de dimension finie, alors F + G et F ∩ G sont de dimension
finie et on a

dim(F + G) = dim F + dim F − dim F ∩ G.

Proposition 1.44. Soit (F1, . . . , Fn) une famille de sous-espaces vectoriels de dimension
finie de E. Si ces sous-espaces sont en somme directe, alors pour toute base B1 de F1, B2
de F2,. . .,Bn de Fn, la famille B obtenue en concaténant B1, B2,. . .,Bn est une famille
libre de E. Si de plus F1 ⊕ · · · ⊕ Fn = E, alors B est une base de E.

Proposition 1.45. Soient F1, . . . , Fn des sous-espaces vectoriels de dimension finie de
E. Ces sous-espaces sont en somme directe si et seulement si

dim(F1 + · · · + Fn) =
n∑

i=1
dim Fi.

13



1.8 Outils pratiques

Soit A = (ai,j) ∈ Mm,n(K) une matrice. Le système linéaire homogène associé est le
système 

a1,1x1 + · · · + a1,nxn = 0
...

...
am,1x1 + · · · + am,nxn = 0.

La méthode du pivot permet de ramener ce système à un système de la forme

xσ(1) + b1,2xσ(2) + · · · + b1,nxσ(n) = 0
0 + xσ(2) + b2,3xσ(3) + · · · + b2,nxσ(n) = 0
0 + 0 + xσ(3) + · · · = 0
...

...
0 + · · · + 0 + xσ(r) + · · · + br,nxσ(n) = 0

(2)

où xσ(1), . . . , xσ(n) est une permutation des variables x1, . . . , xn et r est un entier 0 ⩽
r ⩽ n. On dit que le système a été mis sous forme échelonnée. Soit 0 ⩽ r ⩽ n l’entier tel
que les variables xσ(1), . . . , xσ(r) apparaissent sur la diagonale du système échelonné. Les
variables xσ(1), . . . , xσ(r) sont appelées les variables principales et xσ(r+1), . . . , xσ(n) les
variables libres. On peut alors extraire les informations suivantes du système mis sous
forme échelonnée :

— le range de la matrice A est r, le nombre de variables principales ;
— on obtient une base du noyau de A en considérant (X1, . . . , Xn−r) où Xi est l’unique

solution du système telle que xσ(r+i) = 1 et xσ(r+j) = 0 pour 1 ⩽ j ⩽ n − r et
j ̸= i ;

— on obtient une base de l’image de A en prenant

(Aeσ(1), . . . , Aeσ(r))

(on rappelle que (e1, . . . , en) désigne la base canonique de Rn).
Ces techniques peuvent s’appliquer au calcul du rang, du noyau et de l’image d’une

application linéaire entre espaces vectoriels de dimension finie. Soient E et F deux es-
paces vectoriels de dimension finie. Soit f ∈ L(R, F ). On fixe BE une base de E et BF

une base de F . Posons A = MatBF←BE
(K). On a alors

— rg(f) = rg(A), où rg(A) peut se déterminer par la méthode du pivot comme ci-
dessus ;

— soit (X1, . . . , Xn−r) une base de Ker(A), on obtient une base de Ker(f) en prenant
(v1, . . . , vn−r) telle que [vi]BE

= Xi ;
— soit (Y1, . . . , Yr) une base de Im(A), on obtient une base de Ker(f) en prenant

(v1, . . . , vr) telle que [vi]BF
= Yi.
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2 Le groupe symétrique

2.1 Définition

Soit X un ensemble. Une permutation de X est une application bijective f : X → X.
L’ensemble des permutations de X est noté S(X). Comme la composition de deux
applications bijectives est encore bijective, si f et g sont deux permutations de X, leur
composée f ◦ g est encore une permutation de X. On a donc définit une opération sur
l’ensemble S(X) : l’opération de composition qui prend deux éléments f et g de S(X)
et en fournit un troisième f ◦ g.

Nous nous intéresserons désormais uniquement au cas où l’ensemble X est l’ensemble
{1, 2, . . . , n} des entiers de 1 à n pour un entier n ⩾ 1.

Définition 2.1. On appelle groupe symétrique et on note Sn l’ensemble permutations
de l’ensemble {1, . . . , n}.

Une façon standard de décrire une permutation σ est de l’écrire sous la forme d’un
tableau à deux lignes, la première ligne étant la liste 1, 2, . . . , n et la deuxième la liste
σ(1), σ(2), . . . , σ(n). Voici un exemple si n = 4. La permutation(

1 2 3 4
2 1 4 3

)

est la permutation 
1 7→ 2
2 7→ 1
3 7→ 4
4 7→ 3

Théorème 2.2. Soit n ⩾ 1 un entier. L’ensemble Sn est fini de cardinal n!.

Démonstration. Il faut compter combien de permutations de l’ensemble fini {1, . . . , n}
sont possibles. Se donner une permutation de {1, . . . , n} revient à se donner n entiers
σ(1), . . . , σ(n) deux à deux distincts et compris entre 1 et n. Il y a donc n choix possibles
pour σ(1). Une fois σ(1) choisi, il n’y a plus que n − 1 choix pour σ(2), puis n − 2 choix
pour σ(3) etc. et une unique possibilité pour σ(n). Au final, il y a donc n(n−1)(n−2) · · · 1
choix possibles de permutations de {1, . . . , n}.

2.2 Exemples d’éléments

Si 1 ⩽ i < j ⩽ n, on note (i, j) l’unique permutation de {1, . . . , n} qui échange i et
j et fixe tous les autres éléments. Une telle permutation s’appelle une transposition.
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Si 2 ⩽ k ⩽ n et si a1, . . . , ak sont des éléments distincts de {1, . . . , n}, on note
(a1, . . . , ak) la permutation σ définie par

σ(a1) = a2

σ(a2) = a3
...

σ(ak) = a1

σ(x) = x si x /∈ {a1, . . . , ak}.

Une telle permutation est appelée un k-cycle.

Remarque 2.3. Les 2-cycles sont exactement les transpositions.

Exemple 2.4.

(2, 3) =
(

1 2 3
1 3 2

)
, (1, 3, 2) =

(
1 2 3
3 1 2

)
.

2.3 Structure de groupe

La loi de composition ◦ de Sn possède une propriété importante : elle est associative.
Ce la signifie que, pour σ1, σ2, σ3 dans Sn, on a

σ1 ◦ (σ2 ◦ σ3) = (σ1 ◦ σ2) ◦ σ3.

Démontrons-le.

Proposition 2.5. La loi de composition de Sn est associative.

Démonstration. Rappelons que par définition, la permutation σ1 ◦ σ2 est la permutation
définie par (σ1◦σ2)(x) = σ1(σ2(x)). Le principe de la démonstration est donc de calculer,
pour tout x ∈ {1, . . . , n}, les éléments (σ1 ◦(σ2 ◦σ3))(x) et ((σ1 ◦σ2)◦σ3)(x) et de vérifier
qu’ils sont égaux. Commençons par

(σ1 ◦ (σ2 ◦ σ3))(x) = σ1((σ2 ◦ σ3)(x)) = σ1(σ2(σ3(x))).

Et finissons par

((σ1 ◦ σ2) ◦ σ3)(x) = (σ1 ◦ σ2)(σ3(x)) = σ1(σ2(σ3(x))).

On a donc (σ1 ◦ (σ2 ◦σ3))(x) = ((σ1 ◦σ2)◦σ3)(x) pour tout x ∈ {1, . . . , n}, ce qui signifie
que σ1 ◦ (σ2 ◦ σ3) = (σ1 ◦ σ2) ◦ σ3.

L’application identité Id{1,...,n} (que nous noterons simplement Id par la suite) est
une permutation de X et vérifie σ ◦ Id = σ = Id◦σ. On dit que c’est un élément neutre
pour la loi ◦.
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Si σ ∈ Sn, l’application réciproque σ−1 est un autre élément de Sn qui vérifie
σ ◦ σ−1 = σ−1 ◦ σ = Id.

Ces observations peuvent se résumer en disant que la paire (Sn, ◦) est un groupe.
Définition 2.6. Un ensemble G muni d’une loi de composition interne ∗ est appelé un
groupe si

(i) la loi ∗ est associative : a ∗ (b ∗ c) = (a ∗ b) ∗ c pour tous a, b, c dans G ;
(ii) la loi x possède un élément neutre e ∈ G : e ∗ a = a ∗ e = a pour tout a ∈ G ;
(iii) tout élément a de G possède un symétrique a−1 pour ∗ : a ∗ a−1 = a−1 ∗ a = e.

Exemple 2.7. La paire (Sn, ◦) est un groupe. Si E est un espace vectoriel, la paire
(E, +) possède également une structure de groupe.

Ainsi tout élément possède un inverse et (S(X), ◦) est un groupe.
Exemple 2.8. Considérons les éléments de S3

σ =
(

1 2 3
2 3 1

)
σ′ =

(
1 2 3
2 1 3

)
et calculons σ ◦ σ′. On a (σ ◦ σ′)(1) = σ(2) = 3 et (σ ◦ σ′)(2) = σ(1) = 2. Comme σ ◦ σ′

est une permutation, on a nécessairement (σ ◦ σ′)(3) = 1 :
1 σ′

7−→ 2 σ7−→ 3
2 7→ 1 7→ 2
3 7→ 3 7→ 1

et donc σ ◦ σ′ =
(

1 2 3
3 2 1

)
. À titre d’exercice, vérifier que σ′σ =

(
1 2 3
1 3 2

)
. On

remarque que σ ◦ σ′ ̸= σ′ ◦ σ, le groupe S3 n’est donc pas commutatif ! L’ordre de
composition est donc très important.

Lorsqu’un groupe (G, ∗) vérifie de plus la propriété a ∗ b = b ∗ a pour tous a, b dans
G, on dit qu’il est commutatif. On vient de voir que le groupe S3 (et par extension le
groupe Sn pour n ⩾ 3) n’est pas commutatif.
Théorème 2.9. Tout élément de Sn s’écrit comme un produit de transpositions.

Démonstration. Pour n ⩾ 2, soit Hn l’hypothèse de récurrence « toute permutation de
{1, . . . , n} est un produit de transpositions ». Alors H2 est vrai car S2 = {Id, (12)}.
Supposons Hn vrai et démontrons Hn+1. Soit σ ∈ Sn+1 et posons

σ′ =
{

σ si σ(n + 1) = n + 1
(n + 1, σ(n + 1)) ◦ σ si σ(n + 1) ̸= n + 1.

Alors σ′(n + 1) = n + 1. La restriction de σ′ à {1, . . . , n} est un élément de Sn et s’écrit
comme un produit de transpositions par Hn. Comme σ = (n + 1, σ(n + 1)) ◦ σ′, on en
conclut que σ est un produit de transpositions.
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2.4 Signature

Si σ ∈ Sn, on pose

ℓ(σ) = Card{(i, j) ∈ {1, . . . , n}2 | i < j et σ(i) > σ(j)}.

Il s’agit du nombre d’inversions de σ. On pose alors ε(σ) = (−1)ℓ(σ). Le nombre ε(σ)
s’appelle la signature de σ.

Théorème 2.10. Pour tous σ, τ ∈ Sn, on a ε(σ◦τ) = ε(σ)ε(τ). De plus on a ε(τ) = −1
si τ est une transposition.

Démonstration. Soient σ et τ deux éléments de Sn. Il faut vérifier que ε(σ◦τ) = ε(σ)ε(τ).
On utilise la formule suivante

ε(σ) =
∏

1⩽i<j⩽n

sgn(σ(j) − σ(i))

pour tout σ ∈ Sn. On a

ε(σ ◦ τ)ε(τ) =
∏

1⩽i<j⩽n

sgn((σ ◦ τ)(j) − (σ ◦ τ)(i))
∏

1⩽i<j⩽n

sgn(τ(j) − τ(i))

=
∏

1⩽i<j⩽n

[sgn(σ ◦ τ)(j)) − (σ ◦ τ)(i)))sgn(τ(j) − τ(i))︸ ︷︷ ︸
symétrique en i et j

]

=
∏

1⩽τ(i)<τ(j)⩽n

[sgn(σ(τ(j)) − σ(τ(i)))sgn(τ(j) − τ(i))]

=
∏

1⩽τ(i)<τ(j)⩽n

sgn(σ(τ(j)) − σ(τ(i)))

=
∏

1⩽i<j⩽n

sgn(σ(j) − σ(i)) = ε(σ).

On a donc ε(σ ◦ τ)ε(τ) = ε(τ). Comme ε(τ) ∈ {±1}, on a ε(τ) = ε(τ)−1 et donc
ε(σ ◦ τ) = ε(σ)ε(τ).

Il reste à vérifier si τ est une transposition, on a ε(τ) = −1. Supposons que τ = (i, j)
avec i < j et soient k < ℓ.

k, ℓ /∈ {i, j} τ(k) = k < ℓ = τ(ℓ)
k = i, ℓ ̸= j τ(k) < τ(ℓ) si ℓ > j, τ(k) > τ(ℓ) si i < ℓ < j

k ̸= i, ℓ = j τ(k) < τ(ℓ) si k < i, τ(k) > τ(ℓ) si i < k < j

(k, ℓ) = (i, j) τ(k) > τ(ℓ).

Ainsi ℓ(τ) = 2(j − i − 1) + 1 et donc ε(τ) = −1.

Si (G, ∗) et (H, ∗′) sont deux groupes. On appelle morphisme d’un groupe G vers un
groupe H une application f : G → H telle que f(g ∗ h) = f(g) ∗′ f(h) pour tous g et h
dans G.
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Exemple 2.11. Considérons le cas où G = (Sn, ◦) et H = ({±1}, ×). Alors la signature
ε est un morphisme du groupe Sn vers le groupe {±1}.

Proposition 2.12. Pour tout σ ∈ Sn, on a

ε(σ−1) = ε(σ)−1 = ε(σ).

Démonstration. On a ε(Id) = 1. Par ailleurs si σ ∈ Sn, on a

ε(σ)ε(σ−1) = ε(σ ◦ σ−1) = ε(Id) = 1.

Ainsi ε(σ)−1 = ε(σ−1). Comme ε(σ) ∈ {±1}, on a ε(σ)2 = 1 et donc ε(σ) = ε(σ)−1.

Corollaire 2.13. Soit σ ∈ Sn. La parité du nombre de transposition dans une décom-
position de σ en produit de transpositions ne dépend que de σ.

Démonstration. Soient σ = τ1 ◦ · · · ◦ τr et σ = τ ′1 ◦ · · · ◦ τ ′s deux décomposition de σ
en produit de transposition. Comme ε(τi) = ε(τ ′j) = −1 pour tous i et j, on a ε(σ) =
(−1)r = (−1)s. On en déduit que r et s ont la même parité.

3 Déterminants

3.1 Définition

Définition 3.1. Soit A = (ai,j)1⩽i⩽n
1⩽j⩽n

∈ Mn(K). On appelle déterminant de la matrice

A la quantité

det(A) =
∑

σ∈Sn

ε(σ)
n∏

i=1
aσ(i),i =

∑
σ∈Sn

ε(σ)aσ(1),1aσ(2),2 · · · aσ(n),n.

On utilise également la notation

det(A) =

∣∣∣∣∣∣∣
a1,1 · · · a1,n

... . . . ...
an,1 · · · an,n

∣∣∣∣∣∣∣ .
Exemple 3.2. Si n = 2, on a S2 = {Id, (1, 2)} et ε((1, 2)) = −1. Ainsi∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad − bc.

On retrouve la notion de déterminant d’une matrice 2 × 2 vue en première année.
Si n = 3, on a S3 = {Id, (12), (23), (13), (123), (132)} et

ε(Id) = ε((123)) = ε((132)) = 1, ε((12)) = ε((23)) = ε((13)) = −1.
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Ainsi∣∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣∣ = a1,1a2,2a3,3 − a2,1a1,2a3,3 − a1,1a3,2a2,3 − a3,1a2,2a1,3

+ a2,1a3,2a1,3 + a3,1a1,2a2,3.

Voici un cas particulièrement simple de calcul du déterminant. On dit qu’une matrice
A ∈ Mn(K) est triangulaire supérieure si ai,j = 0 dès que i > j. Autrement dit il s’agit
d’une matrice de la forme 

a1,1 a1,2 · · · a1,n

0 a2,2 · · · a2,n
... . . . . . . ...
0 · · · 0 an,n


Proposition 3.3. Soit A ∈ Mn(K). Une matrice triangulaire supérieure. Alors

det(A) =
n∏

i=1
ai,i = a1,1a2,2 · · · an,n.

Démonstration. Soit σ ∈ Sn. Si σ ̸= Id, il existe 1 ⩽ i ⩽ n tel que σ(i) > i. Comme A
est triangulaire supérieure, on a aσ(i),i = 0. On en déduit que

∏n
i=1 aσ(i),i = 0 dès que

σ ̸= Id. On déduit alors la formule de la définition du déterminant.

On admet également la formule suivante pour le calcul des matrices triangulaires par
blocs.

Proposition 3.4. Si A1 ∈ Mr(K), A2 ∈ Mn−r(K) et B ∈ Mr,n−r(K), alors∣∣∣∣∣ A1 B
0n−r,r A2

∣∣∣∣∣ = det(A1) det(A2).

Définition 3.5. Si A ∈ Mn,p(K), on appelle transposée de A et on note tA la matrice
de Mp,n(K) définie par

tA = (aj,i)1⩽i⩽p
1⩽j⩽n

.

On a alors t(AB) = tBtA.

Proposition 3.6. Soit A ∈ Mn(K) une matrice carrée. On a alors det(tA) = det(A).

Démonstration. Soit A = (ai,j)1⩽i⩽n
1⩽j⩽n

∈ Mn(K). Notons tA = (bi,j)1⩽i⩽n
1⩽j⩽n

. Par définition

de la transposée, on a bi,j = aj,i pour 1 ⩽ i, j ⩽ n. Ainsi, par définition du déterminant,
on a donc

det(tA) =
∑

σ∈Sn

ε(σ)
n∏

i=1
ai,σ(i) =

∑
σ∈Sn

ε(σ)
n∏

i=1
aσ−1(i),i =

∑
σ∈Sn

ε(σ−1)
n∏

i=1
aσ(i),i
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où la dernière égalité provient du fait que l’application σ 7→ σ−1 est une bijection de Sn

sur Sn. On conclut en remarquant que ε(σ−1) = ε(σ) pour tout σ ∈ Sn.

3.2 Opérations sur les lignes et les colonnes d’un déterminant

Théorème 3.7. 1) Si on échange deux colonnes d’indices distincts d’une matrice
carrée, on multiplie son déterminant par −1.

2) Si deux colonnes d’indice distincts d’une matrice carrée A sont identiques, alors
det A = 0.

3) On ne change pas le déterminant d’une matrice carrée A en ajoutant à une de
ses colonnes une combinaison linéaire des autres colonnes. Autrement dit si 1 ⩽ i ⩽ n
et si (λj)j ̸=i est une famille de scalaires, on a

det(C1 · · · Cn) = det(C1 · · · Ci−1(Ci +
∑
j ̸=i

λjCj) · · · Cn).

Comme la transposition échange les lignes et colonnes d’une matrice et que le déter-
minant ne change pas par transposition, tous les résultats portant sur les colonnes d’un
déterminant ont un analogue sur les lignes. On en déduit donc le résultat suivant.

Théorème 3.8. Soit n ⩾ 1.
1) Si on échange deux lignes d’indices distincts d’une matrice carrée A ∈ Mn(K),

on multiplie son déterminant par −1.
2) Une matrice carrée A ∈ Mn(K) ayant deux lignes d’indices distincts qui sont

identiques vérifie det A = 0.
3) On ne change pas le déterminant d’une matrice carrée A en ajoutant à une de

ses lignes une combinaison linéaire des autres lignes.

Pour calculer un déterminant, on peut donc commencer par le mettre sous forme
triangulaire supérieure (ou inférieure) en effectuant des opérations élémentaires sur ses
lignes ou ses colonnes et utiliser la formule permettant de calculer le déterminant d’une
matrice triangulaire.

Nous allons à présent démontrer les énoncés ci-dessus.

Proposition 3.9. L’application det est linéaire en chaque colonne. Plus précisément,
étant donné n ⩾ 1, ainsi que 1 ⩽ j ⩽ n et n − 1 vecteurs colonnes

C1, . . . , Cj−1, Cj+1, . . . , Cn ∈ Kn,

alors l’application

Kn −→ K
C 7−→ det(C1, . . . , Cj−1, C︸︷︷︸

j

, Cj+1, . . . , Cn)
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est linéaire, c’est-à-dire

∀C, C ′ ∈ Kn, ∀λ ∈ K, det(C1, . . . , Cj−1, C + λC ′, Cj+1, . . . , Cn)
= det(C1, . . . , Cj−1, C, Cj+1, . . . , Cn) + λ det(C1, . . . , Cj−1, C ′, Cj+1, . . . , Cn).

Démonstration. Fixons C1, . . . , Cj−1, Cj+1, Cn, n − 1 vecteurs colonnes de Kn. Soient C
et C ′ deux autres vecteurs colonnes et λ ∈ K un scalaire. Il faut prouver que

det(C1C2 · · · Cj−1(C + λC ′)Cj+1 · · · Cn)
= det(C1C2 · · · Cj−1CjCj+1 · · · Cn) + λ det(C1C2 · · · Cj−1C ′jCj+1 · · · Cn).

Notons donc (ai,k)1⩽i⩽n les coefficients de Ck pour 1 ⩽ k ⩽ n, (ai,j)1⩽i⩽n les coefficients
de C et (a′i,j)1⩽i⩽n les coefficients de C ′. On a donc

det(C1C2 · · · Cj−1(C + λC ′)Cj+1 · · · Cn) =
∑

σ∈Sn

ε(σ)(aσ(j),j + λa′σ(j),j
∏
k ̸=j

aσ(k),k

=
∑

σ∈Sn

ε(σ)

aσ(j),j
∏
k ̸=j

aσ(k),k + λa′σ(j),j
∏
k ̸=j

aσ(k),k


=
∑

σ∈Sn

ε(σ)
n∏

k=1
aσ(k),k + λ

∑
σ∈Sn

ε(σ)a′σ(j),j
∏
k ̸=j

aσ(k),k

= det(C1C2 · · · Cj−1CCj+1 · · · Cn)
+ λ det(C1C2 · · · Cj−1C ′Cj+1 · · · Cn).

Proposition 3.10. 1) Soit A ∈ Mn(K) une matrice de colonnes C1, . . . , Cn. Si
τ ∈ Sn, on a

det(Cτ(1) . . . Cτ(n)) = ε(τ) det(C1 . . . Cn).

2) Si on échange deux colonnes distinctes d’une matrice carrée, on multiplie son
déterminant par −1.

3) Si deux colonnes distinctes d’une matrice carrée A sont égales, alors det A = 0.

Démonstration. Prouvons le point 1). Soit A = (ai,j)1⩽i⩽n
1⩽j⩽n

∈ Mn(K) et soit τ ∈ Sn une
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permutation. Notons B la matrice (Cτ(1) . . . Cτ(n)). On a alors

det(B) =
∑

σ∈Sn

ε(σ)
n∏

j=1
aσ(j),τ(j)

=
∑

σ∈Sn

ε(σ)
n∏

j=1
a(σ◦τ−1)(τ(j)),τ(j)

=
∑

σ∈Sn

ε(σ ◦ τ−1)ε(τ)
n∏

j=1
a(σ◦τ−1)(j),j

= ε(τ)
∑

σ′∈Sn

ε(σ′)
n∏

j=1
aσ′(j),j

= ε(τ) det(A)

L’avant dernière égalité provient du fait que l’application σ 7→ σ◦τ−1 est une permutation
de Sn. En effet sa réciproque est donnée par σ 7→ σ ◦ τ .

Prouvons 2). Si i < j et si τ = (i, j), on a ε(τ) = −1, on déduit donc de 1) que

det(C1 · · · Cj · · · Cj · · · Cn) = − det(C1 · · · Ci · · · Cj · · · Cn).

Prouvons à présent le point 3). Si i < j, et si Ci = Cj , on a

det(C1 · · · Ci · · · Cj · · · Cn) = − det(C1 · · · Cj · · · Ci · · · Cn)
= det(C1 · · · Cj · · · Ci · · · Cn)

où la première égalité provient de 1) et la seconde égalité de Ci = Cj . On a donc bien

det(A) = − det(A) = 0.

Exemple 3.11. ∣∣∣∣∣∣∣
0 0 1
0 1 0
1 0 0

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣ .
Corollaire 3.12. On ne change pas le déterminant d’une matrice carrée A en ajoutant
à une de ses colonnes une combinaison linéaire des autres colonnes. Autrement dit si
1 ⩽ i ⩽ n et si (λj)j ̸=i est une famille de scalaires, on a

det(C1 · · · Cn) = det(C1 · · · Ci−1(Ci +
∑
j ̸=i

λjCj) · · · Cn).

Démonstration. En effet on a

det(C1 · · · Ci−1(Ci +
∑
j ̸=i

λjCj) · · · Cn) = det(C1 · · · Ci · · · Cn)
∑
j ̸=i

λj det(C1 · · · Ci−1Cj · · · Cn)

= det(C1 · · · Ci−1Ci · · · Cn)

23



Comme la transposition échange les lignes et colonnes d’une matrice et que le déter-
minant ne change pas par transposition, tous les résultats portant sur les colonnes d’un
déterminant ont un analogue sur les lignes. On en déduit donc le résultat suivant.

Proposition 3.13. Soit n ⩾ 1.
1) L’application det : Mn(K) est linéaire en chaque ligne.
2) Soit A ∈ Mn(K) une matrice de lignes L1, . . . , Ln. Si τ ∈ Sn, on a

det


Lτ(1)

...
Lτ(n)

 = ε(τ) det

L1
...

Ln

 .

3) Si on échange deux lignes d’une matrice carrée A ∈ Mn(K), on multiplie son
déterminant par −1.

4) Une matrice carrée A ∈ Mn(K) ayant deux lignes égales vérifie det A = 0.
5) On ne change pas le déterminant d’une matrice carrée A en ajoutant à une de

ses lignes une combinaison linéaire des autres lignes.

3.3 Développement d’un déterminant selon une ligne ou une colonne

Si A ∈ Mn(K) et si i et j sont deux entiers compris entre 1 et n, on note Ai,j ∈
Mn−1(K) la matrice carrée de taille n − 1 obtenue à partir de A en supprimant dans A
la i-ème ligne et la j-ème colonne.

Théorème 3.14. Soit n ⩾ 1 et soit A ∈ Mn(K).
1) Soit 1 ⩽ i ⩽ n. On a alors

det A =
n∑

j=1
(−1)i+jai,j det Ai,j ;

on dit qu’on a développé det A selon la i-ième ligne.
2) Soit 1 ⩽ j ⩽ n. On a alors

det A =
n∑

i=1
(−1)i+jai,j det Ai,j ;

on dit qu’on a développé det A selon la j-ième colonne.

Démonstration. On prouve la formule de développement selon une colonee. La formule
selon une ligne s’en déduit en utilisant le fait que det(tA) = det(A).

Soit 1 ⩽ j ⩽ n. La j-ème colonne Cj de la matrice A peut s’écrire A = a1,je1 + · · · +
an,jen où e1, . . . , en désigne les vecteurs colonnes formant la base canonique de Kn. On
déduit donc de la proposition 3.9 que

det(A) = a1,j det(C1 . . . Cj−1e1Cj+1 . . . Cn) + · · · + an,j det(C1 . . . Cj−1enCj+1 . . . Cn).
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Or en appliquant 3.10 1) avec τ = (1, 2, . . . , j), on obtient, pour tout 1 ⩽ i ⩽ n,

det(C1 . . . Cj−1eiCj+1 . . . Cn) = ε(τ) det(eiC1 . . . Cj−1Cj+1 . . . Cn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a1,1 · · · a1,j−1 a1,j+1 · · · a1,n
...

...
...

...
...

...
...

1 ai,1 · · · ai,j−1 ai,j+1 · · · ai,n
...

...
...

...
...

...
...

0 an,1 · · · an,j−1 an,j+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
La même opération de permutation sur les lignes, en utilisant le cycle τ ′ = (1, 2, . . . , i),
donne

det(C1 . . . Cj−1eiCj+1 . . . Cn) = ε(τ)ε(τ ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ai,1 · · · ai,j−1 ai,j+1 · · · ai,n

0 a1,1 · · · a1,j−1 a1,j+1 · · · a1,n
...

...
...

...
...

...
...

0 ai−1,1 · · · ai−1,j−1 ai,j+1 · · · ai−1,n

0 ai+1,1 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n
...

...
...

...
...

...
...

0 an,1 · · · an,j−1 an,j+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ε(τ)ε(τ ′)

∣∣∣∣∣ 1 ∗
0n−1,1 Ai,j

∣∣∣∣∣ = ε(τ)ε(τ ′) det(Ai,j).

Comme τ est un cycle de longueur j et τ ′ un cycle de longueur i, on a ε(τ) = (−1)j−1

et ε(τ ′) = (−1)i−1 donc ε(τ)ε(τ ′) = (−1)i+j−2 = (−1)i+j . On en déduit la formule
recherchée.

3.4 Multiplicativité du déterminant

Théorème 3.15. Soit n ⩾ 1 et soient A et B deux matrices de Mn(K). On a alors

det(AB) = det(A) det(B).

Démonstration. Fixons A = (ai,j) et B = (bi,j) dans Mn(K). Notons C1, . . . , Cn les
colonnes de B. Rappelons que l’on note e1, . . . , en les vecteurs de la base canonique de
Kn. On a donc, pour tout 1 ⩽ j ⩽ n,

Cj =
n∑

i=1
bi,jei.

Par définition du produit matriciel, les colonnes de AB sont les vecteurs colonnes AC1, . . . , ACn.
Pour 1 ⩽ j ⩽ n, on a donc

ACj =
n∑

i=1
bi,jAei.

25



On peut donc calculer le déterminant det(AB) en utilisant la linéarité par rapport à
chaque colonne (proposition 3.9). On a donc

det(AB) = det(AC1, . . . , ACn) = det

 n∑
i1=1

bi1,1Ae1, AC2, . . . , ACn


=

n∑
i1=1

bi1,1 det(Aei1 , AC2, . . . , ACn)

=
n∑

i1=1

n∑
i2=1

bi1,1bi2,2 det(Aei1 , Aei2 , C3, . . . , Cn)

=
n∑

i1=1
· · ·

n∑
in=1

bi1,1 · · · bin,n det(Aei1 , . . . , Aein).

Calculons alors det(Aei1 , . . . , Aein) pour tout valeur de (i1, . . . , in) ∈ {1, . . . , n}n.
— Si il existe k < ℓ tels que ik = iℓ, alors det(1ei1 , . . . , Aein) = 0 d’après la proposition

3.10 3).
— Sinon il existe σ ∈ Sn tel que (i1, . . . , in) = (σ(1), . . . , σ(n)) et alors

det(Aei1 , . . . , Aein) = ε(σ) det(Ae1, . . . , Aen)

d’après la proposition 3.9 1).
On a donc

det(AB) =

 ∑
σ∈Sn

ε(σ)bσ(1),1 · · · bσ(n),n

det(Ae1, . . . , Aen) = det(B) det(Ae1, . . . , Aen).

Comme Ae1, . . . , Aen sont les colonnes de la matrice A, on a det(Ae1, . . . , Aen) = det(A)
ce qui fournit det(AB) = det(B) det(A).

Théorème 3.16. Soit A ∈ Mn(K). Alors A est inversible si et seulement si det(A) ̸= 0.
De plus, si A est inversible, alors

det(A−1) = det(A)−1.

Démonstration. Supposons A inversible. Alors il existe A−1 ∈ Mn(K) telle que AA−1 =
In. On en déduit

1 = det(In) = det(AA−1) = det(A) det(A−1).

En particulier det(A) ̸= 0 et det(A−1) = det(A)−1.
Réciproquement supposons que A n’est pas inversible. Alors Ker(A) ̸= {0Kn}. En

particulier il existe un vecteur X =

x1
...

xn

 ∈ Kn ∖ {0Kn} tel que AX = 0Kn . En notant

C1, . . . , Cn les colonnes de A, on en déduit
∑n

i=1 xiCi = 0Kn . Ainsi les colonnes de A
sont liées et det(A) = 0.
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Corollaire 3.17. Considérons un système linéaire à n équations et n inconnues
a1,1x1 + · · · + a1,nxn = y1
...

...
an,1x1 + · · · + an,nxn = yn

(3)

et considérons A = (ai,j) ∈ Mn(K). Si det(A) ̸= 0, alors le système (3) possède une et
une seule solution. En particulier si y1 = · · · = yn = 0, la seule solution du système (3)
est x1 = x2 = · · · = 0.

Démonstration. Posons X =

x1
...

xn

 et Y =

y1
...

yn

. Le système (3) est équivalent à

l’équation AX = Y . Si det(A) ̸= 0, la matrice A est inversible d’après le théorème 3.16.
On en déduit que l’équation AX = Y est équivalente X = A−1Y qui a pour unique
solution A−1Y . De plus, si Y = 0Kn , on voit que X = 0Kn .

3.5 Formule de Cramer

Définition 3.18. Soit A ∈ Mn(K). La comatrice de A est la matrice Com(A) de
Mn(K) définie par

Com(A) = ((−1)i+j det(Ai,j))1⩽i⩽n
1⩽j⩽n

.

Théorème 3.19. 1) Si A ∈ Mn(K), on a

t Com(A)A = At Com(A) = det(A)In.

2) Si A ∈ Mn(K) est inversible, on a

A−1 = 1
det A

t Com(A).

Démonstration. Prouvons le point 1). Soit 1 ⩽ i ⩽ n et soit 1 ⩽ j ⩽ n. Calculons le
coefficient bi,j de la ligne i et de la colonne j de la matrice B = t Com(A)A. Il s’agit de
l’élément

n∑
k=1

(−1)k+j det(Ak,i)ak,j .

Si i = j, on a, par développement du déterminant de A selon colonne i = j,

bj,j =
n∑

k=1
(−1)k+j det(Ak,jak,j = det(A).
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Supposons à présent i ̸= j. Soit C la matrice obtenue en remplaçant la i-ième colonne de
A par sa j-ième colonne. En développant le déterminant de C selon sa i-ième colonne,
on a donc

bi,j =
n∑

k=1
(−1)k+j det(Ak,i)ak,j = det(C).

Comme C a deux colonnes égales (sa i-ième et sa j-ième), on a det(C) = 0 et donc
bi,j = 0 si i ̸= j. Ainsi la matrice B est la matrice det(A)In, ce qui prouve la formule.

Si A est inversible, on a alors det(A) ̸= 0, et on déduit facilement de la formule 1) la
formule 2).

Exemple 3.20. Soit A =
(

a b
c d

)
∈ GL2(K). Alors

A−1 = 1
ad − bc

(
d −b

−c a

)
.

3.6 Déterminant d’une famille de vecteurs

Fixons un entier n ⩾ 1. Si v1, . . . , vn sont n vecteurs de Kn, on appelle déterminant
de la famille (v1, . . . , vn) et on note note det(v1, . . . , vn) le déterminant de la matrice
dont les colonnes sont v1, v2, . . . , vn.

Théorème 3.21. Soient v1, . . . , vn n vecteurs de Kn. Alors det(v1, . . . , vn) ̸= 0 si et
seulement si la famille (v1, . . . , vn) est une base de Kn.

Démonstration. Comme Kn est de dimension n, la famille (v1, . . . , vn) est une base de
Kn si et seulement si elle est libre, c’est-à-dire si et seulement si la matrice (v1, · · · , vn)
a un noyau réduit à 0Kn , c’est-à-dire si et seulement si la matrice det(v1, · · · , vn) ̸= 0
d’après le théorème 3.16.

Passons à présent au cas d’un espace vectoriel de dimension finie quelconque.

Définition 3.22. Soit E un K-espace vectoriel. Si n est un entier, une forme n-linéaire
sur E est une application

f : En −→ K

telle que, pour tout 1 ⩽ i ⩽ n et tous vecteurs v1, . . . , vi−1, vi+1, . . . , vn dans E, l’appli-
cation de E dans K définie par v 7→ f(v1, . . . , vi−1, v, vi+1, . . . , vn) est linéaire.

Une forme n-linéaire f sur E est dite alternée si, pour tous 1 ⩽ i < j ⩽ n et tous
vecteurs v1, . . . , vn dans E, on a f(v1, . . . , vn) = 0 dès que vi = vj.

Soit E un espace vectoriel de dimension finie n ⩾ 1 et soit B une base de E.
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Définition 3.23. Soit (v1, . . . , vn) une famille de n vecteurs de E. Le déterminant de
la famille (v1, . . . , vn) dans la base B est le scalaire

det B(v1, . . . , vn) = det([v1]B, [v2]B, . . . , [vn]B).

Autrement dit detB(v1, . . . , vn) est le déterminant de la matrice carrée de taille n × n
dont la j-ième colonne est le vecteur colonne des coordonnées de vj dans la base B.

Remarque 3.24. L’application detB : En → K est n-linéaire alternée. C’est une consé-
quence des propositions 3.9 et 3.10 3).

Théorème 3.25. Soit E un K-espace vectoriel de dimension n. Soit B une base de E.
Soit (v1, . . . , vn) ∈ En une famille de n vecteurs de E. Alors detB(v1, . . . , vn) ̸= 0 si et
seulement si la famille (v1, . . . , vn) est une base de E.

Démonstration. Comme E est de dimension n, la famille (v1, . . . , vn) est une base de E si
et seulement si elle est libre, c’est-à-dire si et seulement si la matrice ([v1]B · · · [vn]B) a un
noyau réduit à 0Kn , c’est-à-dire si et seulement si la matrice ([v1]B · · · [vn]B), c’est-à-dire
si et seulement si det([v1]B · · · [vn]B) ̸= 0.

Soit Bcan la base canonique de Kn. Si v1, . . . , vn sont n vecteurs de Kn, on a bien

det(v1, . . . , vn) = det Bcan(v1, . . . , vn).

Ce paragraphe n’a pas été traité en cours mais figure dans ces notes comme complément.

Proposition 3.26. Soit f une forme n-linéaire alternée sur un K-espace vectoriel E. Alors si (v1, . . . , vn) ∈ En et si 1 ⩽ i < j ⩽ n,
on a

f(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn) = −f(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vn).

Plus généralement si σ ∈ Sn, on a
f(vσ(1), . . . , vσ(n)) = ε(σ)f(v1, . . . , vn).

Démonstration. Il suffit de démontrer la première formule. On en déduit la seconde en décomposant σ en produit de transposition
et en appliquant plusieurs fois la première formule.

Comme f est n-linéaire alternée, on a

0 = f(v1, . . . , vi−1, vi + vj , vi+1, . . . , vj−1, vi + vj , vj+1, . . . , vn)

= f(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vi + vj , vj+1, . . . , vn)

+ f(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi + vj , vj+1, . . . , vn)

= f(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vi, vj+1, . . . , vn)

+ f(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vn)

+ f(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn)

+ f(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vj , vj+1, . . . , vn)

= 0 + f(v1, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vn)

+ f(v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vn) + 0.

On en déduit le résultat.

Exemple 3.27. Si E est un K-espace vectoriel de dimension n et si B est une base de E, l’application detB définit une forme
n-linéaire alternée sur E.

Théorème 3.28. Soit E un K-espace vectoriel de dimension n. Si f et g sont deux formes n-linéaires alternées sur E et si f ̸= 0, il
existe un unique scalaire λ ∈ K tel que g = λf .
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Démonstration. Fixons B = (e1, . . . , en) une base de E. Soient v1, . . . , vn des vecteurs de E et décomposons-les dans la base B.
On a donc, pour tout 1 ⩽ j ⩽ n,

vj =

n∑
i=1

ai,j ei

avec ai,j ∈ K. La multilinéarité de f implique alors

f(v1, . . . , vn) =

n∑
i1=1

ai1,1f(ei1 , v2, . . . , vn)

=

n∑
i=1

n∑
i2=1

ai1,1ai2,2f(ei1 , ei2 , v3, . . . , vn)

=

n∑
i1=1

n∑
i2=1

· · ·

n∑
in=1

ai1,1ai2,2 · · · ain,nf(ei1 , . . . , ein ).

Calculons alors f(ei1 , . . . , ein ) pour tout valeur de (i1, . . . , in) ∈ {1, . . . , n}n.
— Si il existe k < ℓ tels que ik = iℓ, alors f(ei1 , . . . , ein ) = 0 puisque f est alternée.
— Sinon il existe σ ∈ Sn tel que (i1, . . . , in) = (σ(1), . . . , σ(n)) et alors

f(ei1 , . . . , ein ) = ε(σ)f(e1, . . . , en).

On a donc

f(v1, . . . , vn) =

(∑
σ∈Sn

ε(σ)aσ(1),1 · · · aσ(n),n

)
f(e1, . . . , en).

Remarquons que le même raisonnement nous donne

g(v1, . . . , vn) =

(∑
σ∈Sn

ε(σ)aσ(1),1 · · · aσ(n),n

)
g(e1, . . . , en).

En particulier, comme f ̸= 0, on a nécessairement f(e1, . . . , en) ̸= 0. Choisissons alors λ = g(e1, . . . , en)f(e1, . . . , en)−1. Les
formules précédentes montrent alors que g(v1, . . . , vn) = λf(v1, . . . , vn) et ceci pour toute valeur de (v1, . . . , vn).

Corollaire 3.29. Soit E un K-espace vectoriel de dimension et soit B = (b1, . . . , bn) une base de E. L’application detB est l’unique
application f : En → K qui est n-linéaire alternée et telle que f(b1, . . . , bn) = 1.

3.7 Déterminant et volume

Dans cette section on suppose que K = R. Si v1, . . . , vn sont n vecteurs de Kn, le
parallélépipède défini par les vecteurs v1, . . . , vn est l’ensemble

P = {a1 · v1 + a2 · v2 + · · · + an · vn | (a1, . . . , an) ∈ [0, 1]n}.

Théorème 3.30. 1) Si u et v sont deux vecteurs de R2, l’aire du parallélogramme
défini par u et v vaut |det(u, v)|.

2) Si u, v, w sont trois vecteurs de R3, le volume du parallélépipède défini par u, v, w
vaut |det(u, v, w)|.

Démonstration. Démontrons la formule 1). Soient u =
(

a
c

)
et v =

(
b
d

)
deux vecteurs

de R2 et soit P le parallélogramme défini par u et v. Soit θ ∈ [0, π[ l’angle entre u et v,
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c’est-à-dire l’unique nombre 0 ⩽ θ < π tel que u · v = ||u||||v|| cos(θ). L’aide de P est
alors égale à ||u||||v|| sin(θ). On a donc

A(P ) = ||u||||v||
√

1 − cos2(θ) =
√

||u||2||v||2 − u · v

=
√

(a2 + c2)(b2 + d2) − (ab + cd)2 =
√

a2d2 + b2d2 − 2abcd =
√

(ad − bc)2

= |ad − bc| = |det(u, v)|.

Prouvons à présent 2). On note u∧v le produit vectoriel de u et v. Alors ||u∧v|| est égale à l’aire du parallélogramme défini par

u et v. Comme de plus u ∧ v est orthogonal au plan Vect(u, v), l’aire du parallélépipède P défini par u, v, w est égale à |(u ∧ v) · w|.

Posons alors, pour tous v1, v2, v3 ∈ R3, f(v1, v2, v3) = (v1 ∧ v2) · v3. On vérifie que f définit une forme 3-linéaire alternée sur

R3. On déduit du corollaire 3.29 qu’il existe donc un réel c tel que f(v1, v2, v3) = c det(v1, v2, v3) pour tous v1, v2, v3 ∈ R3. En

évaluant f sur la base canonique (e1, e2, e3) et en remarque que e1 ∧ e2 = e3, on vérifie que c = 1. On peut donc bien conclure

que le volume de P coïncide avec |(u ∧ v) · w| = |det(u, v, w)|.

4 Réduction des endomorphismes, première partie

On fixe E un K-espace vectoriel.

4.1 Sous-espaces propres et valeurs propres

Définition 4.1. Soit f ∈ L(E) un endomorphisme de E. Un vecteur propre de f est
un vecteur v ∈ E vérifiant les deux propriétés suivantes :

— v est non nul ;
— il existe λ ∈ K tel que f(v) = λv.

Si v est un vecteur propre de f , le scalaire λ tel que f(v) = λv est appelé valeur
propre de f correspondant à v. L’ensemble de toutes les valeurs propres de f est noté
Sp(f), il s’agit du spectre de f .

Exemple 4.2. a) Considérons l’endomorphisme f de R2 défini par f

((
x
y

))
=(

y
x

)
. Le vecteur u =

(
1
1

)
est vecteur propre de f de valeur propre 1 car u ̸= 0R2

et f(u) = u. Le vecteur v =
(

1
−1

)
est vecteur propre de f de valeur propre −1 car

f(v) = −v. Le vecteur w =
(

1
0

)
n’est pas un vecteur propre de f car f(w) /∈ Vect(w).

b) De façon générale, les vecteurs propres d’un endomorphisme f qui sont associés
à la valeur propre 0 sont les éléments de Ker(f)∖ {0E}. Ainsi 0 ∈ Sp(f) si et seulement
si Ker(f) ̸= {0E}.
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c) Soit E un K-espace vectoriel. Soit λ ∈ K. L’endomorphisme f de E défini par
f(v) = λ ·v pour tout v ∈ E est appelé homothétie de rapport λ de E. Un vecteurs v ∈ E
est propre pour f si et seulement si v ̸= 0. On a en effet f(v) = λ · v pour tout v ∈ E.
Dans ce cas, f possède une unique valeur propre, λ, et Sp(f) = {λ}.

d) Considérons E = C∞(R,C) le C-espace vectoriel des fonctions de classe C∞ de R
dans C. Posons, pour h ∈ E, f(h) = h′. Alors f est un endomorphisme de E. Si λ ∈ C,
les vecteurs propres de f associés à la valeur propre λ sont les éléments h ∈ E tels que
h′ = λh avec h ̸= 0. Ce sont donc les fonctions de la forme t 7→ Ceλt avec C ̸= 0. On a
donc dans ce cas Sp(f) = C.

Définition 4.3. Si f ∈ L(E) et si λ ∈ K, on note Eλ(f) := Ker(f − λIdE). Si λ est
une valeur propre de f , on l’appelle le sous-espace propre de f associé à λ.

4.2 Analogues matriciels

Définition 4.4. Soit A ∈ Mn(K). On appelle vecteur propre de A est un vecteur
colonne X ∈ Kn vérifiant les deux propriétés suivantes :

— X est non nul ;
— il existe λ ∈ K tel que AX = λX.

Si X est un vecteur propre de A, le scalaire λ tel que AX = λX est appelé valeur
propre de A correspondant à X. L’ensemble de toutes les valeurs propres de A est noté
Sp(A), il s’agit du spectre de A. Si λ ∈ K, on note Eλ(A) := Ker(A − λIn). Si λ est une
valeur propre de A, on l’appelle le sous-espace propre de A associé à λ.

Remarque 4.5. Soit fA l’unique endomorphisme de Kn dont la matrice dans la base
canonique est A. Un vecteur colonne X ∈ Kn est vecteur propre de A si et seulement si
il est vecteur propre de fA. De plus Sp(A) = Sp(fA) et, pour toute valeur propre λ de
A, on a Eλ(A) = Eλ(fA).

Proposition 4.6. Soit E un K-espace vectoriel de dimension finie. Soit f ∈ L(E) un
endomorphisme de E. Soit B une base de E et soit A = MatB(f). Soit λ ∈ K. Alors
X ∈ Kn est un vecteur propre de de A de valeur propre λ si et seulement si X = [v]B
pour v ∈ E un vecteur propre de f de valeur propre λ. En particulier Sp(f) = SpK(A).

Démonstration. Soit v ∈ E. On a [f(v)]B = A[v]B. Si X = [v]B, on a donc AX = λX si
et seulement si f(v) = λv. Comme de plus X ̸= 0 si et seulement si v ̸= 0, on obtient le
résultat.

Corollaire 4.7. Soit A ∈ Mn(K) et soit P ∈ Mn(K) inversible. Alors, pour tout
λ ∈ K, on a Eλ(A) = PEλ(P−1AP ). En particulier dim Eλ(A) = dim Eλ(P−1AP ) et
Sp(A) = Sp(P−1AP ).
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Démonstration. Soit fA l’endomorphisme de Kn défini par fA(X) = AX et soit B la
base de Kn définie par les vecteurs colonnes de P . On a alors P−1AP = MatB(fA). Si
X ∈ Kn, on a [X]B = P−1X, de sorte que, par la proposition 4.6, on a

X ∈ Eλ(fA) ⇔ P−1X ∈ Eλ(P−1AP ).

On a donc Eλ(P−1AP ) = P−1Eλ(fA) = P−1Eλ(A). Comme X 7→ P−1X est un auto-
morphisme de Kn, on a dim Eλ(A) = dim Eλ(P−1AP ). On en déduit que Eλ(A) ̸= {0Kn}
si et seulement si Eλ(P−1AP ) ̸= {0Kn}, c’est-à-dire λ ∈ Sp(A) si et seulement si
λ ∈ Sp(P−1AP ). Ainsi Sp(A) = Sp(P−1AP ).

4.3 Le polynôme caractéristique

Soit A ∈ Mn(K). On note χA la fonction de K dans K définie par

χA(x) := det(xIn − A).

Théorème 4.8. Si A ∈ Mn(K), la fonction χA est un polynôme unitaire de degré n à
coefficients dans K.

Démonstration. Posons, pour 1 ⩽ i, j ⩽ n,

bi,j(x) =
{

x − ai,i si i = j

−ai,j si i ̸= j
.

Alors bi,j est un polynôme de degré 1 en x si i = j et de degré 0 si i ̸= j. Par conséquent,
si σ ∈ Sn, le polynôme

∏n
j=1 bσ(j),j est de degré Card{1 ⩽ j ⩽ n | σ(j) = j}. Il est donc

de degré n quand σ = Id et de degré ⩽ n − 1 dans les autres cas. Ainsi

χA(x) =
n∏

i=1
(x − ai,i) + Q(x)

où Q est un polynôme de degré ⩽ n−1. Comme
∏n

i=1(x−ai,i) est un polynôme unitaire
de degré n, on en conclut que χA(x) est un polynôme unitaire de degré n.

Le polynôme χA est appelé polynôme caractéristique de A.

Définition 4.9. Soient A et B deux matrices de Mn(K). On dit que A et B sont
semblables s’il existe une matrice P ∈ Mn(K) inversible telle que B = PAP−1.

Proposition 4.10. Si A et B sont deux matrices semblables de Mn(K), alors χA(X) =
χB(X).

Démonstration. Soit x ∈ K. On a alors

χB(x) = det(xIn − PAP−1) = det(P (xIn − A)P−1) = det(P )χA(x) det(P )−1 = χA(x).
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Proposition 4.11. Soient A et B deux matrices de Mn(K). Soit E un K-espace vec-
toriel de dimension n et soit B une base de E. Les matrices A et B sont semblables
si et seulement si il existe f ∈ L(E) et une base B′ de E tels que A = MatB(f) et
B = MatB′(f).

Démonstration. Supposons que A = MatB(f), B = MatB′(f) avec B′ base de E. Soit
P = PB←B′ . Alors on a B = P−1AP par la proposition 1.31, de sorte que A et B sont
semblables. Réciproquement supposons que A et B sont semblables. Soit P ∈ Mn(K)
inversible telle que B = P−1AP . Soit f l’endomorphisme de E tel que MatB(f) = A.
Soit B′ la base de E telle que PB←B′ = P . On a alors B = MatB′(f).

Supposons que E est de dimension finie n. Soient B1 et B2 deux bases de E. La
proposition 4.11 implique que les matrices MatB1(f) et MatB2(f) sont semblables et
donc, d’après la proposition 4.10,

χMatB1 (f)(X) = χMatB2 (f)(X).

Le polynôme χMatB(f)(X) ne dépend donc pas du choix de la base B mais uniquement
de f . On le note donc χf (X) et on l’appelle le polynôme caractéristique de f .

Théorème 4.12. 1) Soit n ⩾ 1 un entier et soit A ∈ Mn(K). Alors les valeurs
propres de A sont exactement les racines de χA(X) dans k.

2) Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E). Alors les valeurs
propres de f sont exactement les racines de χf (X) dans K.

Démonstration. Soit A ∈ Mn(K). Un élément λ ∈ K est une valeur propre de A si et
seulement si Eλ(A) = Ker(A − λIn) est non réduit à {0Kn}, c’est-à-dire si et seulement
si la matrice A−λIn n’est pas inversible, c’est-à-dire si et seulement si det(λIn −A) = 0.
On en déduit le résultat.

Soit à présent E un K-espace vectoriel de dimension finie et soit λ ∈ K. Soit B
une base de E. Alors λ est valeur propre de f si et seulement si λ est valeur propre de
MatB(f). Comme χf (X) = χMatB(f)(X), on déduit le résultat de la première partie du
théorème.

Corollaire 4.13. Soit A ∈ Mn(K). Alors A a au plus n valeurs propres.

Démonstration. En effet le polynôme χA(X) est de degré n et possède donc au plus n
racines dans K.

Remarque 4.14. Il faut prendre garde au fait que deux matrices peuvent avoir le même
polynôme caractéristique sans être semblables. Considérons par exemple

A =
(

1 1
0 1

)
, B =

(
1 0
0 1

)
.
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Alors χA(X) = χB(X) = (X − 1)2. Par contre A et B ne sont pas semblables. Si c’était
le cas, il existerait P ∈ M2(R) telle que

A = PBP−1 = PI2P−1 = PP−1 = I2

ce qui est faux.

Si P ∈ GLn(K), A ∈ Mn(K) et x ∈ K, on a

det(xIn − P−1AP ) = det(P−1(xIn − A)P )
= det(P )−1 det(xIn − A) det(P ) = det(xIn − A),

donc
χP −1AP = χA. (4)

Le polynôme caractéristique de deux matrices semblables est identique. La réciproque
est fausse ! ! ! Deux matrices peuvent avoir le même polynôme caractéristique sans être
semblables.

4.4 Influence du corps des scalaires sur les valeurs propres

Lors de l’étude des valeurs propres, le choix du corps des scalaires peut avoir de
l’importance.

Exemple 4.15. Supposons que K = R et E = R2. Soit f ∈ L(E) défini par

f

((
x
y

))
=
(

−y
x

)
.

On a χf (X) = X2 + 1. Ce polynôme n’a pas de racine dans R de sorte que Sp(f) = ∅.

Exemple 4.16. Supposons maintenant que K = C et E = C2. Soit g ∈ L(E) défini par

g

((
x
y

))
=
(

−y
x

)
.

On a χg(X) = X2 + 1 = X − i)(X + i) de sorte que Sp(g) = {i, −i}.

Proposition 4.17. Si K = C, si E est de dimension finie non nulle, alors pour tout
f ∈ L(E), on a Sp(f) ̸= ∅. Si n ⩾ 1 et A ∈ Mn(C), on a Sp(A) ̸= ∅.

Démonstration. D’après le théorème 4.8, les polynômes χf et χA sont des polynômes de
degrés ⩾ 1 à coefficients dans C. Le théorème fondamental de l’algèbre implique qu’ils
possèdent au moins une racine dans C. D’après le théorème 4.12, f et A possèdent au
moins une valeur propre.
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4.5 Endomorphismes diagonalisables

On suppose, dans cette partie, que E est un K-espace vectoriel de dimension finie.

Définition 4.18. Soit f ∈ L(E) un endomorphisme de E. On apelle base propre de f
une base de E constituée de vecteurs propres de f .

On dit que l’endomorphisme f est diagonalisable s’il possède une base propre.
Soit n ⩾ 1 et soit A ∈ Mn(K). On dit que la matrice A est diagonalisable dans K

si l’endomorphisme fA : X 7→ AX de l’espace Kn est diagonalisable.

Proposition 4.19. 1) Soit f ∈ L(E) un endomorphisme de E. Une base B de E
est une base propre de f si et seulement si MatB(f) est une matrice diagonale.

2) Soit f ∈ L(E) un endomorphisme de E. L’endomorphisme f est diagonalisable
si et seulement si il existe une base B de E telle que la matrice MatB(f) est diagonale.

3) Soit n ⩾ 1 et soit A ∈ Mn(K). La matrice A est diagonalisable si et seulement
si elle est semblables à une matrice diagonale.

4) Soit f ∈ L(E) un endomorphisme. Soit B est une base de E. L’endomorphisme f
est diagonalisable si et seulement si la matrice MatB(f) est une matrice diagonalisable
de Mdim E(K).

Démonstration. Démontrons le point 1). Soit B = (e1, . . . , en) une base de E et soit
A = MatB(f) = (ai,j)1⩽i,j⩽n. Comme les vecteurs ei sont non nuls, ce sont des vecteurs
propres de f si et seulement si ai,j = 0 pour i ̸= j, c’est-à-dire si et seulement si la
matrice A est diagonale.

Le point 2) est une conséquence immédiate du 1) et de la définition d’un endomor-
phisme diagonalisable.

Démontrons le point 3). Soit fA l’endomorphisme de Kn défini par fA(X) = AX
pour X ∈ Kn. Par définition la matrice A est diagonalisable si et seulement si l’endo-
morphisme fA est diagonalisable. On déduit du point 2) que fA est diagonalisable si et
seulement si il existe une base B de Kn telle que MatB(fA) est diagonale. On déduit
de la proposition 4.11 qu’il existe une telle base si et seulement si A = MatBcan(fA) est
semblable à une matrice diagonale.

Démontrons le point 4). On déduit de 2) que l’endomorphisme f est diagonalisable
si et seulement si il existe une base B′ de E telle que MatB′(f) est diagonale. On déduit
alors de la proposition 4.11 que cette condition est équivalente à cé que MatB(f) soit
semblable à une matrice diagonale, c’est-à-dire à ce que MatB(f) soit diagonalisable
d’après 3).

4.6 Valeurs propres et sous-espaces propres d’une matrice diagonali-
sable

On suppose que E est un K-espace vectoriel de dimension finie.
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Théorème 4.20. Soit A ∈ Mn(K) une matrice diagonalisable. Il existe alors une ma-
trice inversible P ∈ Mn(K) et une matrice diagonale D ∈ Mn(K) telles que A =
PDP−1. De plus Sp(A) est l’ensemble des entrées diagonales de D et, pour λ ∈ Sp(A),
dim Eλ(A) est le nombre d’occurences de λ sur la diagonale de D.

Démonstration. L’existence de P et D est une conséquence de la proposition 4.19 3).
Comme Sp(A) = Sp(PDP−1) = Sp(D) et dim Eλ(A) = dim Eλ(D) d’après le corollaire
4.7, on est ramené à déterminer Sp(D) et dim Eλ(D). Soient (d1, . . . , dn) les entrées
diagonales de D (c’est-à-dire que di = ai,i si D = (ai,j)). Alors χD(X) =

∏n
i=1(X − di)

donc Sp(D) = {d1, . . . , dn}. Soit λ ∈ {d1, . . . , dn} et calculons la dimension de Eλ(D).

Un vecteurs X =

x1
...

dn

 est dans Eλ(D) si et seulement si (x1, . . . , xn) est solution du

système 
d1x1 = λx1
...

...
dnxn = λxn

⇔


(d1 − λ)x1 = 0
...

...
(dn − λ)xn = 0

⇔ xi = 0 si di − λ ̸= 0.

Ainsi dim Eλ(D) est égal au nombre d’indices 1 ⩽ i ⩽ n tels que di = λ, c’est-à-dire au
nombre d’occurences de λ sur la diagonale de D.

4.7 Indépendance linéaire des vecteurs propres

Théorème 4.21. Soit f ∈ L(E) un endomorphisme de E. Soit (v1, . . . , vn) une famille
de vecteurs de E. On suppose que chaque vi est un vecteur propre de f de valeur propre
associée λi. Si l’on suppose que les valeurs λ, . . . , λn sont deux à deux distinctes, ce qui
signifie λi ̸= λj dès que i ̸= j, alors la famille (v1, . . . , vn) est une famille libre.

Démonstration. On démontre le résultat par récurrence sur n ⩾ 1. Le cas n = 1 est
une conséquence directe du fait qu’un vecteur propre est non nul et engendre donc une
famille libre (à un élément). Supposons le résultat démontré au rang n et montrons-le au
rang n + 1. Soit (v1, . . . , vn+1) une famille de vecteurs propres telle que vi est de valeur
propre λi pour 1 ⩽ i ⩽ n + 1 et que λi ̸= λj dès que i ̸= j. Supposons qu’il existe des
scalaires x1, . . . , xn+1 tels que x1v1 + · · · xn+1vn+1 = 0E et montrons que x1 = · · · xn+1.
En appliquant f à l’égalité x1v1 + · · · xn+1vn+1 = 0E et en multipliant cette égalité par
λn+1, on obtient

x1λ1v1 + x2λ2v2 + · · · + xn+1λn+1vn+1 = 0E

x1λn+1v1 + x2λn+1v2 + · · · + xn+1λn+1vn+1 = 0E .

En soustrayant ces deux égalité, on obtient

x1(λ − λn+1v1 + · · · + xn(λn − λn+1)vn = 0E .
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L’hypothèse de récurrence implique alors que xi(λi − λn+1) = 0 pour tout 1 ⩽ i ⩽ n.
Comme λi ̸= λn+1 pour 1 ⩽ i ⩽ n, on en déduit que xi = 0 pour 1 ⩽ i ⩽ n. On a alors
xn+1vn+1 = 0E et, puisque vn+1 ̸= 0E , on a également xn+1 = 0.

Corollaire 4.22. Soit E un K-espace vectoriel et soit f ∈ L(E) un endomorphisme
de E. Soient λ1, . . . , λn des valeurs propres de f deux à deux distinctes. Alors les sous-
espaces Eλ1(f), . . . , Eλn(f) sont en somme directe.

Démonstration. Il faut prouver que si i1 < · · · < ir sont des éléments de {1, . . . , n} et
v1, . . . , vr des vecteurs non nuls tels que vj ∈ Eλij

(f), alors v1 + · · · + vr ̸= 0E . Or les
vecteurs v1, . . . , vr sont des vecteurs propres associés à des valeurs propres deux à deux
distinctes. On déduit donc du théorème précédent que la famille (v1, . . . , vr) est libre et
donc que v1 + · · · + vr ̸= 0E .

Corollaire 4.23. 1) Soit E un K-espace vectoriel de dimension finie et soit f ∈
L(E). Alors ∑

λ∈Sp(f)
dim Eλ(f) ⩽ dim E.

2) Soit n ⩾ 1 un entier et soit A ∈ Mn(K). Alors∑
λ∈Sp(A)

dim Eλ(A) ⩽ n.

Démonstration. Il suffit de démontrer le premier point. Comme les sous-espaces Eλ(f)
sont en somme directe, on a ∑

λ∈Sp(f)
Eλ(f) =

⊕
λ∈Sp(f)

Eλ(f)

et donc

dim

 ∑
λ∈Sp(f)

Eλ(f)

 =
∑

λ∈Sp(f)
dim Eλ(f).

Comme
∑

λ∈Sp(f) Eλ(f) est un sous-espace de E, on en déduit le résultat.

4.8 Premier critère de diagonalisation

Théorème 4.24. 1) Soit E un K-espace vectoriel de dimension finie et soit f ∈
L(E). Alors les assertions suivantes sont équivalentes

(i) l’endomorphisme f est diagonalisable ;
(ii) on a

∑
λ∈Sp(f) Eλ(f) = E ;

(iii) on a
⊕

λ∈Sp(f) Eλ(f) = E ;
(iv) on a

∑
λ∈Sp(f) dim Eλ(f) = dim E ;
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(v) on a
∑

λ∈Sp(f) dim Eλ(f) ⩾ dim E.
2) Soit n ⩾ 1 un entier et soit A ∈ Mn(K). Alors les assertions suivantes sont

équivalentes
(i) la matrice A est diagonalisable ;
(ii) on a

∑
λ∈Sp(A) Eλ(A) = Kn ;

(iii) on a
⊕

λ∈Sp(A) Eλ(A) = Kn ;
(iv) on a

∑
λ∈Sp(A) dim Eλ(A) = n ;

(v) on a
∑

λ∈Sp(A) dim Eλ(A) ⩾ n.

Démonstration. On démontre uniquement le point 1), le point 2) s’en déduisant im-
médiatement. Comme les sous-espaces propres sont en somme directe, les points (ii) et
(iii) sont équivalents. De même l’inégalité

∑
λ∈Sp(f) dim Eλ(f) ⩽ dim E montre que les

points (iv) et (v) sont équivalents. De plus il est clair que les points (iii) et (iv) sont
équivalents. Il reste donc à prouver que (i) et (ii) sont équivalents. Supposons donc que
f est diagonalisable. Il existe donc une base propre (v1, . . . , vn) de f . Chaque vi est un
vecteur propre et appartient donc à un sous-espace propre Eλi

(f). On a donc

E = Vect(v1, . . . , vn) ⊂
n∑

i=1
Eλi

(f)
∑

λ∈Sp(f)
Eλ(f) ⊂ E.

On en déduit l’égalité (ii). Réciproquement supposons que E =
∑

λ∈Sp(f) Eλ(f). Il existe
alors une famille génératrice de E constituée de vecteurs propres. On peut extraire une
base de E de cette famille pour obtenir une base propre. Ainsi f est diagonalisable.

Corollaire 4.25. 1) Soit E un K-espace vectoriel de dimension finie et soit f ∈
L(E). Alors si Card(Sp(f)) = dim E, l’endomorphisme f est diagonalisable.

2) Soit n ⩾ 1 un entier et soit A ∈ Mn(K). Si Card(Sp(A)) = n, alors A est
diagonalisable.

Démonstration. Nous prouvons uniquement le premier point. Si λ ∈ Sp(f), alors Eλ(f) ̸=
{0E} et donc dim Eλ(f) ⩾ 1. On a donc∑

λ∈Sp(f)
dim Eλ(f) ⩾ Card(Sp(f)) = dim E

de sorte que f est diagonalisable.

Comme Sp(f) est l’ensemble des racines du polynôme caractéristique χf (X), on peut
reformuler ce corollaire sous la forme suivante.

Corollaire 4.26. 1) Soit E un K-espace vectoriel de dimension finie et soit f ∈
L(E). Si le polynôme caractéristique de f est scindé à racines simples, alors l’endomor-
phisme f est diagonalisable.

2) Soit n ⩾ 1 un entier et soit A ∈ Mn(K). Si le polynôme caractéristique de A est
scindé à racines simples, alors A est diagonalisable.
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5 Quelques applications des matrices diagonalisables

5.1 Puissances des matrices diagonalisables

Soit K un corps égal à Q, R ou C. Soit n ⩾ 1 un entier et soit A ∈ Mn(K).
Supposons à présent que A est diagonalisable. Il existe alors une matrice inversible

P ∈ Mn(K) et une matrice diagonalisable D ∈ Mn(K) telles que A = PDP−1. Notons
λ1, . . . , λn les entrées diagonales de D, de sorte que

D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0
0 · · · 0 λn

 .

Proposition 5.1. Pour tout entier k ⩾ 0, on a

Ak = P


λk

1 0 · · · 0

0 λk
2

. . . ...
... . . . . . . 0
0 · · · 0 λk

n

P−1.

De plus A est inversible si et seulement si λi ̸= 0 pour tout 1 ⩽ i ⩽ n, et dans ce cas

A−1 = P


λ−1

1 0 · · · 0

0 λ−1
2

. . . ...
... . . . . . . 0
0 · · · 0 λ−1

n

P−1.

Démonstration. Prouvons par récurrence sur k ⩾ 0 que Ak = PDkP−1.
Si k = 0, on a A0 = In par convention et λ0

i = 1 pour tout 1 ⩽ i ⩽ n de sorte que
l’on a bien In = PInP−1.

Supposons le résultat prouvé pour un entier k ⩾ 0 et prouvons le pour k + 1. On a
alors

Ak+1 = AAk = PDP−1PDkP−1 = PDInDkP−1 = PDk+1P−1.

On a alors

Dk =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0
0 · · · 0 λn


k

=


λk

1 0 · · · 0

0 λk
2

. . . ...
... . . . . . . 0
0 · · · 0 λk

n

 .
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Comme E0(A) = Ker(A), la matrice A est inversible si et seulement si 0 n’est pas
valeur propre de A, c’est-à-dire si et seulement si tous les λi sont non nuls. Supposons
A inversible. Alors l’inverse de D est la matrice

D−1 =


λ−1

1 0 · · · 0

0 λ−1
2

. . . ...
... . . . . . . 0
0 · · · 0 λ−1

n

P−1

et on vérifie que

(PD−1P−1)A = (PD−1P−1)PDP−1 = PD−1InDP−1 = PP−1 = In.

5.2 Systèmes de suite récurrentes

On fixe K un corps égal à Q, R ou C. Soit A = (ai,j)1⩽i,j⩽n ∈ Mn(K) une ma-
trice carrée. On s’intéresse aux suites (u(1)

k )k⩾0, (u(2)
k )k⩾0, . . . , (u(n)

k )k⩾0 à valeurs dans
K satisfaisant au système récurrent d’ordre 1 couplé :

∀k ⩾ 0,


u

(1)
k+1 = a1,1u

(1)
k + · · · + a1,nu

(n)
k

...
...

u
(n)
k+1 = an,1u

(1)
k + · · · + an,nu

(n)
k

. (5)

Posons, pour tout k ⩾ 0, Xk =


u

(1)
k
...

u
(n)
k

. Le système (5) est alors équivalent à

∀k ⩾ 0, Xk+1 = AXk.

On suppose à présent que A est diagonalisable. On peut alors écrire A = PDP−1 avec
P inversible et D diagonale de la forme

D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0
0 · · · 0 λn

 .

Posons, pour k ⩾ 0, Yk = P−1Xk. On a alors, pour tout k ⩾ 0,

Xk+1 = AXk ⇔ PYk+1 = APYk ⇔ Yk+1 = P−1APYk

⇔ Yk+1 = DYk
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Posons, pour tout k ⩾ 0, Yk


v

(1)
k
...

v
(n)
k

. Le système (5) est donc équivalent au système

∀k ⩾ 0,


v

(1)
k+1 = λ1v

(1)
k

...
...

v
(n)
k+1 = λnv

(n)
k

(6)

qui est à présent un système découplé de n suites récurrentes linéaires d’ordre 1. On en
déduit que

∀k ⩾ 0,


v

(1)
k = λk

1v
(1)
0

...
...

v
(n)
k = λk

nv
(n)
0

On peut utiliser P−1 pour exprimer v
(1)
0 , . . . , v

(n)
0 en fonction de u

(n)
0 , . . . , u

(n)
0 et utiliser

P pour retrouver les valeurs de u
(1)
k , . . . , u

(n)
k .

Théorème 5.2. Soient a0, . . . , an−1 ∈ K. On suppose que le polynôme P (X) = Xn −
an−1Xn−1 − · · · − a1X − a0 est scindé à racines simples dans K, c’est-à-dire de la forme
P (X) =

∏n
i=1(X − λi) avec λ1, . . . , λn deux à deux distincts dans K. Alors l’ensemble S

des suites (uk)k⩾0 à valeurs dans K et satisfaisant la relation

∀k ⩾ 0, uk+n = an−1uk+n−1 + · · · + a1uk+1 + a0uk (7)

est l’ensembles des combinaisons linéaires, à coefficients dans K, des suites (λk
i )k⩾0 pour

i = 1, . . . , n.

Démonstration. Comme λi est racine de P , on a λn
i = an−1λn−1

i + · · · + a1λi + a0. On
en déduit donc que la suite (λk

i )k⩾0 est dans S. Toute combinaison linéaire de ces suites
est donc également dans S.

Réciproquement soit (uk)k⩾0 ∈ S. On pose Xk =


uk

uk+1
...

uk+n−1

. La relation (7) est alors

équivalente à Xk+1 = AXk où A désigne la matrice

A =



0 1 0 · · · 0

0 0 1 . . . 0
... . . . . . . . . . ...
0 · · · 0 0 1
a0 a1 · · · an−2 an−1


.
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Le polynôme caractéristique de la matrice A est égal au polynôme P = Xn−an−1Xn−1−
· · ·−a1X −a0. Ainsi Sp(A) = {λ1, . . . , λn}. Comme les λi sont deux à deux distincts, on
a Card(Sp(A)) = n et la matrice A est diagonalisable d’après le corollaire 4.26. Il existe
donc une matrice inversible P ∈ Mn(K) tel que A = PDP−1 avec

D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0
0 · · · 0 λn

 .

En posant Yk = P−1Xk pour tout k ⩾ 0, on a donc, comme précédemment Yk =

λk
1c1
...

λk
ncn


pour certaines conditions initiales c1, . . . , cn. La relation Xk = PYk implique donc que
la suite (uk)k⩾0 est combinaison linéaire des suites (λk

1)k⩾0, . . . , (λk
n)k⩾0.

5.3 Systèmes d’équations différentielles linéaires

On fixe K un corps égal à R ou C. Soit A = (ai,j)1⩽i,j⩽n ∈ Mn(K) une matrice carrée.
On se propose de résoudre le problème suivant. On cherche des fonctions x1, . . . , xn de
R dans K, de classe C1 telles que

∀t ∈ R,


x′1(t) = a1,1x1(t) + · · · + a1,xn(t)
...

...
x′n(t) = an,1x1(t) + · · · + an,nxn(t)

. (8)

Posons, pour tout t ∈ R,

X(t) =

x1(t)
...

xn(t)

 , X ′(t) =

x′1(t)
...

x′n(t)

 .

Résoudre le système (8) revient à rechercher les fonctions t 7→ X(t) de R dans K
dont les coordonnées sont de classe C1 et telles que

∀t ∈ R, X ′(t) = AX(t).

On suppose à présent que A est diagonalisable. On peut alors écrire A = PDP−1

avec P inversible et D diagonale de la forme

D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0
0 · · · 0 λn

 .
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Posons, pour t ∈ R, Y (t) = P−1X(t) =

y1(t)
...

yn(t)

. Alors les fonctions yi sont des

fonctions de classe C1 de R dans K et on a alors, pour tout t ∈ R,

X ′(t) = AX(t) ⇔ PY (t) = APY (t) ⇔ Y (t) = P−1APY (t)
⇔ Y ′(t) = DY (t)

Le système (8) est donc équivalent au système

∀t ∈ R,


y′1(t) = λ1y1(t)
...

...
y′n(t) = λnyn(t)

(9)

qui est à présent un système découplé de n équations différentielles liénaires d’ordre 1.
On en déduit que

∀t ∈ R,


y1(t) = eλ1ty1(0)
...

...
yn(t) = eλntyn(0)

On peut utiliser P−1 pour exprimer y1(0), . . . , yn(0) en fonction de x1(0), . . . , xn(0) et
utiliser P pour expliciter x1, . . . , xn.

Théorème 5.3. Soient a0, . . . , an−1 ∈ K. On suppose que le polynôme P (X) = Xn −
an−1Xn−1 − · · · − a1X − a0 est scindé à racines simples dans K, c’est-à-dire de la forme
P (X) =

∏n
i=1(X − λi) avec λ1, . . . , λn deux à deux distincts dans K. Alors l’ensemble S

des fonctions x de classes Cn de R dans K satisfaisant l’équation différentielle

∀t ∈ R, x(n)(t) = an−1x(n−1)(t) + · · · + a1x′(t) + a0x(t) (10)

est l’ensembles des combinaisons linéaires, à coefficients dans K, des fonctions t 7→ eλit

pour i = 1, . . . , n.

Démonstration. Comme λi est racine de P , on a λn
i = an−1λn−1

i + · · · + a1λi + a0. On
en déduit facilement que la fonction (t 7→ eλit) est dans S. Toute combinaison linéaire
de ces fonctions est donc également dans S.

Réciproquement soit x ∈ S. On pose, pour t ∈ R, X(t) =


x(t)
x′(t)

...
x(n−1)(t)

. La relation

44



(10) est alors équivalente à X ′ = AX où A désigne la matrice

A =



0 1 0 · · · 0

0 0 1 . . . 0
... . . . . . . . . . ...
0 · · · 0 0 1
a0 a1 · · · an−2 an−1


.

Comme dans la démonstration du théorème 5.2, le polynôme caractéristique de
la matrice A est égal au polynôme P = Xn − an−1Xn−1 − · · · − a1X − a0. Ainsi
Sp(A) = {λ1, . . . , λn}. Comme les λi sont deux à deux distincts, on a Card(Sp(A)) = n
et la matrice A est diagonalisable d’après le corollaire 4.26. Il existe donc une matrice
inversible P ∈ Mn(K) tel que A = PDP−1 avec

D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0
0 · · · 0 λn

 .

En posant Y (t) = P−1X(t) pour tout t ∈ R, on a donc, comme précédemment Y (t) =eλ1tc1
...

eλntcn

 pour certaines conditions initiales c1, . . . , cn ∈ K. La relation X = PY im-

plique donc que la focntion x est combinaison linéaire des fonctions (t 7→ eλit)1⩽i⩽n.

6 Sous-espace stables et polynômes d’endomorphismes

6.1 Notion de sous-espace stable

Définition 6.1. Soit E un K-espace vectoriel et soit f ∈ L(E) un endomorphisme de
E. Un sous-espace vectoriel F ⊂ E est dit stable par f si f(F ) ⊂ F .

Proposition 6.2. Si F1 et F2 sont deux sous-espaces vectoriels de E stables par f , alors
F1 ∩ F2 et F1 + F2 le sont aussi.

Exemple 6.3. — Les sous-espaces vectoriels {0E} et E sont toujours stables.
— Soit v ∈ E avec v ̸= 0E . Alors Vect(v) est stable par f si et seulement si v est un

vecteur propre de f .
— Pour tout scalaire λ ∈ K, le sous-espace propre Eλ(f) est stable par f .

Proposition 6.4. Soient f et g deux endomorphismes de E tels que g ◦ f = f ◦ g. Alors
les sous-espaces Ker(g) et Im(g) sont stables par f .
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Démonstration. Soit v ∈ Ker(g). Alors g(f(v)) = f(g(v)) = f(0E) = 0E donc f(v) ∈
Ker(g) et Ker(g) est stable par f .

Soit v ∈ Im(g). Alors il existe w ∈ E tel que v = g(w). On a donc f(v) = f(g(w)) =
g(f(w)) de sorte que f(v) ∈ Im(g). Ainsi Im(g) est stable par f .

6.2 Endomorphisme induit

Soit F ⊂ E un sous-espace vectoriel stable par f . On note fF l’endomorphisme de
F défini par fF (v) = f(v) pour tout v ∈ F . Notons que fF est bien défini puisque F est
stable par f . On l’appelle l’endomorphisme de F induit par f .

Remarquons que si f, g ∈ L(E) et si F est stable par f et g, alors pour tout λ ∈ K
le sous-espace F est stable par f + λg et par g ◦ f , et on a

(f + λg)F = fF + λgF , (g ◦ f)F = gF ◦ fF .

Exemple 6.5. Soit E un espace vectoriel de dimension 4 et soit B = (v1, v2, v3, v4) une
base de E. Soit f ∈ L(E) tel que

MatB(f) =


1 2 3 5
0 7 3 0
0 −1 −2 0
4 −3 6 −2

 .

Soit F = Vect(v1, v4) et soit BF = (v1, v4) une base de F . Alors F est stable par f et

MatBF
(fF ) =

(
1 5
4 −2

)
.

Remarque 6.6. Remarquons de plus que si v est un vecteur propre de fF , alors v est
un vecteur propre de f et que Sp(fF ) ⊂ Sp(f).

6.3 Matrices triangulaires par blocs

Proposition 6.7. Soit E un K-espace vectoriel de dimension finie. Soit f ∈ L(E) un
endomorphisme de E. Soit B = (v1, . . . , vn) une base de E. Soit 1 ⩽ r ⩽ n et posons
F = Vect(v1, . . . , vr) et BF = (v1, . . . , vr). Alors le sous-espace F est stable par f si et
seulement si la matrice MatB(f) est de la forme(

A B
0n−r,r D

)

avec A ∈ Mr(K), B ∈ Mr,n−r(K) et D ∈ Mn−r(K). Dans ce cas on a de plus
A = MatBF

(fF ).
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Démonstration. Notons ai,j les coefficients de la matrice MatB(f). Alors, pour tout 1 ⩽
j ⩽ n, on a

f(vj) =
n∑

i=1
ai,jvi.

Ainsi F est stable par f si et seulement si, pour tout 1 ⩽ j ⩽ r, f(vj) ∈ F , c’est-à-dire
ai,j = 0 pour r + 1 ⩽ i ⩽ n.

Corollaire 6.8. Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E). Soit
F u sous-espace vectoriel de E. Si F est stable par f , le polynôme caractéristique de fF

divise le polynôme caractéristique de f :

χfF
(X) | χf (X).

Démonstration. Soit (v1, . . . , vr) une base de F . On peut la compléter en une base B =
(v1, . . . , vn) de E. On a alors

M = MatB(f) =
(

A B
0 D

)

avec A = Mat(v1,...,vr)(fF ). On a alors

χf (X) = χM (X) = det(XIn−M) = det(XIr−A) det(XIn−r−D) = χfF
(X) det(XIn−r−D).

Ainsi χfF
(X) divise χf (X) dans K[X].

6.4 Rappels sur les polynômes

Voir cours de première année.

6.5 Polynômes d’endomorphismes

Soit A ∈ Mn(K). Si P (X) =
∑n

i=0 aiX
i ∈ K[X], on pose

P (A) =
n∑

i=0
aiA

i ∈ Mn(K)

avec la convention A0 = In si A ̸= 0n et 00
n = 0n.

Exemple 6.9. Prenons A =
(

1 1
1 1

)
et P (X) = X2 + X + 1. On a alors

P (A) =
(

2 2
2 2

)
+
(

1 1
1 1

)
+
(

1 0
0 1

)
=
(

4 3
3 4

)
.
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On peut remplacer A par un endomorphisme f d’un espace vectoriel E en remplaçant
An par

fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n

.

Par convention, on pose f0 = IdE .
Soit P =

∑n
i=0 aiX

i ∈ K[X] un polynôme. On définit alors

P (f) :=
n∑

i=0
aif

i ∈ L(E).

L’application de K[X] vers L(E) définie par P 7→ P (f) est linéaire, ce qui signifie
que, pour P et Q dans K[X] et λ ∈ K, on a (P + λQ)(f) = P (f) + λQ(f). On a
également, pour P et Q dans K[X],

(PQ)(f) = P (f) ◦ Q(f) = Q(f) ◦ P (f).

Remarque 6.10. Si E est un espace vectoriel de dimension finie et si B est une base
de E, on a les relations

P (MatB(f)) = MatB P (f).

On peut déduire de cette formule que pour P (X) ∈ K[X], A, B ∈ Mn(K) avec B
inversible,

P (BAB−1) = BP (A)B−1.

Corollaire 6.11. Soit f ∈ L(E) et soit P (X) ∈ K[X]. Alors Ker(P (f)) et Im(P (f))
sont des sous-espaces vectoriels de E stables par f .

Démonstration. En effet, f commute avec P (f).

6.6 Polynômes annulateurs

Soit E un K-espace vectoriel et soit f ∈ L(E) un endomorphisme de E. Un polynôme
P ∈ K[X] est dit annulateur de f si P (f) = 0L(E).

Remarque 6.12. Si P est annulateur de f , alors PQ aussi pour tout Q ∈ K[X]. En
effet, on a alors

(PQ)(f) = P (f) ◦ Q(f) = 0L(E) ◦ Q(f) = 0L(E).

Exemple 6.13. 1) Si λ ∈ K, alors (X − λ) et X(X − λ) sont des polynômes annu-
lateurs de l’endomorphisme λIdE .

2) Si A =
(

a b
c d

)
∈ M2(K), alors X2 − (a + d)X + ad − bc est annulateur de A.
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Proposition 6.14. Soit E un K-espace vectoriel de dimension finie. Alors tout endo-
morphsime f de E possède un polynôme annulateur non nul.

Démonstration. Le K-espace vectoriel L(E) est de dimension n2 où n = dim E. La
famille (IdE , f, f2, . . . , fn2) est donc liée. Il existe donc des scalaires a0, a1, . . . , an2 ∈ K
non tous nuls tels que

a0IdE + a1f + · · · + an2fn2 = 0L(E).

Ainsi f est annulé par le polynôme non nul a0 + a1X + · · · + an2Xn2 .

Corollaire 6.15. Soit A ∈ Mn(K). Alors il existe un polynôme non nul P ∈ K[X] tel
que P (A) = 0.

Théorème 6.16. Soit E un K-espace vectoriel et soit f ∈ L(E). Soit P ∈ K[X] un
polynôme annulateur de f , non nul et de degré minimal parmi les polynômes annulateurs
non nuls de f . Alors Q ∈ K[X] annule f si et seulement si P divise Q dans K[X].

Démonstration. On a déjà vu que si P divise Q, alors Q(f) = 0L(E). Montrons l’im-
plication réciproque. Supposons que Q(f) = 0L(E) et effectuons la division euclidienne
de Q par P . On a donc Q = PR + S avec R, S ∈ K[X] et deg S < deg P . Comme
Q(f) = P (f) = 0L(E), on a aussi S(f) = 0L(E). Comme deg S < deg P et comme P est
de degré minimal parmi les polynômes annulateurs non nuls de f , on a nécessairement
S = 0, c’est-à-dire que P divise Q.

Corollaire 6.17. Soit E un K-espace vectoriel de dimension finie. Alors il existe un
unique polynôme unitaire annulant f et de degré minimal parmi les polynômes annula-
teurs non nuls de f .

Démonstration. Supposons que P1 et P2 sont deux tels polynômes. Par minimalité de
leur degré, on a deg P1 = deg P2. De plus le théorème implique que P1 divise P2. On
peut écrire P2 = P1Q avec deg Q = 0. Ainsi Q est un polynôme constant de valeur λ.
Comme P1 et P2 sont unitaires, λ = 1 et P1 = P2.

Corollaire 6.18. Soit n ⩾ 1 un entier et soit A ∈ Mn(K). Alors il existe un unique
polynôme unitaire annulant A et de degré minimal parmi les polynômes annulateurs non
nuls de A.

Définition 6.19. Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E).
On appelle polynôme minimal de f l’unique polynôme unitaire annulant f et de degré
minimal parmi les polynômes annulateurs non nuls de f . On le note πf (X).

Si n ⩾ 1 et si A ∈ Mn(K), on appelle polynôme minimal de A l’unique polynôme
unitaire annulant A et de degré minimal parmi les polynômes annulateurs non nuls de
A. On le note πA(X).
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On a alors, pour tout Q ∈ K[X],

Q(A) = 0 ⇔ πA|Q.

Exemple 6.20. 1) Soit λ ∈ K non nul et considérons f = λId. Comme f est non
nul, f n’est pas annulé par un polynôme de degré 0. Par contre le polynôme unitaire
X − λ, de degré 1 annule f , on a donc πf (X) = X − λ.

2) Pour un endomorphisme f , on a deg(πf ) = 0 si et seulement si f = 0L(E). En
effet dans ce cas πf = 1.

3) On a deg(πf ) = 1 si et seulement si f est une homothétie non nulle. Dans ce cas
on a en effet πf (X) = X − λ. Comme πf (f) = 0L(E), on a bien f = λIdE .

4) Considérons A =

1 1 1
1 1 1
1 1 1

. Comme A n’est pas une matrice d’homothétie, on a

deg(π1) ⩾ 2. Par ailleurs A2 = 3A. Ainsi A est annulée par X2−3X et πA(X) = X2−3X.

6.7 Le lemme des noyaux

Soit E un K-espace vectoriel et soit f ∈ L(E).

Théorème 6.21. Soient P et Q deux polynômes de K[X] premiers entre eux. On a
alors

Ker((PQ)(f)) = Ker(P (f)) ⊕ Ker(Q(f)).

Démonstration. Montrons dans un premier temps que Ker(P (f)) ∩ Ker(Q(f)) = {0E}.
Soit v ∈ Ker(P (f)) ∩ Ker(Q(f)). Comme P et Q sont premiers entre eux, le théorème
de Bezout implique qu’il existe deux polynômes A, B ∈ K[X] tels que AP + BQ = 1.
En appliquant cette égalité à f , on obtient

IdE = A(f) ◦ P (f) + B(f) ◦ Q(f).

On en déduit que

v = A(f)(P (f)(v)) + B(f)(Q(f)(v)) = A(f)(0E) + B(f)(0E) = 0E .

Ainsi Ker(P (f)) ∩ Ker(Q(f)) = {0E}.
Montrons à présent que Ker(P (f)) ⊂ Ker((PQ(f))). Soit v ∈ Ker(P (f)). On a alors

(PQ)(f)(v) = (Q(f) ◦ P (f))(v) = Q(f)(P (f)(v)) = Q(f)(0E) = 0E .

Ainsi v ∈ Ker((PQ)(f)). On en déduit que Ker(P (f)) ⊂ Ker((PQ(f))).
On montre de même que Ker(Q(f)) ⊂ Ker((PQ(f))) de sorte que

Ker(P (f)) + Ker(Q(f)) ⊂ Ker((PQ(f))).

50



Montrons enfin que Ker((PQ)(f)) ⊂ Ker(P (f))+Ker(Q(f)). Soit v ∈ Ker((PQ)(f)).
Rappelons que l’on a

v = (AP )(f)(v) + (BQ)(f)(v).

Posons v1 = (BQ)(f)(v) et v2 = (AP )(f)(v). Il suffit de montrer que v1 ∈ Ker(P (f)) et
v2 ∈ Ker(Q(f)) pour conclure que v ∈ Ker(P (f)) + Ker(Q(f)). Or on a

P (f)(v1) = (P (f)◦(BQ)(f))(v) = (PBQ)(f)(v) = B(f)((PQ)(f)(v)) = B(f)(0E) = 0E .

Ainsi v1 ∈ Ker(P (f)). On montre de façon analogue que v2 ∈ Ker(Q(f)).

Corollaire 6.22. Soient P1, . . . , Pr ∈ K[X] des polynômes premiers entre eux deux à
deux. On a alors

Ker((P1P2 · · · Pr)(f)) = Ker(P1(f)) ⊕ · · · ⊕ Ker(Pr(f)).

Démonstration. La démonstration se fait par récurruence sur r en utilisant le théorème.

6.8 Un critère de diagonalisabilité

Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E).

Théorème 6.23. Les assertions suivantes sont équivalentes :
(i) l’endomorphisme f est diagonalisable ;
(ii) l’endomorphisme f est annulé par un polynôme scindé à racines simples ;
(iii) le polynôme minimal de f est scindé à racines simples.

Démonstration. Montrons que (i) implique (ii). Supposons f diagonalisable et posons
Sp(f) = {λ1, . . . , λr} avec λ1, . . . , λr distinctes. Posons P =

∏r
i=1(X − λi). Montrons

que P (f) = 0L(E). Comme f est diagonlisable, on a

E = Eλ1(f) ⊕ · · · ⊕ Eλr (f).

Soit 1 ⩽ i ⩽ r. On peut écrire P = Qi(X)(X − λi) avec Qi(X) =
∏

j ̸=i(X − λj). Si
v ∈ Eλi

(f), on a

P (f)(v) = Qi(f)((f − λiId)(v)) = Qi(f)(0E) = 0E .

Plus généralement, pour tout v ∈ E, on peut écrire

v = v1 + · · · + vr

avec vi ∈ Eλi
(f) pour tout 1 ⩽ i ⩽ r et on a

P (f)(v) = P (f)(v1) + · · · + P (f)(vr) = 0E .
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Comme P (f)(v) = 0E pour tout v ∈ E, on a bien P (f) = 0L(E).
Montrons que (ii) implique (iii). Supposons donc que f est annulé par un polynôme

scindé à racines simples P (X). Alors d’après le théorème 6.16, le polynôme minimal
πf (X) de f divise P (X), ce qui implique que πf (X) est également scindé à racines
simples.

Montrons que (iii) implique (i). En supposant (iii), on peut écrire πf (X) = (X −
λ1) · · · (X − λr) avec les λi distincts. En particulier les polynômes X − λi sont deux à
deux distincts. Comme πf (f) = 0L(E), le lemme des noyaux implique alors qu’on a

E = Ker(πf (f)) =
r⊕

i=1
Ker(f − λiIdE) =

r⊕
i=1

Eλi
(f).

On en conclut, en utilisant le théorème 4.24, que f est diagonalisable.

Corollaire 6.24. Soit A ∈ Mn(K) une matrice carrée. Les assertions suivantes sont
équivalentes :

(i) la matrice A est diagonalisable sur K ;
(ii) la matrice A est annulé par un polynôme scindé à racines simples de K[X] ;
(iii) le polynôme minimal de A est scindé à racines simples dans K[X].

Proposition 6.25. Les racines du polynôme minimal πf sont exactement les valeurs
propres de f .

Démonstration. Supposons que λ ∈ Sp(f). Il existe alors v ∈ E, v ̸= 0E tel que f(v) =
λv. On a alors, pour tout n ⩾ 1, fn(v) = λnv et donc, pour tout P ∈ K[X], P (f)(v) =
P (λ)v. En particulier, comme πf (f) = 0L(E), on a πf (λ)v = 0E et donc, puisque v ̸= 0E ,
πf (λ) = 0.

Réciproquement supposons que πf (λ) = 0. On peut écrire πf (X) = (X − λ)Q(X)
avec deg Q = deg πf − 1. On a alors

0L(E) = πf (f) = (f − λIdE) ◦ Q(f).

Comme deg Q < deg πf et Q ̸= 0, on a Q(f) ̸= 0L(E). En particulier l’endomorphisme
f −λIdE n’est pas inversible. On déduit alors du théorème du rang que Eλ(f) = Ker(f −
λIdE) ̸= 0. Ainsi λ est valeur propre de f .

Corollaire 6.26. Soit A ∈ Mn(A). Les racines du polynôme minimal πA dans K sont
exactement les valeurs propres de A dans K.

Corollaire 6.27. Soit P un polynôme annulateur de f , alors les valeurs propres de f
sont des racines de P .
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7 Trigonalisation

7.1 Endomorphismes trigonalisables

Soit E un espace vectoriel de dimension finie et soit f ∈ L(E) un endomorphisme
de E. On dit que f est trigonalisable s’il existe une base B de E telle que MatB(f) est
triangulaire supérieure.

Soit n ⩾ 1 un entier et soit A ∈ Mn(K) une matrice carrée de taille n. On dit que
A est trigonalisable sur K si et seulement s’il existe une matrice inversible P ∈ Mn(K)
telle que P−1AP est triangulaire supérieure.

Remarque 7.1. Soit B une base de E. Alors f est trigonalisable si et seulement si
MatB(f) est trigonalisable sur K.

Théorème 7.2. Une matrice A ∈ Mn(K) est trigonalisable sur K si et seulement si
son polynôme caractéristique est scindé sur K.

Démonstration. Supposons que A est trigonalisable. Il existe alors une matrice inversible
P et une matrice triangulaire supérieure T ∈ Mn(K) telle que A = PTP−1. On a
alors χA = χT . Soit t1,1, . . . , tn,n les entrées diagonales de T . Le calcul du polynôme
caractéristique d’une matrice triangulaire supérieure nous donne

χA = χT =
n∏

i=1
(X − ti,i)

ce qui montre que χA est scindé sur K.
On va montrer par récurrence sur n ⩾ 1 que si χA est scindé sur K, alors A est

trigonalisable sur K. Le cas où n = 1 est trivial car toute matrice est alors trigonalisable
et tout polynôme de degré 1 est scindé. Supposons le résultat démontré au rang n et soit
A ∈ Mn+1(K) telle que χA est scindé. Soit λ ∈ K une racine de χA, c’est-à-dire une
valeur propre de A. Soit v ∈ Kn+1 un vecteur propre de A, c’est-à-dire un vecteur non
nul vérifiant Av = λv. Soit B = (v, v2, . . . , vn+1) une base de Kn+1 et soit P la matrice
de passage de la base canonique à la base B. La matrice P−1AP est alors une matrice
par blocs de la forme

P−1AP =
(

λ B
0n,1 D

)
avec B ∈ M1,n(K) et D ∈ Mn,n(K). De plus on a une factorisation de polynôme
caractéristiques χA(X) = (X − λ)χD(X). Ainsi χD est scindé également. Par récurrence
il existe une matrice inversible Q ∈ Mn(K) telle que Q−1DQ soit triangulaire supérieure.
Posons

Q′ =
(

1 01,n

0n,1 Q

)
∈ Mn+1(K).
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Il s’agit d’une matrice inversible et

(Q′)−1P−1APQ′ =
(

λ B
0n,1 Q−1DQ

)

est une matrice triangulaire supérieure. Ainsi A est trigonalisable, ce qui achève la ré-
currence.

Corollaire 7.3. Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E) un
endomorphisme. Alors f est trigonalisable si et seulement si χf est scindé sur K.

Corollaire 7.4. Si K = C, tout endomorphisme de E est trigonalisable et toute matrice
de Mn(C) est trigonalisable sur C.

Démonstration. Il suffit de remarquer que tout polynôme de C[X] est scindé sur C
d’après le théorème de d’Alembert–Gauss.

7.2 Le théorème de Cayley–Hamilton

Théorème 7.5. Soit A ∈ Mn(K) une matrice carrée. Alors χA(A) = 0.

Démonstration. Comme Mn(Q) ⊂ Mn(R) ⊂ Mn(C), il suffit de prouver le théorème
lorsque K = C. On suppose donc que K = C. La matrice A est alors trigonalisable, cela
signifie qu’il existe une matrice inversibel P ∈ Mn(C) telle que P−1AP est triangulaire
supérieure. Comme χA = χP −1AP , il suffit de démontrer par récurrence sur n ⩾ 1 que
χA(A) = 0 pour A ∈ Mn(K) matrice triangulaire supérieure. Si n = 1, c’est évident car
A = aI1 et χA = X −a. Supposons donc le résultat démontré au rang n et démontrons-le
au rang n+1. Soit A ∈ Mn+1(K) triangulaire supérieure. On écrit A comme une matrice
triangulaire par blocs

A =
(

λ B
0n,1 D

)
avec B ∈ M1,n(K) et D ∈ Mn(K) triangulaire supérieure. Par récurrence on a χD(D) =
0. De plus χA = (X − λ)χD. On a alors

χA(A) = (A − λIn+1)χD(A) =
(

0 B
0n,1 D − λIn

)
·
(

χD(λ) B′

0n,1 0n,n

)
=
(

0 01,n

0n,1 0n,n

)
.

Corollaire 7.6. Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E). Alors
χf (f) = 0L(E).
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7.3 Endomorphismes nilpotents

Soit E un K-espace vectoriel. Un endomorphisme f de E est dit nilpotent s’il existe
un entier n ⩾ 0 tel que fn = 0L(E).

De même si A ∈ Mn(K) est une matrice carrée, on dit que A est nilpotente s’il existe
un entier n ⩾ 0 tel que An = 0.

Remarque 7.7. Soit B une base de E. Il est clair que f est nilpotent si et seulement si
MatB(f) est nilpotente.

Théorème 7.8. Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E) un
endomorphisme de E. Les assertions suivantes sont équivalentes :

(i) l’endomorphisme f est nilpotent ;
(ii) le polynôme minimal de f est de la forme Xn pour un entier 1 ⩽ n ⩽ dim E ;
(iii) il existe une base B de E telle que MatB(f) est triangulaire supérieure avec des

zéros sur la diagonale ;
(iv) le polynôme caractéristique de f est égal à Xdim E.

Démonstration. Montrons que (i) implique (ii). Si f est nilpotent, il existe un entier m
tel que fm = 0L(E). Cela signifie que f est annulé par Xm. Ainsi le polynôme minimal
de f divise Xm. Il doit donc être de la forme Xk avec k ⩽ m.

L’implication (ii) implique (i) est évidente car le polynôme minimal est un polynôme
annulateur de f .

Montrons que (i) implique (iii). Soit n = dim E et soit m l’indice de nilpotence de
f . On note ir = dim Ker f r pour 1 ⩽ r ⩽ m. On construit alors une base de E de la
façon suivante : on choisit une base B = (e1, . . . , ei1) de Ker f que l’on complète en une
base (e1, . . . , ei2) de Ker f2 etc. jusqu’à obtenir une base (e1, . . . , en) de E = Ker fm telle
que, pour tout 1 ⩽ j ⩽ r, ei ∈ Ker f j pour i ⩽ ij . En particulier, si ij−1 < i ⩽ ij , on a
ei ∈ Ker(f j) et donc

f(ei) ∈ Ker f j−1 = Vect(e1, . . . , eij−1) ⊂ Vect(e1, . . . , ei−1).

Ainsi MatB(f) est triangulaire supérieure avec des 0 sur la diagonale.
Montrons que (iii) implique (iv). Soit B une base de E telle que MatB(f) est trian-

gulaire supérieure avec des zéros sur la diagonale. Alors

χf = χMatB(f) = Xdim E .

Enfin (iv) implique (i) en utilisant le théorème de Cayley–Hamilton.

Corollaire 7.9. Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E).
Supposons qu’il existe λ ∈ K et n ⩾ 1 tels que (f − λIdE)n = 0L(E). Alors f esr
trigonalisable.
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Démonstration. En effet on déduit du théorème 7.16 que f − λIdE est nilpotent et donc
trigonalisable. Ainsi f est trigonalisable.

7.4 Sous-espaces caractéristiques

Soit E un K-espace vectoriel et soit f ∈ L(E). Soit λ ∈ K un scalaire. On appelle
sous-espace caractéristique de f associé à λ le sous-espace vectoriel

Fλ(f) = {v ∈ E | ∃n ⩾ 0, (f − λIdE)n(v) = 0E} =
⋃

n⩾0
Ker((f − λIdE)n).

On remarque que l’on a (f − λIdE)n = P (f) avec P (X) = (X − λ)n, ainsi chaque sous-
espace Ker((f − λIdE)n) est stable par f et Fλ(f) est donc aussi un sous-espace stable
par f .

Proposition 7.10. Si E est de dimension finie, il existe n ⩾ 0 tel que Fλ(f) = Ker((f −
λIdE)n).

Démonstration. En effet on a Ker((f − λIdE)n) ⊂ Ker((f − λIdE)n+1) pour tout n ⩾ 0.
La suite de sous-espaces vectoriels (Ker((f − λIdE)n))n⩾0 est donc croissante, de même
que la suite d’entiers (dim Ker((f − λIdE)n))n⩾0. Or cette dernière suite est bornée par
dim E. Elle est donc constante pour n assez grand, ce qui implique que la suite de
sous-espaces (Ker((f − λIdE)n))n⩾0 est constante pour n assez grand. Ceci implique le
résultat.

Supposons désormais E est de dimension finie et notons qλ le plus petit entier tel
que Fλ(f) = Ker((f − λIdE)qλ).

Nous allons à présent donner une autre caractérisation de l’entier qλ.

Lemme 7.11. Soit E un espace vectoriel et soit f un endomorphisme de E. Soit n ⩾ 0
un entier. Supposons que Ker(fn) = Ker(fn+1). Alors Ker(fm) = Ker(fn) pour tout
m ⩾ n.

Démonstration. En raisonnant par récurrence, on se ramène à montrer que Ker(fn+2) =
Ker(fn+1). Soit v ∈ Ker(fnn + 2) et posons w = f(v). Alors w ∈ Ker(fn+1) = Ker(fn).
Ainsi fn(w) = 0E , ce qui implique fn+1(v) = 0E et donc v ∈ Ker(fn+1).

Proposition 7.12. L’entier qλ est le plus petit entier tel que Ker((f − λIdE)qλ) =
Ker((f − λIdE)qλ+1).

Démonstration. On applique simplement le lemme 7.11 à f − λIdE .

Proposition 7.13. On a Eλ(f) ̸= {0E} si et seulement si Fλ(f) ̸= {0E}.
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Démonstration. On a Eλ(f) ⊂ Fλ(f) pour tout λ ∈ K donc Eλ(f) ̸= {0E} implique
Fλ(f) ̸= 0E . Réciproquement supposons Eλ(f) = {0E}. Alors {0E} = Ker(f − λIdE)0 =
Ker(f −λIdE) et donc Ker(f −λIdE)n = {0E} pour tout n ⩾ 0, donc Fλ(f) = {0E}.

Ainsi les sous-espaces caractéristiques Fλ(f) sont non nuls exactement pour λ ∈
Sp(f).

Proposition 7.14. Les sous-espaces caractéristiques de f sont en somme directe.

Démonstration. Pour tout λ ∈ Sp(f), il existe un entier qλ tel que Fλ(f) = Ker((f −
λIdE)qλ). Comme les polynômes (X − λ)qλ sont premiers entre eux deux-à-deux, on
déduit du lemme des noyaux (corollaire 6.22) que

Ker(
∏

λ∈Sp(f)
(f − λIdE)qλ) =

⊕
λ∈Sp(f)

Ker((f − λIdE)qλ).

Ainsi les sous-espaces caractéristiques sont en somme directe.

7.5 Multiplicité d’une valeur propre

Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E). Si λ est une valeur
propre de f , on appelle multiplicité algébrique de λ la multiplicité de λ comme racine
du polynôme caractéristique de f . On la note ma(λ)

On appelle multiplicité géométrique de la valeur propre λ l’entier dim Eλ(f). On la
note mg(λ).

Proposition 7.15. Soit λ une valeur propre de f . On a alors

Fλ(f) = Ker((f − λIdE)ma(λ)).

Autrement dit ma(λ) ⩾ qλ.

Démonstration. Par définition de Fλ(f), on a Ker((f − λIdE)mq(λ)) ⊂ Fλ(f). Prouvons
l’inclusion réciproque. On peut écrire χf (X) = (X − λ)ma(λ)Q(X) avec Q(λ) ̸= 0. Le
corollaire 6.22 et le corollaire 7.6 nous donnent une décomposition E = Ker(χf (f)) =
Ker((f − λIdE)ma(λ)) ⊕ Ker(Q(f)) de sorte que dim E = dim Ker((f − λIdE)ma(λ)) +
dim Ker(Q(f)). Posons V = Fλ(f)∩Ker(Q(f)). Comme Fλ(f) et Ker(Q(f)) sont stables
par f , il en est de même de V . Considérons fV ∈ L(V ). On a alors Q(fV ) = 0L(V ), ce
qui implique (par le corollaire 6.27) que λ n’est pas valeur propre de fV . Ainsi fV −λIdV

est un endomorphisme inversible de V . Comme par ailleurs il existe un entier N ⩾ 1 tel
que (fFλ(f) − λIdFλ(f))N = 0L(Fλ(f), on a (fV − λIdV )N = 0L(V ), de sorte que fV − λIdV

n’est pas injective. Ceci n’est possible que si V = {0E}. Ainsi les sous-espaces Fλ(f) et
Ker(Q(f)) sont en somme directe. On a donc

dim Fλ(f) =⩽ dim(E) − dim Ker(Q(f)) = dim(Ker((f − λIdE)ma(λ))).
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Comme Ker((f − λIdE)ma(λ) ⊂ Fλ(f), on a dim Ker((f − λIdE)ma(λ) = dim Fλ(f) et
donc Ker((f − λIdE)ma(λ) = Fλ(f).

Théorème 7.16. Soit λ une valeur propre de f . Alors la multiplicité algébrique de f
est égale à la dimension du sous-espace caractéristique de λ. En particulier on a

mg(λ) ⩽ ma(λ).

Démonstration. Soit F = Fλ(f). Il s’agit d’un sous-espace stable par f , soit fF l’endo-
morphisme de F induit par f . Par définition de Fλ(f), l’endomorphisme fF est annulé
par (X−λ)qλ . On en déduit que πF (X) divise (X−λ)qλ . Ainsi λ est l’unique valeur propre
de fF et fF − λIdF est nilpotent. On déduit du théorème 7.8 que χfF−λIdF

= Xdim F et
donc χfF

= (X − λ)dim F . Soit m la multiplicité algébrique de λ. On peut alors écrire
χf (X) = (X −λ)mQ(X) avec Q(λ) ̸= 0. Ainsi les polynômes (X −λ)m et Q(X) sont pre-
miers entre eux. Le théorème de Cayley–Hamilton, le lemme des noyaux et la proposition
7.15 impliquent donc que

E = Ker(χf (f)) = Ker((f − λIdE)m) ⊕ Ker(Q(f)) = Fλ(f) ⊕ Ker(Q(f)).

On a donc prouvé que E = F ⊕ S où S = Ker(Q(f)) est un supplémentaire stable par
f tel que λ n’est pas valeur propre de fS . On a donc

χf = χfF
χfS

.

Comme χfS
(λ) ̸= 0 et χfF

= (X − λ)dim F , on en déduit que m = dim Fλ(f).

Corollaire 7.17. Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E). Les
assertions suivantes sont équivalentes.

(i) L’endomorphisme f est diagonalisable.
(ii) Le polynôme caractéristique χf est scindé et, pour tout racine λ de χf , la mul-

tiplicité géométrique de λ est égale à sa multiplicité algébrique.
(iii) Le polynôme caractéristique χf est scindé et, pour tout racine λ de χf , on a

Eλ(f) = Fλ(f).

Démonstration. Supposons que χf est scindé. Alors le corollaire 6.22 et le corollaire 7.6
impliquent que

E =
⊕

λ∈Sp(f)
Fλ(f).

De plus, comme Eλ(f) ⊂ Fλ(f), la multiplicité algébrique de λ est égal à sa multiplicité
géométrique si et seulement si Eλ(f) = Fλ(f). On en déduit le résultat.

Théorème 7.18. L’endomorphisme f est trigonalisable si et seulement si

E =
⊕

λ∈Sp(f)
Fλ(f).
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Démonstration. Supposons dans un premier temps que f est trigonalisable. D’après le
corollaire 7.3, le polynôme χf (X) est scindé. On peut donc écrire χf (X) =

∏
λ(X −

λ)ma(λ. Le lemme des noyaux et le théorème de Cayley–Hamilton impliquent alors que

E = Ker(χf (f)) =
⊕

λ∈Sp(f)
Ker((f − λIdE)ma(λ)) =

⊕
λ∈Sp(f)

Fλ(f)

en utilisant la proposition 7.15.
Réciproquement supposons que E est égal à la somme directe des sous-espaces Fλ(f).

La restriction de f à Fλ(f) est annulée par (X − λ)ma(λ) d’après la proposition 7.15. On
déduit du corollaire 7.9 que fFλ(f). Alors E est somme directe de sous-espaces stables
par f sur lesquels f est trigonalisable. On en déduit que f est trigonalisable.

Corollaire 7.19. L’endomorphisme f est trigonalisable si et seulement si il est annulé
par un polynôme scindé.

Démonstration. Si f est trigonalisable, alors f est annulé par χf (X) qui est scindé
d’après le corollaire 7.3. Réciproquement si f est annulé par un polynôme scindé P (X) =∏

λ(X − λ)mλ , alors le lemme des noyaux implique que

E = Ker(P (f)) =
⊕

λ

Ker((f − λIdE)mλ).

Ainsi E est égal à la somme de ses sous-espaces caractéristiques et donc f est trigonali-
sable d’après le théorème 7.18.

7.6 Décomposition de Dunford–Jordan d’un endomorphisme trigona-
lisable

Théorème 7.20. Soit E un K-espace vectoriel de dimension finie et soit f ∈ L(E)
un endomorphisme trigonalisable. On peut alors décomposer f , de façon unique, sous
la forme f = d + n où d est un endomorphisme diagonalisable et n un endomorphisme
nilpotent tels que d ◦ n = n ◦ d.

Démonstration. On commence par décomposer E sous la forme

E =
⊕

λ∈Sp(f)
Fλ(f).

Chaque sous-espace caractéristique Fλ(f) est alors stable par f . L’endomorphisme nλ =
fFλ(f) − λIdFλ(f) est alors un endomorphisme nilpotent de Fλ(f).

Soit v ∈ E. On peut écrire v, de façon unique, sous la forme v =
∑

λ∈Sp(f) vλ avec
vλ ∈ Fλ(f). On pose alors

d(v) =
∑

λ∈Sp(f)
λvλ.
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On vérifie facilement que d est un endomorphisme de E. De plus d est diagonalisable car
tout vecteur de Fλ(f) est vecteur propre de d et E est égal la somme des sous-espaces
Fλ(f).

On pose alors n = f − d. Montrons que n est nilpotent. Chaque sous-espace Fλ(f)
est stable par f et par d, il est donc stable par n et on a nFλ(f) = nλ. Comme tout
vecteur de E est somme de vecteurs appartenant aux différents Fλ(f), il suffit de vérifier
qu’il existe un entier m ⩾ 1 tel que, pour tout λ ∈ Sp(f) et pour tout v ∈ Fλ(f), on a
nm(v) = 0E . Si v ∈ Fλ(f), on a donc n(v) = nλ(v) et, puisque nλ est nilpotent, il existe
mλ ⩾ 1 tel que nmλ

λ = 0L(Fλ(f)). Posons m = max{mλ | λ ∈ Sp(f)}. On a alors, pour
tout λ ∈ Sp(f) et pour tout v ∈ Fλ(f), nm(v) = 0E , ce qu’il fallait démontrer.

Vérifions enfin que d ◦ n = n ◦ d. Comme tout vecteur de E est somme de vecteurs
appartenant aux différents Fλ(f), il suffit de vérifier que, pour tout λ ∈ Sp(f) et pour
tout v ∈ Fλ(f), on a

d(n(v)) = n(d(n)).
Or Fλ(f) est stable par n, donc n(v) ∈ Fλ(f). Ainsi

d(n(v)) = λ(n(v)) = n(λv) = n(d(v)).

On admet l’unicité de la décomposition.

Corollaire 7.21. Soit A ∈ Mn(C). On peut alors décomposer A, de façon unique, sous
la forme A = B + N où B est une matrice diagonalisable et N une matrice nilpotente
telles que BN = NB.

8 Exponentielles de matrices

Dans cette partie on suppose que K = R ou = C.

8.1 Définition

Si A ∈ Mn(R), on admet que la série suivante converge dans Mn(R) (en un sens qui
sera rendu précis dans une UE ultérieure) :∑

n⩾0

An

n! .

On note exp(A) sa limite. Il s’agit de l’exponentielle de la matrice A.

Proposition 8.1. Si A, B ∈ Mn(K) sont deux matrices qui commutent, alors

(A + B)k =
k∑

i=0

(
k

i

)
AiBk−i

pour tout entier k ⩾ 0.
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Démonstration. La preuve se fait de façon immédiate par récurrence.

Remarque 8.2. L’hypothèse de commutation des matrices est indispensable. Par exemple,
si k = 2, on a

(A + B)2 = A2 + AB + BA + B2

de sorte que la formule est valable si et seulement si AB + BA = 2AB, c’est-à-dire si et
seulement si AB = BA.

Proposition 8.3. Si A, B ∈ Mn(K) sont deux matrices qui commutent, alors

exp(A + B) = exp(A) exp(B).

Démonstration. Nous en donnons une preuve en admettant que toutes les inversions de
séries sont bien légitimes (les outils permettant de le vérifier sont hors programme).

exp(A) exp(B) =

∑
m⩾0

Am

m!

∑
n⩾0

Bn

n!


=
∑
k⩾0

1
k!

 ∑
m+n=k

k!
m!n!A

mBn


=
∑
k⩾0

1
k!

 ∑
m+n=k

(
k

m

)
AmBn


=
∑
k⩾0

1
k! (A + B)k = exp(A + B).

Corollaire 8.4. Pour toute matrice A ∈ Mn(K), la matrice exp(A) est une matrice
inversible, d’inverse exp(−A).

Proposition 8.5. Si A ∈ Mn(K) et si P ∈ Mn(K) est inversible, alors

exp(PAP−1) = P exp(A)P−1.

Démonstration.

exp(PAP−1) =
∑
k⩾0

1
k! (PAP−1)k

=
∑
k⩾0

P
1
k!A

kP−1

= P

∑
k⩾0

Ak

k!

P−1

= P exp(A)P−1

(une justification rigoureuse de la dernière étape est hors programme).
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Supposons à présent que la matrice A ∈ Mn(A) est trigonalisable. On peut donc
l’écrire sous la forme A = B + N avec B diagonalisable et N nilpotente telles que
BN = NB. On a alors exp(A) = exp(B) exp(N).

La matrice exp(N) est simple à calculer. En effet, si m désigne l’indice de nilpotence
de N , alors

exp(N) = In + N + · · · + Nm−1

(m − 1)! .

On peut calculer exp(B) de la façon suivante. Comme B est diagonalisable, il existe
une matrice P inversible telle que D = P−1BP est diagonale. On a alors exp(B) =
P exp(D)P−1 et le calcul de exp(D) se fait terme à terme :

exp




λ1 0 · · · 0
0 λ2 · · · 0
... . . . . . . ...
0 · · · 0 λn


 =


eλ1 0 · · · 0
0 eλ2 · · · 0
... . . . . . . ...
0 · · · 0 eλn

 .

On peut aussi commencer par décomposer A sous la forme A = PTP−1 avec T
triangulaire supérieure et utiliser la formule

exp(A) = P exp(T )P−1.

8.2 Application aux équations différentielles linéaires

On suppose toujours que K = R ou K = C. On admet le théorème suivant.

Théorème 8.6. Soit A ∈ Mn(K). Pour tout X0 ∈ Kn, il existe un unique n-uplet
(x1, . . . , xn) d’applications de classe C1 de R dans K tel que, pour tout t ∈ R,x′1(t)

...
x′n(t)

 = A

x1(t)
...

xn(t)

 ,

x1(0)
...

xn(0)

 = X0.

De plus, on a, pour tout t ∈ R, x1(t)
...

xn(t)

 = exp(tA)X0.

Exemple 8.7. Supposons que A ∈ M2(R) est trigonalisable et non diagonalisable avec
une unique valeur propre λ. Il existe alors une matrice inversible P ∈ M2(R) telle que

B = P−1AP =
(

λ 1
0 λ

)
.
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On a alors, pour tout t ∈ R,

exp(tB) = exp
(

tλ 0
0 tλ

)
exp

(
0 t
0 0

)
=
(

eλt 0
0 eλt

)(
1 t
0 1

)
=
(

eλt teλt

0 eλt

)
.

Soit X une application de R dans R2 telle que X ′(t) = AX(t) pour tout t ∈ R et
X(0) = X0. Posons Y (t) = P−1X(t) et Y0 = P−1X0. Cette application vérifie l’équation
différentielle Y ′(t) = BY (t) de sorte que

Y (t) = exp(tB)Y0 =
(

eλt teλt

0 eλt

)(
y1
y2

)
=
(

eλty1 + teλty2
eλty2

)
.

9 Un petit complément sur la trace

Soit A = (ai,j)1⩽i⩽n
1⩽j⩽n

∈ Mn(K). La trace de A est le scalaire

Tr(A) =
n∑

i=1
ai,i.

Pour A et B dans Mn(K), on a Tr(AB) = Tr(BA). En particulier si P ∈ GLn(K),
alors

Tr(PAP−1) = Tr(A).

Théorème 9.1. Soit A ∈ Mn(K) une matrice trigonalisable. On a alors

Tr(A) =
∑

λ∈Sp A

malg(λ)λ, det(A) =
∏

λ∈Sp A

λmalg(λ).
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