

Licence 1 Mathématiques Informatique.

ANALYSE 1 POUR L'INFORMATIQUE

Christophe Poquet

Année universitaire 2025/2026

Table des matières

Table des matières				
1	Non	nbres réels	5	
	1	Ensembles de nombres	5	
	2	Opérations et relation d'ordre dans		
		l'ensemble des réels	9	
	3	Valeur absolue	13	
	4	Intervalles de \mathbb{R}	15	
	5	Majorant, minorant, borne infé-		
		rieure, borne supérieure	17	
2	Fon	ctions réelles	21	
	1	Fonctions et graphes	21	
	2	Fonctions injectives, surjectives, bi-		
		jectives	24	
	3	Image directe, image réciproque	31	

	4	Opérations sur les fonctions.	34
	5	Propriétés des fonctions et de leur	
		graphe	36
	6	Limite en un point, continuité, déri-	
		vabilité	41
3	Fond	ctions usuelles	45
	1	Fonctions polynomiales	45
	2	Fonction partie entière	46
	3	Fonctions trigonométriques	48
	4	Fonctions trigonométriques réci-	
		proques	52
	5	Fonctions exponentielle et logarithme	56
	6	Fonctions hyperboliques	61
	7	Fonctions puissance	64
	8	Croissance comparée	65
4	Suite	es réelles	67
	1	Définitions	67
	2	Suites classiques	70
	3	Convergence de suite	73
	4	Opérations sur les limites	78
	5	Limites de suites et inégalités	81
	6	Convergence et monotonie	84
	7	Suites extraites	87
	8	Limites infinies	89

	9	Comparaison de suites	98
	10	Suites de Cauchy	102
5	Con	tinuité	103
	1	Limite de fonction	103
	2	Continuité	112
	3	Théorème des valeurs intermé-	
		diaires et image continue d'un inter-	
		valle	115
	4	Limite, continuité et monotonie	119
Βi	Bibliographie		

Ce polycopié de cours est issu d'un cours donné de 2023 à 2026 à l'Université Claude Bernard Lyon 1. Il a été rendu plus accessible aux lecteurs dyslexiques en utilisant le travail décrit dans *Making an Accessible Open Logic Textbook (for Dyslexics)* par Richard Zach ¹.

Le code latex pour la présentation du cours de *Topologie et Théorie de la mesure.* par Y. Dabrowski a été utilisé avec permission. Ce code est une adaptation pour les cours de mathématiques du code latex du livre *forallx: Calgary (Accessible)* par P.D. Magnus, Tim Button, Robert Trueman et Richard Zach, utilisé sous licence CC BY 4.0.

^{1.} Voir aussi du même auteur Accessible Open Textbooks in Math-Heavy Disciplines The challenge

Chapitre 1

Nombres réels

1 Ensembles de nombres

Les entiers naturels

L'ensemble № défini par

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\},\$$

est l'ensemble des entiers naturels. Si l'on enlève le 0 on définit $\mathbb{N}^* = \{1, 2, 3, ...\}$ l'ensemble des entiers naturels non nuls.

Les entiers relatifs

En ajoutant les entiers négatifs on définit **l'ensemble** des entiers relatifs par

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

De même, si l'on enlève le 0, on définit $\mathbb{Z}^* = \{\ldots, -3, -2, -1, 1, 2, 3, \ldots\}$ l'ensemble des entiers relatifs non nuls.

Remarque 1.1.

1. On remarque que l'ensemble $\mathbb N$ est **inclus** dans l'ensemble $\mathbb Z$, ce que l'on peut écrire de la manière suivante :

$$\mathbb{N} \subset \mathbb{Z}$$
,

où le symbole \subset se lit « est inclus dans ». En effet, tout élément de $\mathbb N$ est également élément de $\mathbb Z$, ce que l'on peut écrire de la manière suivante :

si
$$n \in \mathbb{N}$$
, alors $n \in \mathbb{Z}$,

où le symbole \in se lit « appartient à ».

- 2. On voit immédiatement que l'inclusion réciproque est fausse, c'est-à-dire $\mathbb{Z} \not\subset \mathbb{N}$, puisque par exemple $-1 \in \mathbb{Z}$ alors que $-1 \not\in \mathbb{N}$.
- 3. Attention à ne pas confondre les symboles \subset et \in !

Les nombres rationnels

On définit **l'ensemble des nombres rationnels** $\mathbb Q$ comme l'ensemble des fractions d'entiers relatifs :

$$\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}^* \right\}.$$

Remarque 1.2.

 Puisque tout entier relatif n peut être écrit sous la forme

$$n=\frac{n}{1}$$
,

on a $\mathbb{Z} \subset \mathbb{Q}$.

2. Un nombre rationnel peut être représenté par différentes fractions, par exemple $\frac{1}{2} = \frac{2}{4} = \frac{4}{8} = \dots$ Plus précisément, pour $a, a' \in \mathbb{Z}$ et $b, b' \in \mathbb{Z}^*$, on a

$$\frac{a}{b} = \frac{a'}{b'}$$
 si et seulement si $ab' = a'b$.

Attention, l'expression « P si et seulement si Q », que l'on peut abréger en « P ssi Q » ou « P ⇔ Q » (voir le cours d'Algèbre 1), signifie deux choses : « si P est vraie alors Q est vraie » et « si Q est vraie alors P est vraie ».

Les nombres décimaux

On définit **l'ensemble des nombres décimaux** D de la manière suivante :

$$\mathbb{D} = \left\{ \frac{a}{10^n} : a \in \mathbb{Z}, n \in \mathbb{N} \right\}.$$

Il s'agit des nombres ayant une suite **finie** de chiffres à droite de la virgule.

Remarque 1.3.

- 1. Tous les éléments de $\mathbb D$ peuvent être écrit sous forme de fraction, et donc $\mathbb D\subset \mathbb Q$.
- L'inclusion réciproque est fausse, puisque certaines fractions ne peuvent être écrites qu'avec une infinité de chiffres après la virgule, comme par exemple

L'ensemble $\mathbb D$ donne un rôle privilégié au nombre 10 (les dix doigts des mains). Du point de vue des mathématiciens, les ensembles $\mathbb Q$ et $\mathbb R$ sont plus importants.

Les nombres réels

L'ensemble $\mathbb R$ des nombres réels est l'ensemble des nombres dont l'écriture décimale est composée de

▶ un signe + ou – (généralement omis lorsque c'est le +),

- une suite finie de chiffres entre 0 et 9, ne commençant pas par 0 ou étant réduite à 0,
- ▶ une virgule,
- ▶ une suite infinie de chiffres entre 0 et 9.

Exemples 1.1

Par exemple 0, 4, -10.3, $\frac{1}{3}$, $\sqrt{2}$, π sont des nombres réels.

Remarque 1.4.

- 1. Attention avec cette définition un réel ne s'écrit pas de manière unique, par exemple 1 = 1.0, 0 = 0.0 = -0 = -0.00, 1 = 0.999999999999...
- 2. On a l'inclusion $\mathbb{Q} \subset \mathbb{R}$, mais l'inclusion réciproque est fausse, on ne peut par exemple pas écrire $\sqrt{2}$ comme $\frac{a}{b}$ avec $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$ (voir le cours d'Algèbre 1).

2 Opérations et relation d'ordre dans l'ensemble des réels

Dans l'enfance on apprend à additionner, multiplier et comparer les entiers. Ceci s'étend aux nombres réels (résultat admis, fastidieux à démontrer).

Proposition 1.2

On peut définir sur $\mathbb R$ une addition + et une multiplication \cdot (ou \times) qui prolongent l'addition et la multiplication de $\mathbb N$ et ont les propriétés suivantes :

1. **commutativité**: pour tous a, b dans \mathbb{R} on a

$$a + b = b + a$$
 et $a \cdot b = b \cdot a$,

2. **associativité**: pour tous a, b, c dans $\mathbb R$ on a

$$a + (b + c) = (a + b) + c$$
 et $a \cdot (b \cdot c) = (a \cdot b) \cdot c$,

3. **distributivité**: pour tous a, b, c dans $\mathbb R$ on a

$$(a + b) \cdot c = a \cdot c + b \cdot c$$

4. éléments neutres : pour tout $a \in \mathbb{R}$ on a

$$a + 0 = a$$
 et $a \cdot 1 = a$,

5. **élément absorbant :** pour tout $a \in \mathbb{R}$ on a

$$a \cdot 0 = 0$$
.

Proposition 1.3

On peut définir sur $\mathbb R$ une relation d'ordre \leq qui prolonge la relation d'ordre sur $\mathbb N$ et qui vérifie les propriétés suivantes :

1. réflexivité : pour tout a dans \mathbb{R} on a

$$a \leq a$$
,

2. antisymétrie : pour tous a, b dans \mathbb{R} ,

si
$$a \le b$$
 et $b \le a$, alors $a = b$,

3. **transitivité**: pour tous a, b, c dans \mathbb{R} ,

si
$$a \le b$$
 et $b \le c$, alors $a \le c$,

4. **ordre total**: pour tous a, b dans \mathbb{R} ,

$$a \le b$$
 ou $b \le a$,

5. **compatibilité avec l'addition :** pour tous a, b, c dans \mathbb{R} ,

si
$$a \le b$$
 alors $a + c \le b + c$,

6. compatibilité avec la multiplication : pour tous a, b, c dans \mathbb{R} ,

si
$$a \le b$$
 et $c \ge 0$, alors $a \cdot c \le b \cdot c$.

Remarque 1.5. En mathématiques le « ou » est inclusif : « A ou B » signifie soit A, soit B, soit les deux.

 $a \le b$ se lit « a inférieur ou égal à b ». On écrit de plus, pour a, b dans $\mathbb R$

- ▶ $a \ge b$ (qui se lit « a supérieur ou égal à b ») si $b \le a$,
- \triangleright a < b (qui se lit « a strictement inférieur à b ») si a ≤ b et $a \ne b$,
- \Rightarrow a > b (qui se lit « a strictement supérieur à b ») si b < a.

On remarque que le contraire de $a \le b$ est a > b.

Remarque 1.6.

- 1. On ne peut pas soustraire des inégalités : on a $2 \le 3$ et $1 \le 4$ mais 2 1 = 1 n'est pas inférieur ou égal à 3 4 = -1!
- 2. La multiplication par un réel négatif change le sens de l'inégalité : si a, b, c sont des réels,

si $a \le b$ et $c \le 0$, alors $a \cdot c \ge b \cdot c$.

3 Valeur absolue

Définition 1.4

Pour tout $x \in \mathbb{R}$, on définit la **valeur absolue** de x, notée |x|, de la manière suivante :

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}.$$

14

Proposition 1.5

La valeur absolue vérifie les propriétés suivantes :

1. pour tout a dans \mathbb{R} on a

$$|a| = |-a| = \sqrt{a^2} = \max(-a, a),$$

2. pour tout a dans \mathbb{R} on a

$$|a| = 0$$
 si et seulement si $a = 0$,

3. pour tous a, b dans \mathbb{R} on a

$$|a \cdot b| = |a| \cdot |b|$$
,

4. inégalité triangulaire : pour tous a, b dans $\mathbb R$ on a

$$|a+b|\leq |a|+|b|,$$

5. **inégalité triangulaire inverse :** pour tous a, b dans \mathbb{R} on a

$$|a-b| \geq ||a|-|b||$$
.

Démonstration. Les trois premiers points sont des conséquences directes de la définition de la valeur absolue.

Démontrons le point 4. Considérons deux réels a et b. D'après 1) on a $|a+b| = \max(a+b, -a-b)$. Mais comme $a \le \max(-a, a) = |a|$ et $b \le |b|$ on a $a+b \le |a|+|b|$. De même,

comme
$$-a \le |a|$$
 et $-b \le |b|$ on a $-a - b \le |a| + |b|$. Ainsi $|a + b| = \max(a + b, -a - b) \le |a| + |b|$.

Finalement démontrons le point 5). Considérons à nouveaux deux réels a et b. D'une part d'après 4) on a $|a|=|a-b+b|\leq |a-b|+|b|$ et donc $|a-b|\geq |a|-|b|$. D'autre part on a $|b|=|b-a+a|\leq |b-a|+|a|$ et donc $|a-b|\geq |b|-|a|=-(|a|-|b|)$. On en déduit bien

$$|a-b| \ge \max(|a|-|b|,-(|a|-|b|)) = |a|-|b|$$

4 Intervalles de R

Intuitivement, un intervalle de $\mathbb R$ est une partie de $\mathbb R$ « sans trou ».

Définition 1.6: Intervalles de ${\mathbb R}$

Soit I un sous-ensemble de \mathbb{R} . On dit que I est un **intervalle de** \mathbb{R} si, pour tous x, y éléments de I, tout réel z vérifiant $x \le z \le y$ est également un élément de I.

Proposition 1.7

Les intervalles I de $\mathbb R$ ont l'une des formes suivantes :

- $1. \mathbb{R}$
- 2. Ø, l'ensemble vide, qui ne contient aucun élément,
- 3. $\{a\}$, un singleton, avec $a \in \mathbb{R}$,
- 4. $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$, un segment, avec a, b réels vérifiant a < b,
- 5. $[a, b[= \{x \in \mathbb{R} : a \le x < b\},$ $]a, b] = \{x \in \mathbb{R} : a < x \le b\}$ ou $]a, b[= \{x \in \mathbb{R} : a < x < b\}, \text{ avec } a, b \text{ réels}$ vérifiant a < b,
- 6. $[a, +\infty[= \{x \in \mathbb{R} : x \ge a\},]a, +\infty[= \{x \in \mathbb{R} : x > a\},]-\infty, a] == \{x \in \mathbb{R} : x \le a\} \text{ ou }]-\infty, a[= \{x \in \mathbb{R} : x < a\}, \text{ avec } a \text{ réel.}$

Remarque 1.7. Dans les points 4., 5. et 6. de la proposition précédente les réels a et b sont appelés les **bords** de l'intervalle.

5 Majorant, minorant, borne inférieure, borne supérieure

Définition 1.8

Soit A une partie de \mathbb{R} et a un élément de A.

- 1. On dit que a est le plus grand élément de A (ou maximum de A) si et seulement si tout $b \in A$ vérifie $b \le a$,
- 2. On dit que a est **le plus petit élément de** A (ou **minimum** de A) si et seulement si tout $b \in A$ vérifie b > a.

S'il existe, le plus grand élément de A est unique, on le note max(A). De même, s'il existe, le plus petit élément de A est unique, on le note min(A).

Exemples 1.9

- 1. Une partie finie A de \mathbb{R} (c'est-à-dire un sous-ensemble de \mathbb{R} formé d'un nombre fini d'éléments) a toujours un plus grand élément.
- 2. 1 est le plus grand élément de [0, 1].
- 3. N et [0, 1[n'admettent pas de plus grand élément.

Définition 1.10

Soit A une partie de \mathbb{R} et m un réel.

- 1. On dit que m est un **majorant** de A si tout élément a de A vérifie $m \ge a$.
- 2. On dit que *m* est un **minorant** de *A* si tout élément *a* de *A* vérifie *m* < *a*.

Exemples 1.11

- 1. 1 et 4 sont des majorants de [0, 1] et [0, 1[,
- 2. N n'a pas de majorant.

Définition 1.12

On dit qu'une partie A de \mathbb{R} est

- 1. majorée si elle admet un majorant,
- 2. minorée si elle admet un minorant,
- bornée si elle admet un majorant et un minorant.

Exemples 1.13

- 1. [0, 1] et [0, 1[sont bornés,
- 2. $[0, +\infty[$ est minoré mais n'est pas borné.

On admet le théorème suivant.

Théorème 1.14: (Théorème de la borne supérieure)

Toute partie A de \mathbb{R} non-vide et majorée admet un plus petit majorant, appelé la **borne supérieure de** A et noté $\sup(A)$.

Exemple 1.15

On a sup([0, 1]) = sup([0, 1]) = 1.

Remarque 1.8. Ce théorème n'est pas vrai dans \mathbb{Q} : l'ensemble $\{x \in \mathbb{Q} : x < \sqrt{2}\}$ est majoré mais n'admet pas de plus petit majorant dans \mathbb{Q} .

De même, si A est une partie de \mathbb{R} non vide et minorée, alors elle admet un plus grand minorant, appelée **borne inférieure de** A et noté $\inf(A)$.

Par convention, si A n'est pas majorée on note $\sup(A) = +\infty$ et si A n'est pas minorée on note $\inf(A) = -\infty$.

La proposition suivante permet de caractériser la borne supérieure dans $\ensuremath{\mathbb{R}}.$

Proposition 1.16: (Caractérisation de la borne supérieure)

Soit A une partie non vide et majorée de \mathbb{R} et M un majorant de A. Alors $M = \sup(A)$ si et seulement si pour tout $\varepsilon > 0$ l'ensemble $A \cap M - \varepsilon$, $M \cap A$ est non vide.

a. Pour deux ensembles A et B, $A \cap B$ est l'ensemble formé des éléments qui sont à la fois dans A et B.

Démonstration. Supposons tout d'abord que $M = \sup(A)$ et considérons $\varepsilon > 0$. Alors, comme $M - \varepsilon < M$, $M - \varepsilon$ n'est pas un majorant de A, puisque M est le plus petit des majorants. Il existe donc un élément a de A tel que $a > M - \varepsilon$. Puisque M est un majorant on a $a \le M$, et donc $a \in M - \varepsilon$, $M \cap A$. L'ensemble $M - \varepsilon$, $M \cap A$ est donc non vide.

Supposons maintenant que pour tout $\varepsilon > 0$ l'ensemble $A \cap]M - \varepsilon$, M] est non vide. On veut montrer que si m < M alors m n'est pas un majorant de A, puisque dans ce cas M est bien le plus petit majorant de A. Fixons m < M et posons $\varepsilon = M - m > 0$. Par hypothèse l'ensemble $A \cap]M - \varepsilon$, $M] = A \cap]m$, M] est non vide, et il existe donc un élément a de A qui vérifie m < a. m n'est donc pas un majorant de A.

Chapitre 2

Fonctions réelles

1 Fonctions et graphes

Définition 2.1

Une **application** f d'un ensemble de départ E dans un espace d'arrivée F est un procédé qui associe à chaque élément x de E un unique élément f(x) de F. Une telle application est notée

$$f: E \to F$$

$$x \mapsto f(x)$$

On appelle parfois E le domaine de f et F le codomaine de f.

Définition 2.2

On appelle fonction réelle d'une variable réelle toute application f ayant pour ensemble de départ une partie A de \mathbb{R} , et ensemble d'arrivée une partie B de \mathbb{R} :

$$\begin{array}{ccc} f: & A & \to & B \\ & x & \mapsto & f(x) \end{array}.$$

On appelle l'ensemble A le **domaine de définition** de f.

Remarque 2.1. Pour simplifier, dans la suite de ce cours, on parlera simplement de fonction pour désigner une fonction réelle d'une variable réelle (les fonctions de plusieurs variables réelles seront par exemple abordées dans des cours ultérieurs).

Exemples 2.3

On peut considérer les fonctions suivantes :

$$f_1: \mathbb{R} \to \mathbb{R}$$
 , $f_2: \mathbb{R}^* \to \mathbb{R}$, $x \mapsto \frac{1}{x}$, $|\cdot|: \mathbb{R} \to \mathbb{R}$, $x \mapsto \begin{cases} x & \text{si } x \geq 0 \\ -x & \text{si } x < 0 \end{cases}$.

Définition 2.4

Si E et F sont deux ensembles, on note $E \times F$ le **produit cartésien** de E et F, défini par

$$E \times F = \{(x, y) : x \in E, y \in F\}.$$

Remarque 2.2. Pour un ensemble E on écrit E^2 plutôt que $E \times E$.

Définition 2.5

Si $f: E \rightarrow F$ est une fonction on appelle **graphe** de f l'ensemble

$$Gr(f) = \{(x, f(x)) : x \in E\} \subset E \times F.$$

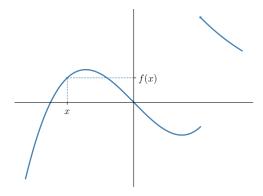


FIGURE 2.1 - Exemple de tracé du graphe d'une fonction réelle.

Remarque 2.3.

- 1. Le graphe d'une fonction réelle est une partie de \mathbb{R}^2 , on peut le représenter par un dessin (voir la figure 2.1).
- 2. Une partie de A de \mathbb{R}^2 est le graphe d'une fonction $f: \mathbb{R} \to \mathbb{R}$ si et seulement si toute droite verticale intersecte A en un unique point.

2 Fonctions injectives, surjectives, bijectives

Image, antécédent.

Définition 2.6

Soit $f: E \to F$ une fonction. Si $x \in E$ et $y \in F$ vérifient y = f(x), on dit que y est **l'image** de x par f, et que x est **un antécédent** de y par f.

Remarque 2.4. Si $f: E \to F$, alors chaque $x \in E$ admet une et une seule image par f, alors que $y \in F$ peut avoir un, plusieurs ou aucun antécédent par f.

Exemple 2.7

Si $f: \mathbb{R} \to \mathbb{R}$ est définie par $f(x) = x^2$ pour tout $x \in \mathbb{R}$, -1 a pour image 1, 2 a pour antécédents $-\sqrt{2}$ et $\sqrt{2}$, alors que -3 n'a pas d'antécédent par f.

Surjectivité.

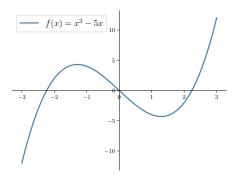
Définition 2.8

Une fonction $f: E \rightarrow F$ est dite **surjective** (ou une surjection) si tout élément de F admet **au moins un antécédent**, autrement dit a:

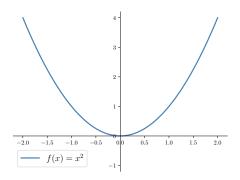
$$f$$
 surjective \Leftrightarrow $(\forall y \in F, \exists x \in E \text{ tel que } y = f(x)).$

a. Le symbole ∀ signifie se lit « pour tout », le symbole ∃ se lit « il existe ».

Remarque 2.5. Lorsque $f: E \to F$, f est surjective si et seulement si pour tout $y \in F$ la droite horizontale passant par (0, y) intersecte Gr(f).



(a) La fonction $f : \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = x^3 - 5x$ est surjective.



(b) La fonction $f: \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2$ n'est pas surjective.

FIGURE 2.2 - Exemples de fonctions surjective/non surjective.

Injectivité.

Définition 2.9

Une fonction $f: E \to F$ est dite **injective** (ou une injection) si tout élément de F admet **au plus un antécédent**, autrement dit a:

$$f ext{ injective } \Leftrightarrow \Big(\forall x, x' \in E, \ f(x) = f(x') \Rightarrow x = x' \Big).$$

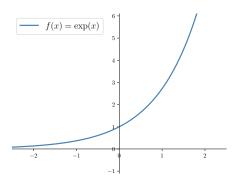
a. Le symbole \Rightarrow est le symbole de l'implication :

 $P \Rightarrow Q$ signifie « si P est vraie, alors Q est vraie ».

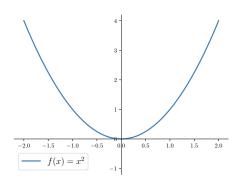
Remarque 2.6. De manière équivalente, puisque $P \Rightarrow Q$ équivaut à (non Q) \Rightarrow (non P) (voir le cours d'algèbre 1), on a

 $f ext{ injective } \Leftrightarrow \Big(\forall x, x' \in E, \ x \neq x' \Rightarrow f(x) \neq f(x') \Big).$

Remarque 2.7. Lorsque $f: E \to F$, f est injective si et seulement si toute droite horizontale intersecte Gr(f) au plus une fois.



(a) La fonction $f : \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = \exp(x)$ est injective.



(b) La fonction $f : \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2$ n'est pas injective.

FIGURE 2.3 - Exemples de fonctions injective/non injective.

Bijectivité.

Définition 2.10

Une fonction $f: E \to F$ est dite **bijective** (ou une bijection) si tout élément de F admet **un unique antécédent**, autrement dit a :

$$f$$
 bijective \Leftrightarrow $(\forall y \in F, \exists! x \in E \text{ tel que } y = f(x)).$

a. Le symbole \exists ! se lit « il existe un unique ».

Remarque 2.8. Lorsque $f: E \to F$, f est bijective si et seulement si pour tout $y \in F$ la droite horizontale passant par (0, y) intersecte Gr(f) une et une seule fois.

Définition 2.11

Supposons la fonction $f: E \to F$ bijective. En associant à tout élément $y \in F$ son unique antécédent par f on définit une fonction de F dans E. Cette fonction est appelée fonction réciproque de la fonction f, et est notée f^{-1} . Elle est caractérisée par la relation suivante :

$$\forall x \in E, \ \forall y \in F, \ y = f(x) \Leftrightarrow x = f^{-1}(y).$$

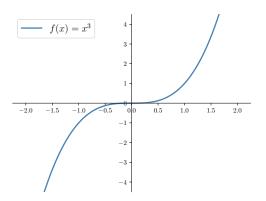


FIGURE 2.4 - La fonction $f : \mathbb{R} \to \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f(x) = x^3$ est bijective.

Remarque 2.9. Si $f: E \to F$ est bijective de bijection réciproque f^{-1} , alors $f^{-1}: F \to E$ est elle-même bijective de bijection réciproque $(f^{-1})^{-1} = f$. On a de plus les formules

$$\forall x \in E, \ \forall y \in F, \ f^{-1}(f(x)) = x \ \text{et} \ f(f^{-1}(y)) = y.$$

Remarque 2.10. S i $f: E \to F$ est bijective de réciproque f^{-1} , alors Gr(f) est le symétrique de Gr(f) par rapport à la droite d'équation y = x. En effet,

$$(x, y) \in Gr(f) \Leftrightarrow (x \in E \text{ et } y = f(x) \text{ et } y \in F)$$

 $\Leftrightarrow (y \in F \text{ et } x = f^{-1}(y) \text{ et } x \in E) \Leftrightarrow (y, x) \in Gr(f^{-1})$

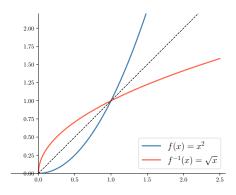


FIGURE 2.5 - La fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$ définie pour tout $x \in \mathbb{R}_+$ par $f(x) = x^2$ a pour fonction réciproque $f^{-1}: \mathbb{R}_+ \to \mathbb{R}_+$ définie pour tout $x \in \mathbb{R}_+$ par $f^{-1}(x) = \sqrt{x}$.

3 Image directe, image réciproque.

Définition 2.12

Si $f: E \to F$ est une fonction et A est une partie de E, l'image directe de A par f, notée f(A), est la partie de F définie par

$$f(A) = \{f(x) : x \in A\}.$$

En particulier, pour A = E, on appelle **image de** f l'ensemble Im(f) = f(E).

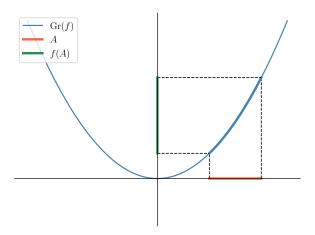


FIGURE 2.6 - Image directe d'une partie A de $\mathbb R$ par une fonction réelle.

Exemple 2.13

Si $f : \mathbb{R} \to \mathbb{R}$ est définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2$, alors f([0, 1]) = [0, 1], f([-2, 1]) = [0, 4], $Im(f) = \mathbb{R}_+$.

Définition 2.14

Si $f: E \to F$ est une fonction et B est une partie de F, l'image réciproque de B par f, notée $f^{-1}(B)$, est la partie de B définie par

$$f^{-1}(B) = \{x \in E : f(x) \in B\}.$$

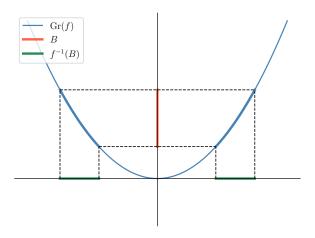


FIGURE 2.7 - Image réciproque d'une partie B de $\mathbb R$ par une fonction réelle.

Remarque 2.11.

- 1. Attention, cette définition ne suppose pas que f soit bijective!
- 2. Si f est bijective, $f^{-1}(B)$ est l'image directe de B par f^{-1} .

Exemples 2.15

Si $f : \mathbb{R} \to \mathbb{R}$ est définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2$, alors $f^{-1}([0, 1]) = [-1, 1], f^{-1}([-2, 4]) = [-2, 2].$

4 Opérations sur les fonctions.

Somme, produit, quotient.

Soient $f:I\to\mathbb{R}$ et $g:I\to\mathbb{R}$ deux fonctions ayant le même ensemble de départ. On définit

1. leur somme:

$$f+g: I \rightarrow \mathbb{R}$$

 $x \mapsto f(x) + g(x)$,

2. leur produit:

$$f \cdot g : I \rightarrow \mathbb{R}$$
 $x \mapsto f(x) \cdot g(x)$,

3. et, si g ne s'annule pas sur I, leur **quotient**:

$$\begin{array}{cccc} \frac{f}{g} : & I & \to & \mathbb{R} \\ & X & \mapsto & \frac{f(x)}{g(x)} \end{array}$$

Composition.

Définition 2.16

Si E, F, G sont des parties de \mathbb{R} et $f: E \to F$ et $g: F \to G$ des fonctions, on définit la **composition** de f et g, notée $g \circ f$, par g

 $a. g \circ f$ se lit « g rond f»

Exemple 2.17

Si $f : \mathbb{R} \to \mathbb{R}$ et $g : \mathbb{R} \to \mathbb{R}$ sont définies pour tout $x \in \mathbb{R}$ par $f(x) = \sin(x)$ et g(x) = x + 2, alors $g \circ f : \mathbb{R} \to \mathbb{R}$ et $f \circ g : \mathbb{R} \to \mathbb{R}$, avec pour tout $x \in \mathbb{R}$:

$$g \circ f(x) = \sin(x) + 2$$
 et $f \circ g(x) = \sin(x+2)$.

Remarque 2.12.

- 4. Pour pouvoir définir $g \circ f$ il faut que l'ensemble d'arrivée de f soit inclus dans l'ensemble de départ de g.
- 5. Si $f: E \to F$ est une bijection, de bijection réciproque f^{-1} , alors $f^{-1} \circ f = \mathrm{id}_E$ et $f \circ f^{-1} = \mathrm{id}_F$, où si A est une partie de \mathbb{R} id $_A: A \to A$ est la fonction identité de l'ensemble A, définie pour tout $x \in A$ par id $_A(x) = x$.

5 Propriétés des fonctions et de leur graphe.

Fonction majorée, minorée, bornée.

Définition 2.18

Soit $f: E \to \mathbb{R}$ une fonction.

4. On dit que f est **majorée** si f(E) est majoré, c'est-à-dire

$$f$$
 majorée \Leftrightarrow $\exists M \in \mathbb{R}, \forall x \in E, f(x) \leq M.$

5. On dit que f est **minorée** si f(E) est minoré, c'est-à-dire

$$f \text{ minor\'ee} \Leftrightarrow \exists m \in \mathbb{R}, \forall x \in E, f(x) \geq m.$$

6. On dit que f est **bornée** si elle est majorée et minorée, c'est-à-dire

f bornée

$$\Leftrightarrow \exists m \in \mathbb{R}, \exists M \in \mathbb{R}, \forall x \in E, m \leq f(x) \leq M.$$

Remarque 2.13. Une fonction $f: E \to \mathbb{R}$ est majorée si et seulement si son graphe se situe au-dessous d'une droite horizontale, et est minorée si et seulement si son graphe si situe au-dessus d'une droite horizontale.

Monotonie.

Définition 2.19

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

4. On dit que f est croissante sur I si

$$\forall x \in I, \forall y \in I, x \leq y \Rightarrow f(x) \leq f(y).$$

5. On dit que f est décroissante sur I si

$$\forall x \in I, \ \forall y \in I, \ x \leq y \Rightarrow f(x) \geq f(y).$$

6. On dit que f est **strictement croissante** sur I si

$$\forall x \in I, \ \forall y \in I, \ x < y \Rightarrow f(x) < f(y).$$

7. On dit que f est **strictement décroissante** sur I si

$$\forall x \in I, \forall y \in I, x < y \Rightarrow f(x) > f(y).$$

- 8. On dit que f est **monotone** sur I si elle est croissante sur I ou décroissante sur I.
- 9. On dit que f est **strictement monotone** sur I si elle est strictement croissante sur I ou strictement décroissante sur I.

Remarque 2.14. Si $f: I \to \mathbb{R}$ est une fonction, on a les équivalences suivantes :

- 4. f est croissante si et seulement si toute droite passant par deux point de Gr(f) est de pente positive.
- 5. f est décroissante si et seulement si toute droite passant par deux point de Gr(f) est de pente négative.
- 6. f est strictement croissante si et seulement si toute droite passant par deux point de Gr(f) est de pente strictement positive.
- 7. f est strictement décroissante si et seulement si toute droite passant par deux point de Gr(f) est de pente strictement négative.

Parité et périodicité.

Proposition 2.20

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction.

- 4. Si l'on définit la fonction $f_1: \mathbb{R} \to \mathbb{R}$ pour tout $x \in \mathbb{R}$ par $f_1(x) = -f(x)$, alors le graphe de f_1 est obtenu à partir de celui de f par symétrie axiale par rapport à l'axe horizontale (Ox).
- 5. Si l'on définit la fonction $f_2: \mathbb{R} \to \mathbb{R}$ pour tout $x \in \mathbb{R}$ par $f_2(x) = f(-x)$, alors le graphe de f_2 est obtenu à partir de celui de f par symétrie axiale par rapport à l'axe verticale (Oy).
- 6. Si l'on définit la fonction $f_3: \mathbb{R} \to \mathbb{R}$ pour tout $x \in \mathbb{R}$ par $f_3(x) = -f(-x)$, alors le graphe de f_3 est obtenu à partir de celui de f par symétrie centrale par rapport à l'origine O.

Définition 2.21

Soit I un intervalle de \mathbb{R} symétrique par rapport à O (c'est-à-dire tel que $x \in I$ si et seulement si $-x \in I$), et $f: I \to \mathbb{R}$ une fonction.

- 4. On dit que f est **paire** si pour tout $x \in I$ on a f(-x) = f(x).
- 5. On dit que f est **impaire** si pour tout $x \in I$ on a f(-x) = -f(x).

Corollaire 2.22

Si I un intervalle de $\mathbb R$ symétrique par rapport à O et $f:I\to\mathbb R$ est une fonction, alors

- 4. f est paire si et seulement si le graphe de f est symétrique par rapport à l'axe verticale (Oy),
- 5. f est impaire si et seulement si le graphe de f est symétrique par rapport à l'origine O.

Définition 2.23

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction et T un réel strictement positif. On dit que f est **périodique** de période T si

$$\forall x \in \mathbb{R}, f(x+T) = f(x).$$

Proposition 2.24

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction et T un réel strictement positif. f est périodique de période T si et seulement si le graphe de f est invariant par translation de vecteur $T\vec{i}$, où \vec{i} est un vecteur unitaire engendrant l'axe horizontale (Ox).

6 Limite en un point, continuité, dérivabilité.

Les notions de limite et continuité de fonctions seront abordées plus en détails dans le chapitre 5, celle de dérivabilité sera abordée plus en détails dans le cours d'Analyse 2.

Limite en un point.

Définition 2.25

Soient I un intervalle de $\mathbb R$ ou une union d'intervalles de $\mathbb R$ a , $f:I\to\mathbb R$ une fonction, $x_0\in\mathbb R$ un élément de I ou d'un bord de I et $\ell\in\mathbb R$. On dit que f admet une limite ℓ au point x_0 , et on note $\lim_{x\to x_0} f(x)=\ell$, si

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in I, \quad |x - x_0| \le \delta \Rightarrow |f(x) - \ell| \le \varepsilon.$$

a. Pour deux ensembles A et B, l'union de A et B, notée $A \cup B$, est l'ensemble des éléments qui sont dans A ou dans B.

Exemple 2.26

Si $f: \mathbb{R} \to \mathbb{R}$ est définie pour tout $x \in \mathbb{R}$ par $f(x) = 1 + x^2$, $\lim_{x \to 0} f(x) = 1$.

Continuité.

Définition 2.27

Soit I un intervalle de \mathbb{R} , $f:I\to\mathbb{R}$ une fonction et $x_0\in I$.

- 4. Pour $x_0 \in I$, on dit que f est **continue** en x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$.
- 5. On dit que f est continue sur I si elle est continue en tout point de I.

Exemple 2.28

Si $f : \mathbb{R} \to \mathbb{R}$ est définie pour tout $x \in \mathbb{R}$ par $f(x) = x^2$, f est continue sur \mathbb{R} .

Dérivabilité.

Définition 2.29

Soient I in intervalle de \mathbb{R} , $f:I\to\mathbb{R}$ une fonction et $x_0\in I$ qui n'est pas un bord de I. On dit que f est **dérivable** au point x_0 si la fonction taux d'accroissement $x\mapsto \frac{f(x)-f(x_0)}{x-x_0}$ définie sur $I\setminus\{x_0\}$ admet une limite au point x_0 . Cette limite est appelée **dérivée de** f **au point** x_0 et est notée $f'(x_0)$.

Remarque 2.15. Si une fonction f est dérivable en x_0 , alors $f'(x_0)$ est la pente de la droite tangente à Gr(f) au point $(x_0, f(x_0))$.

Les résultats suivants seront démontrés dans le cours d'Analyse 2.

Proposition 2.30

Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ une fonction dérivable en tout point de I.

- 4. f est croissante sur I si et seulement si $f'(x) \ge 0$ pour tout $x \in I$.
- 5. f est décroissante sur I si et seulement si $f'(x) \le 0$ pour tout $x \in I$.
- 6. Si f'(x) > 0 pour tout $x \in I$, alors f est strictement croissante sur I.
- 7. Si f'(x) < 0 pour tout $x \in I$, alors f est strictement décroissante sur I.

44

Proposition 2.31

Soient I est un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ et $g:I\to\mathbb{R}$ deux fonctions dérivables en $x\in I$.

4. f + g est dérivable en x et

$$(f+q)'(x) = f'(x) + q'(x).$$

5. fg est dérivable en x et

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x).$$

6. Si g ne s'annule pas en x, $\frac{f}{g}$ est dérivable en x et

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}.$$

Proposition 2.32

Soient I, J des intervalles de \mathbb{R} , $f:I\to J$, $g:J\to\mathbb{R}$ des fonctions et $x\in I$ tel que f est dérivable en x et g est dérivable en f(x). Alors $g\circ f$ est dérivable en x et

$$(g\circ f)'(x)=f'(x)g'(f(x)).$$