Contrôle partiel – Sujet blanc

Les documents, les téléphones et les calculatrices ne sont pas autorisés. La notation tiendra compte du soin apporté à la rédaction des réponses.

Exercice 1: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction et B une partie de \mathbb{R} . Donner la définition de $f^{-1}(B)$.

Exercice 2: Déterminer l'ensemble des réels x qui vérifient |x-2|+|x+2|>5.

Solution: On étudie cette inéquation sur les intervalles $]-\infty,-2],]-2,2]$ et $]2,+\infty[$.

- Pour tout x dans $]-\infty,-2]$ on a |x-2|+|x+2|=-(x-2)-(x+2)=-2x. Or -2x>5 si et seulement si $x<-\frac{5}{2}$. Ainsi pour tout x dans $]-\infty,-2]$ on a |x-2|+|x+2|>3 si et seulement si $x\in]-\infty,-5/2[$.
- Pour tout x dans]-2,2] on a |x-2|+|x+2|=-(x-2)+x+2=4. Mais comme 4<5, aucun réel x de]-2,2[n'est solution de l'inéquation |x-1|+|x+1|>3.
- Pour tout x dans $[2, +\infty[$ on a |x-2|+|x+2|=x-2+x+2=2x. Or 2x>5 si et seulement si $x>\frac{5}{2}$. Ainsi pour tout x dans $[2,+\infty[$ on a |x-2|+|x+2|>5 si et seulement si $x\in]\frac{5}{2},+\infty[$. En conclusion, l'ensemble des solutions de l'inéquation |x-2|+|x+2|>5 est $]-\infty,-\frac{5}{2}[\cup]\frac{5}{2},+\infty[$.

Exercice 3: Déterminer les limites en $+\infty$ des fonctions suivantes.

$$h(x) = (x^2 + x^9)e^{-x}$$
 et $g(x) = \frac{x^2 + 2}{(\ln(x))^3 + x^2}$.

Solution: On a, pour tout x réel,

$$h(x) = \frac{x^2}{e^x} + \frac{x^9}{e^x},$$

et comme, par croissance comparée, $\frac{x^2}{e^x}\xrightarrow[x\to+\infty]{}0$ et $\frac{x^9}{e^x}\xrightarrow[x\to+\infty]{}0$, on en déduit que

$$\lim_{x \to +\infty} h(x) = 0.$$

Pour tout x > 0,

$$g(x) = \frac{x^2}{x^2} \frac{1 + 2x^{-2}}{(\ln(x))^3 x^{-2} + 1} = \frac{1 + \frac{2}{x^2}}{\frac{(\ln(x))^3}{x^2} + 1},$$

et comme $\frac{2}{x^2} \xrightarrow[x \to +\infty]{} 0$ alors que $\frac{(\ln(x))^3}{x^2} \xrightarrow[x \to +\infty]{} 0$ par croissance comparée, on en déduit que

$$\lim_{x \to +\infty} g(x) = 1.$$

Exercice 4: On définit la fonction $f: \mathbb{R} \to \mathbb{R}$ par, pour tout $x \in \mathbb{R}$,

$$f(x) = \frac{\sin(3x)}{2 + \sin^2(x)}.$$

1. Calculer, pour x réel, f(-x). La fonction f est-elle paire ou impaire?

Solution: On a, pour tout $x \in \mathbb{R}$,

$$f(-x) = \frac{\sin(-3x)}{1 + \sin^2(-x)} = \frac{-\sin(3x)}{2 + (-\sin(x))^2} = \frac{-\sin(3x)}{2 + (\sin(x))^2} = -f(x).$$

f est donc impaire.

2. Montrer que f est 2π -périodique. f est-elle injective?

Solution: On a, pour tout x réel,

$$f(x+2\pi) = \frac{\sin(3x+6\pi)}{2+\sin^2(x+2\pi)} = f(x),$$

puisque $x \mapsto \sin(x)$ est 2π -périodique. En particulier on a $f(0) = f(2\pi)$, f n'est pas injective.

3. Montrer que pour tout x réel on a

$$2 + \sin^2(x) \ge 2,$$

et en déduire que, pour tout x réel,

$$f(x) \le \frac{1}{2}.$$

f est-elle surjective?

Solution: Pour tout x réel on a $\sin^2(x) > 0$ et donc $2 + \sin^2(x) \ge 2$. Cela implique que $0 < \frac{1}{2 + \sin^2(x)} \le \frac{1}{2}$ (la fonction $x \mapsto \frac{1}{x}$ est décroissante sur $]0, +\infty[$). Comme, pour tout x réel, on a $\sin(x) \le 1$, on en déduit

$$f(x) = \frac{\sin(3x)}{2 + \sin^2(x)} \le \frac{1}{2 + \sin^2(x)} \le \frac{1}{2}.$$

En particulier 1 n'a pas d'antécédent par f. f n'est donc pas surjective.

4. Déterminer l'ensemble des réels où f est dérivable et calculer sa dérivée.

Solution: $x \mapsto \sin(x)$ est dérivable sur \mathbb{R} , $x \mapsto 2 + \sin^2(x)$ est dérivable sur \mathbb{R} par composition, et on a de plus $2 + \sin^2(x) > 0$ pour tout x réel. La fonction f est donc dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$ on a (en utilisant en particulier que le fait que si $u(x) = \sin(3x)$ et $v(x) = 2 + (\sin(x))^2$, alors $u'(x) = 3\cos(x)$ et $v'(x) = 2\cos(x)\sin(x)$,

$$f'(x) = \frac{3\cos(3x)(2+\sin^2(x)) - \sin(3x)(2\cos(x)\sin(x))}{(2+\sin^2(x))^2}$$
$$= \frac{6\cos(3x) + 3\cos(3x)\sin^2(x) - 2\cos(x)\sin(x)\sin(3x)}{(2+\sin^2(x))^2}.$$

Exercice 5: 1. Montrer que pour tout x réel on a

$$1 + x^2 > 2x$$
, et $1 + x^2 > -2x$.

Solution: Pour tout x réel on a $1+x^2-2x=(1-x)^2\geq 0$, et donc $1+x^2\geq 2x$. De même, pour tout x réel, $1+x^2+2x=(1+x)^2\geq 0$, et donc $1+x^2\geq -2x$.

2. En déduire que pour tout x réel on a

$$-1 \le \frac{2x}{1+x^2} \le 1.$$

Solution: D'après la question précédente, on a pour tout x réel,

$$-(1+x^2) \le 2x \le 1+x^2.$$

En multipliant par $\frac{1}{1+x^2}$ qui est strictement positif, on obtient bien

$$-1 \le \frac{2x}{1+x^2} \le 1.$$

3. Résoudre, pour x réel, l'équation $\arcsin\left(\frac{2x}{1+x^2}\right) = \frac{\pi}{3}$.

Solution: D'après la question précédente, pour tout $x \in \mathbb{R}$ on a $\frac{2x}{1+x^2} \in [-1,1]$, et donc, comme la fonction $x \mapsto \arcsin(x)$ est définie sur [-1,1], la fonction $x \mapsto \arcsin\left(\frac{2x}{1+x^2}\right)$ est définie sur \mathbb{R} . De plus, comme arcsin : $[-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$ est bijective de bijection réciproque sin : $[-\frac{\pi}{2},\frac{\pi}{2}] \to [-1,1]$, on a, pour tout x réel, $\arcsin\left(\frac{2x}{1+x^2}\right) = \frac{\pi}{3}$ si et seulement si

$$\frac{2x}{1+x^2} = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2},$$

ce qui équivaut à

$$\sqrt{3}x^2 - 4x + \sqrt{3} = 0.$$

Le discriminant de ce polynôme est $\Delta = (-4)^2 - 4(\sqrt{3})^2 = 4$ et ses racines sont donc $x_1 = \frac{-(-4) + \sqrt{4}}{2\sqrt{3}} = \sqrt{3}$ et $x_2 = \frac{-(-4) - \sqrt{4}}{2\sqrt{3}} = \frac{\sqrt{3}}{3}$. L'équation $\arcsin\left(\frac{2x}{1+x^2}\right) = \frac{\pi}{3}$ a donc pour ensemble de solutions $S = \{\sqrt{3}, \frac{\sqrt{3}}{3}\}$.