## Contrôle partiel - Sujet blanc

Les documents, les téléphones et les calculatrices ne sont pas autorisés. La notation tiendra compte du soin apporté à la rédaction des réponses.

**Exercice 1:** Soit  $f: \mathbb{R} \to \mathbb{R}$  une fonction et B une partie de  $\mathbb{R}$ . Donner la définition de  $f^{-1}(B)$ .

**Exercice 2:** Déterminer l'ensemble des réels x qui vérifient |x-2|+|x+2|>5.

Exercice 3: Déterminer les limites en  $+\infty$  des fonctions suivantes.

$$h(x) = (x^2 + x^9)e^{-x}$$
 et  $g(x) = \frac{x^2 + 2}{(\ln(x))^3 + x^2}$ .

**Exercice 4:** On définit la fonction  $f: \mathbb{R} \to \mathbb{R}$  par, pour tout  $x \in \mathbb{R}$ ,

$$f(x) = \frac{\sin(3x)}{2 + \sin^2(x)}.$$

- 1. Calculer, pour x réel, f(-x). La fonction f est-elle paire ou impaire?
- 2. Montrer que f est  $2\pi$ -périodique. f est-elle injective?
- 3. Montrer que pour tout x réel on a

$$2 + \sin^2(x) \ge 2,$$

et en déduire que, pour tout x réel,

$$f(x) \le \frac{1}{2}.$$

f est-elle surjective?

4. Déterminer l'ensemble des réels où f est dérivable et calculer sa dérivée.

**Exercice 5:** 1. Montrer que pour tout x réel on a

$$1 + x^2 > 2x$$
, et  $1 + x^2 > -2x$ .

2. En déduire que pour tout x réel on a

$$-1 \le \frac{2x}{1+x^2} \le 1.$$

3. Résoudre, pour x réel, l'équation  $\arcsin\left(\frac{2x}{1+x^2}\right) = \frac{\pi}{3}$ .