Feuille 2: Fonctions et fonctions usuelles

Exercice 1: (Injection, surjection, bijection). Les fonctions suivantes sont-elles des injections? Des surjections? Des bijections?

1.
$$f_1: \mathbb{R} \to \mathbb{R}$$
 définie par $f_1(x) = x^2 + 1$.

2.
$$f_2: \mathbb{R} \to [1, +\infty[$$
 définie par $f_2(x) = x^2 + 1$

3.
$$f_3: [-4,-2] \cup [0,1] \rightarrow [1,+\infty[$$
, définie par $f_3(x)=x^2+1.$

4.
$$f_4: \mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi, k\in\mathbb{Z}\right\} \to \mathbb{R}$$
, définie par $f_4(x)=\tan(x)$.

5.
$$f_5: \mathbb{R} \to \mathbb{R}^{+*}$$
 définie par $f_5(x) = e^x$.

6.
$$f_6: \mathbb{R} \to \mathbb{R}^{+*}$$
 définie par $f_6(x) = e^{x^2}$.

Exercice 2: (Trinôme). Soient $a \neq 0$, b et c trois réels. On note $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par f(x) = $ax^2 + bx + c$.

- 1. Rappeler les variations de f en fonction du signe de a.
- 2. Comment s'appelle la courbe représentative de f? Quelle propriété de symétrie possède-t-elle? Comment cette symétrie se traduit-elle algébriquement?
- 3. Étudier le signe de f(x) suivant les valeurs de x.
- 4. Tracer sur le même graphique une courbe représentative des fonctions $f: x \mapsto x^2$ et $g: x \mapsto \sqrt{x}$, toutes deux définies sur \mathbb{R}^+ .

Exercice 3: (Partie entière). On rappelle que l'on note E(x) la partie entière d'un réel x.

- 1. Quelle est l'image de \mathbb{R} par la fonction partie entière?
- 2. Combien vaut E(0.5)? Et E(-1.5)?
- 3. Tracer les courbes représentatives des fonctions $x \mapsto E(x)$, $x \mapsto E(2x)$ et $x \mapsto E(x/2)$.

Exercice 4: (Trigo). Calculer les valeurs suivantes :

1.
$$\cos\left(\frac{3\pi}{2}\right)$$

3.
$$\tan\left(-\frac{11\pi}{4}\right)$$

5.
$$\sin\left(\frac{\pi}{12}\right)$$

$$2. \sin\left(-\frac{5\pi}{6}\right)$$

4.
$$\cos\left(\frac{\pi}{12}\right)$$

Exercice 5: (Trigo - encore). Soient x et y deux réels.

- 1. Exprimer les réels $\cos(x+y)$, $\cos(2x)$, $\sin(x+y)$ et $\sin(2x)$ en fonction de $\cos x$, $\sin x$, $\cos y$ et $\sin x$.
- 2. Montrer que $1 + \sin x = \left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2$.
- 3. Exprimer les réels $\cos(4x)$ et $\sin(4x)$ en fonction de $\cos x$ et $\sin x$.
- 4. Exprimer en fonction de tan x seulement les expressions suivantes :

(a)
$$f_1(x) = \cos^2 x$$

(c)
$$f_3(x) = \frac{\sin^3 x - \cos^3 x}{\sin x - \cos x}$$

(d) $f_4(x) = \cos^2 x - \sin x \cos x$.

(b)
$$f_2(x) = \frac{\sin^4 x + \cos^4 x}{\sin^4 x - \cos^4 x}$$

(d)
$$f_4(x) = \cos^2 x - \sin x \cos x$$

Exercice 6: (Trigo - toujours!).

- 1. Rappeler les formules d'addition de sin(a + b) et cos(a + b).
- 2. Résoudre l'équation, d'inconnue $x : \sin x = \frac{1}{2}$.
- 3. Montrer qu'il existe un réel θ tel que, pour tout réel y, $\sin(y+\theta) = \frac{\sqrt{2}}{2}\sin y + \frac{\sqrt{2}}{2}\cos y$.

4. En déduire l'ensemble des solutions de l'équation, d'inconnue y:

$$\sin y + \cos y = \frac{\sqrt{2}}{2}.$$

Exercice 7: (Composition).

- 1. Soient I, J et K des parties de \mathbb{R} et $f: J \to K$ et $g: I \to J$. Montrer que si f et g sont toutes les deux monotones, alors $f \circ g$ est également monotone. Pouvez-vous préciser son sens de variation en fonction de ceux de f et de g?
- 2. Écrire les fonctions suivantes comme la composée de deux fonctions et en déduire leur sens de variation.

(a)
$$x \mapsto (1+2x)^2$$
;

(b)
$$x \mapsto \frac{1}{1+x^2}$$
;

(c)
$$x \mapsto \exp(x^2 - 1)$$
.

Exercice 8: (Image directe, image réciproque). Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction $x \mapsto x^2$, et E la fonction partie entière. Déterminer les ensembles suivants :

- 1. f([0,3]). 4. $f^{-1}([\sqrt{2},4])$ 7. $\sin^{-1}([-0.5,0.5])$ 2. $f^{-1}([0,4])$ 5. $\sin([0,\pi]$ 8. $\tan^{-1}([-1,1])$ 3. $f^{-1}([-1,4])$ 6. $\sin^{-1}(\{0.5\})$ 9. E([-1.5,1.5]).
 - 7. $\sin^{-1}([-0.5, 0.5])$ 10. $E^{-1}([-1, 1] \cup \{2\})$.

- 8. $\tan^{-1}([-1,1])$.

Exercice 9: (Réciproque de fonctions circulaires).

- 1. Soit $f = \cos|_{[2\pi,3\pi]}$, la restriction de la fonction cosinus à l'intervalle $[2\pi,3\pi]$. Exprimer $f^{-1}:[-1,1]\to[2\pi,3\pi]$ en utilisant les fonctions arccos et/ou arcsin.
- 2. Soit $g = \cos|_{[\pi,2\pi]}$, la restriction de la fonction cosinus à l'intervalle $[\pi,2\pi]$. Exprimer $g^{-1}: [-1,1] \to [\pi,2\pi]$ en utilisant les fonctions arccos et/ou arcsin.

Exercice 10: (Réciproque de fonctions circulaires : Calcul). Calculez les valeurs suivantes :

- 1. $\arcsin\left(\frac{1}{2}\right)$. 3. $\arctan\left(\frac{\sqrt{3}}{3}\right)$ 5. $\arcsin\left(\sin\left(\frac{2\pi}{3}\right)\right)$ 7. $\sin\left(\arcsin\left(\frac{\sqrt{2}}{\sqrt{5}}\right)\right)$ 2. $\arcsin\left(\frac{-\sqrt{3}}{2}\right)$ 4. $\arctan(-1)$ 6. $\arctan\left(\tan\left(\frac{9\pi}{4}\right)\right)$ 8. $\tan(\arctan(3))$.

- 6. $\arctan\left(\tan\left(\frac{9\pi}{4}\right)\right)$ 8. $\tan(\arctan(3))$.

Exercice 11: (Dérivée). Déterminer l'ensemble des réels où f_i est dérivable et calculer sa dérivée.

1. $f_1: x \mapsto \frac{x^3}{4}$

- 6. $f_6: x \mapsto \tan(x^2)$ 7. $f_7: x \mapsto 3x^2 \sin(x^3)$ 8. $f_8: x \mapsto e^{2x+1}$
- 12. $f_{12}: x \mapsto \frac{1}{\sqrt{1+x^2}}$

- 2. $f_2: x \mapsto \frac{\frac{4}{4}}{r^{\frac{3}{2}}} + \sqrt{x}$
- 13. $f_{13}: x \mapsto \ln(1+x^4)$

- 3. $f_3: x \mapsto \sin^2 x$
- 9. $f_9: x \mapsto e^{x^2} \cos(3x)$ 10. $f_{10}: x \mapsto \frac{1-x}{2+x}$ 11. $f_{11}: x \mapsto \sqrt{1-x^2}$
- 14. $f_{14}: x \mapsto \ln \left| \frac{1+x}{1-x} \right|$

- 4. $f_4: x \mapsto \sin(x^2)$ 5. $f_5: x \mapsto \cos^2(3x)$
- 15. $f_{15}: x \mapsto \ln|\cos x|$

Exercice 12: (Fonctions hyperboliques) Montrer que pour tous réels u et v, on a :

$$\cosh^2 u + \sinh^2 v = \sinh^2 u + \cosh^2 v = \cosh(u + v)\cosh(u - v)$$

$$\cosh^2 u - \cosh^2 v = \sinh^2 u - \sinh^2 v = \sinh(u + v)\sinh(u - v)$$

Exercice 13: (Équation - Fonctions hyperboliques).

1. Calculer $\cosh\left(\frac{1}{2}\ln(3)\right)$ et $\sinh\left(\frac{1}{2}\ln(3)\right)$.

2. À l'aide de la formule de calcul du cosh(a+b), résoudre l'équation d'inconnue réelle x:

$$\frac{2}{\sqrt{3}}\cosh x + \frac{1}{\sqrt{3}}\sinh x = \cosh(5x).$$

Exercice 14: (Limite - exp).

- 1. Discuter en fonction de la valeur du réel a l'existence et la valeur éventuelle de la limite de a^n quand ntend vers $+\infty$.
- 2. À quelle condition la fonction $x \mapsto a^x$ est-elle bien définie sur \mathbb{R} ? Que pouvez-vous dire dans ce cas de la limite de a^x lorsque x tend vers $+\infty$?

Exercice 15: (Limites - Opérations). Calculer, si elles existent les limites quand x tend vers $+\infty$ de :

1.
$$f_1: x \mapsto \frac{x^2 + 2x^5}{1 + x^4}$$

2.
$$f_2: x \mapsto \frac{x \sin x + x^2}{1 + x^2}$$

3. $f_3: x \mapsto \frac{x\sqrt{x} + 5}{x^2 + \cos x}$
4. $f_4: x \mapsto \sqrt{x+1} - \sqrt{x-1}$

3.
$$f_3: x \mapsto \frac{x\sqrt{x} + 5}{x^2 + \cos x}$$

4.
$$f_4: x \mapsto \sqrt{x+1} - \sqrt{x-1}$$

5.
$$f_5: x \mapsto \frac{1}{x} \ln(2x+3)$$

6.
$$f_6: x \mapsto \sin \frac{1}{x}$$

7.
$$f_7: x \mapsto x + \cos x$$

8.
$$f_8: x \mapsto e^{-x}(\cosh^3 x - \sinh^3 x)$$

9.
$$f_9: x \mapsto x - \ln(\cosh x)$$
.

Exercice 16: (Fonction réciproque - Dérivée).

- 1. Montrer que pour tout y réel il existe un unique x réel tel que $y = \sinh(x)$, et exprimer x en fonction de y. sinh est donc une bijection \mathbb{R} vers \mathbb{R} , on note sa bijection réciproque argsinh.
- 2. Calculer la dérivée de argsinh.