Correction Mini-DM 4: Nombres complexes

Exercice 4.1: Déterminer les racines carrées de $\omega = \frac{\sqrt{3} + i}{2}$ sous forme algébrique puis exponentielle et en déduire les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Correction. On cherche $z \in \mathbb{C}$ tel que $z^2 = \omega$. On pose z = x + iy avec $(x, y) \in \mathbb{R}^2$ et on a donc $(x + iy)^2 = x^2 - y^2 + 2ixy$ ce qui nous permet d'écrire, par identification et en calculant le carré du module :

$$\begin{cases} x^2 - y^2 = \frac{\sqrt{3}}{2} \\ x^2 + y^2 = |z|^2 = |\omega| = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = 1 \\ 2xy = \frac{1}{2} \end{cases}$$

En ajoutant les deux premières lignes, on obtient $2x^2 = \frac{\sqrt{3}}{2} + 1$, donc $x^2 = \frac{\sqrt{3}}{4} + \frac{1}{2} = \frac{\sqrt{3}+2}{4}$ et donc $x = \pm \frac{\sqrt{\sqrt{3}+2}}{2}$.

En soustrayant les deux premières lignes, on obtient $2y^2 = 1 - \frac{\sqrt{3}}{2}$ et donc, de même, $y = \pm \frac{\sqrt{2 - \sqrt{3}}}{2}$. D'après la troisième ligne, les deux réels x et y ont même signe, donc on trouve finalement

$$z = \frac{\sqrt{\sqrt{3}+2}}{2} + i\frac{\sqrt{2-\sqrt{3}}}{2}$$
 ou $z = -\frac{\sqrt{\sqrt{3}+2}}{2} - i\frac{\sqrt{2-\sqrt{3}}}{2}$.

On note maintenant $z = re^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$ et on trouve

$$z^2 = \omega \iff \left(re^{i\theta}\right)^2 = \frac{\sqrt{3}+i}{2} \iff r^2e^{2i\theta} = e^{i\frac{\pi}{6}} \iff \left\{\begin{array}{l} r^2 = 1 \\ 2\theta = \frac{\pi}{6} + 2k\pi, k \in \{0,1\} \end{array}\right..$$

On trouve donc que r=1 et $\theta=\frac{\pi}{12}+k\pi$, $k\in\{0,1\}$, ce qui permet de dire que les deux racines carrées de ω sont, sous forme exponentielle,

$$z_0 = e^{i\frac{\pi}{12}}$$
 et $z_1 = e^{i\frac{13\pi}{12}}$.

Les parties réelles et imaginaires de z_0 (respectivement z_1) étant positives (respectivement négatives), on obtient donc que $z_0 = \frac{\sqrt{\sqrt{3}+2}}{2} + i\frac{\sqrt{2-\sqrt{3}}}{2}$ et comme $z_0 = \cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)$, puisque ces cos et sin sont nécessairement positifs car l'angle est entre 0 et $\pi/2$, on a donc

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{\sqrt{3}+2}}{2}$$
 et $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2}$.

On peut aussi remarquer (en élevant au carré) que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{\sqrt{3}+2}}{2} = \frac{\sqrt{6}+\sqrt{2}}{4}$ et que, de même, $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6}-\sqrt{2}}{4}$.

Remarques après correction.

• Attention à bien comprendre l'esprit de l'exercice : ici on calcule de deux manières différentes les racines carrées de w pour raisonner par identification à la fin. Si vous utilisez les formules de trigonométrie pour calculer $\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$ ou bien $\cos\left(\frac{\pi}{6}\right) = 2\cos^2\left(\frac{\pi}{12}\right) - 1$ pour calculer $\cos\left(\frac{\pi}{12}\right)$, vous passez complètement à côté de l'exercice. Regardez bien, il est écrit "en déduire", donc vous devez utiliser ces racines carrées pour conclure (et non pas les formules de trigonométrie).

- Il faut être capable de retrouver clairement le système permettant de calculer les racines carrées sous forme algébrique, comme on l'a fait dans la preuve du résultat en CM.
- Pour la résolution du système, relire les notes de cours, car certain.es passent par des calculs un peu trop "risqués" (équation bicarrée).
- On n'écrit JAMAIS \sqrt{w} pour $w \in \mathbb{C}$ (à part quand w est un réel positif).
- Si vous ne justifiez pas proprement que (par exemple) $\frac{\sqrt{\sqrt{3}+2}}{2} = \frac{\sqrt{6}+\sqrt{2}}{4}$, cela sousentend que vous avez recopié ce résultat quelque part (car ça ne saute pas aux yeux)...

Exercice 4.2: Ecrire $\sum_{k=1}^{2026} \frac{1}{(1+i)^k}$ sous forme algébrique.

Correction. Il s'agit d'une série géométrique de raison $q = \frac{1}{1+i}$, ce qui donne

$$\sum_{k=1}^{2026} \frac{1}{(1+i)^k} = \frac{1}{1+i} \frac{1-q^{2026}}{1-\frac{1}{1+i}} = \frac{1-q^{2026}}{1+i-1} = \frac{1-q^{2026}}{i} = -i(1-q^{2026}).$$

On remarque maintenant que $\frac{1}{1+i} = \frac{1-i}{1^2+1^2} = \frac{1-i}{2}$. De plus, on a

$$|1 - i| = \sqrt{1^2 + 1^2} = \sqrt{2},$$

et, en notant θ un argument de 1 - i, on a

$$\cos \theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
 et $\sin \theta = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$,

d'où $\theta = -\frac{\pi}{4}$ et donc $\frac{1}{1+i} = \frac{\sqrt{2}}{2}e^{-\frac{i\pi}{4}} = \frac{e^{-\frac{i\pi}{4}}}{\sqrt{2}}$. On obtient ainsi, en constatant que

$$\frac{2026\pi}{4} = \frac{2024\pi}{4} + \frac{2\pi}{4} = 506\pi + \frac{\pi}{2}$$

avec $506 = 2 \times 253 \in 2\mathbb{Z}$,

$$\sum_{k=1}^{2026} \frac{1}{(1+i)^k} = -i\left(1 - e^{-i\frac{2026\pi}{4}} 2^{-1013}\right) = -i\left(1 - e^{-i\frac{\pi}{2}} 2^{-1013}\right) = -i(1+i2^{-1013}) = 2^{-1013} - i.$$

Remarques après correction.

• L'expression finale doit être sous forme algébrique, donc de la forme a+ib avec a et b des réels. Si vous obtenez une expression où il y a encore du $(1+i)^{2026}$, c'est que votre calcul n'est pas terminé...!