Correction Mini-DM 3: Ensembles et applications

Exercice 3.1: On pose

$$E = \left\{ \frac{1}{k(k+1)} : k \in \mathbb{N}^* \right\} \quad \text{et} \quad F = \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N}^* \right\}$$

- 1. Montrer que $E \subset F$.
- 2. Y a-t-il égalité entre les ensembles *E* et *F* ?
- 3. On considère l'ensemble $\Lambda = E E = \{z = x y : x \in E, y \in E\}$.
 - a) Montrer que $\Lambda \subset F$.
 - b) **BONUS** (plus difficile) : Montrer que $\Lambda \neq F$.

Correction.

1. Soit $x \in E$, alors il existe $k \in \mathbb{N}^*$ tel que $x = \frac{1}{k(k+1)}$. De plus, on a

$$x = \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

et donc, comme $k \in \mathbb{N}^*$ et $k+1 \in \mathbb{N}^*$, alors $x \in F$. Donc $E \subset F$.

- 2. On remarque que $0 = \frac{1}{2} \frac{1}{2} \in F$ (par exemple pour m = n = 2), alors que $\frac{1}{k(k+1)} \neq 0$ pour tout $k \in \mathbb{N}^*$, ce qui veut dire que $0 \notin E$. Donc $F \notin E$ et donc $E \neq F$.
- 3. a) Si $z \in \Lambda = E E$, alors il existe $x, y \in E$ tel que z = x y et donc il existe $k \in \mathbb{N}^*$ et $k' \in \mathbb{N}^*$ tels que

$$z = \frac{1}{k(k+1)} - \frac{1}{k'(k'+1)},$$

qui est sous la forme $z = \frac{1}{n} - \frac{1}{m}$ avec $n = k(k+1) \in \mathbb{N}^*$ et $m = k'(k'+1) \in \mathbb{N}^*$, donc $z \in F$ et ainsi $\Lambda \subset F$.

b) Soit $z_0 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \in F$ Montrons que $z_0 \notin \Lambda$. Par l'absurde, supposons que $z_0 \in \Lambda$, il existe donc $k \in \mathbb{N}^*$ et $k' \in \mathbb{N}^*$ tels que

$$\frac{1}{6} = \frac{1}{k(k+1)} - \frac{1}{k'(k'+1)}.$$

On raisonne maintenant par disjonction de cas sur *k* :

- si k=1, alors $\frac{1}{k(k+1)}=\frac{1}{2}$ et on doit nécessairement avoir $\frac{1}{k'(k'+1)}=\frac{1}{6}-\frac{1}{2}=\frac{1}{3}$, c'est-à-dire k'(k'+1)=3, ce qui n'est pas possible avec $k'\in\mathbb{N}^*$ puisque k'(k'+1) est forcément divisible par 2 (vu en CM comme exemple de raisonnement par disjonction de cas).
- si $k \ge 2$, alors $k(k+1) \ge 6$ et donc $\frac{1}{k(k+1)} \le \frac{1}{6}$, donc, comme pour tout $k' \in \mathbb{N}^*$, $\frac{1}{k'(k'+1)} > 0$, alors $\frac{1}{k(k+1)} \frac{1}{k'(k'+1)} < \frac{1}{6}$ ce qui est impossible.

On en déduit donc que $z_0 \notin \Lambda$, et donc que $F \notin \Lambda$, c'est-à-dire que $\Lambda \neq F$.

Remarques après correction.

- On a $x \in E \Longrightarrow \exists k \in \mathbb{N}^*, x = \frac{1}{k(k+1)}$. La preuve de 1. devait commencer comme ça! Pour montrer une inclusion, on prend un élément du premier ensemble et on montre qu'il appartient nécessairement à l'autre ensemble, ce qui montre l'inclusion.
- Il fallait montrer que l'équation $\frac{1}{k(k+1)} = \frac{2}{3}$ (ou $\frac{3}{10}$) n'admettait pas de solution dans \mathbb{N}^* .

Exercice 3.2: Pour tout $x \in \mathbb{R}$, on note E(x) la partie entière de x. Soient $f : \mathbb{N} \to \mathbb{N}$ et $g : \mathbb{N} \to \mathbb{N}$ définies par

$$\forall n \in \mathbb{N}, \quad f(n) = 2n \quad \text{et} \quad g(n) = E\left(\frac{n}{2}\right).$$

Les fonctions f et g sont-elles injectives ? surjectives ? Comparer $f \circ g$ et $g \circ f$.

Correction. Il est clair que $f(\mathbb{N}) = 2\mathbb{N}$, donc si $m \in \mathbb{N}$ est impair, il n'admet pas d'antécédent par f, donc f n'est pas surjective. Pour montrer l'injectivité, soient $n_1, n_2 \in \mathbb{N}$, alors

$$f(n_1) = f(n_2) \Rightarrow 2n_1 = 2n_2 \Rightarrow n_1 = n_2$$

donc *f* est injective.

Soit $m \in \mathbb{N}$, alors il est clair que $g(2m) = E\left(\frac{2m}{2}\right) = E(m) = m$ puisque m est un entier, et donc m admet au moins un antécédent par g(2m), donc g est surjective.

Comme g(0) = g(1) = 0 et que $0 \ne 1$, on en déduit que g n'est pas injective.

Soit $n \in \mathbb{N}$, alors $f \circ g(n) = f(g(n)) = 2E(\frac{n}{2})$. Si n est pair, alors il existe $k \in \mathbb{N}$ tel que n = 2k et donc

$$f \circ g(n) = 2E(k) = 2k = n$$
.

Si *n* est impair, alors il existe $k \in \mathbb{N}$ tel que n = 2k + 1 et donc, comme $E\left(k + \frac{1}{2}\right) = k$, on a

$$f \circ g(n) = 2E\left(\frac{2k+1}{2}\right) = 2E\left(k+\frac{1}{2}\right) = 2k = n-1.$$

On a aussi $g \circ f(n) = g(f(n)) = E(\frac{2n}{2}) = E(n) = n$. Ainsi, $f \circ g$ et $g \circ f$ coïncident sur $2\mathbb{N}$ mais pas sur $2\mathbb{N} + 1$. En particulier, $f \circ g \neq g \circ f$.

Remarques après correction.

- Beaucoup oublient d'introduire les variables. Par exemple, pour prouver l'injectivité de *f* , on doit :
 - a) écrire "Soit $(n_1, n_2) \in \mathbb{N}^2$ " pour définir n_1 et n_2 (cette partie est généralement oubliée dans vos copies!);
 - b) puis supposer que $f(n_1) = f(n_2)$;
 - c) par des arguments logiques, on déduit que $n_1 = n_2$.

De plus, il ne FAUT PAS mélanger les "donc" et les " \Longrightarrow " en écrivant par exemple "on suppose $f(n_1) = f(n_2)$ donc $2n_1 = 2n_2 \Longrightarrow n_1 = n_2$ ". Mieux vaut écrire les choses comme dans la correction, ou bien : " $f(n_1) = f(n_2)$ donc $2n_1 = 2n_2$ donc $n_1 = n_2$ ".

- Attention aux ensembles : on peut écrire " $n, n' \in \mathbb{N}$ " ou " $(n, n') \in \mathbb{N}^2$, mais ON N'ECRIT PAS " $n, n' \in \mathbb{N}^2$ " ou bien " $(n, n') \in \mathbb{N}$ ".
- Il est inutile de rappeler les définitions (injectivité, surjectivité) avant de faire les raisonnements (vous perdez du temps).
- Pour montrer qu'une application n'est pas injective (ou n'est pas surjective), un contreexemple suffit généralement! Ne faites pas un raisonnement par l'absurde si c'est pour finalement donner un contre-exemple.
- La contraposée de " $\forall (n_1, n_2) \in \mathbb{N}^2$, $g(n_1) = g(n_2) \Longrightarrow n_1 = n_2$ " N'EST PAS " $\forall (n_1, n_2) \in \mathbb{N}^2$, $g(n_1) \neq g(n_2) \Longrightarrow n_1 \neq n_2$ ". Il s'agit en fait de (revoir le cours !)

$$\forall (n_1, n_2) \in \mathbb{N}^2, n_1 \neq n_2 \Longrightarrow g(n_1) \neq g(n_2).$$

- On dit que "f est injective" et NON PAS "f(n) est injective" car f est une application alors que f(n) est un nombre!
- Attention : $\forall n \in \mathbb{N}$, $f \circ g(n) = n = \mathrm{Id}_{\mathbb{N}}(n)$ (et NON PAS " $\mathrm{Id}_{\mathbb{N}}$ " tout court, puisque ces quantités sont des nombres !).
- Il fallait expliquer pourquoi $\forall n \in \mathbb{N}, 2E\left(\frac{n}{2}\right) \neq E(n)$ (en prenant n = 1 par exemple).
- Ecrire " $f \circ g = g \circ f$ pour n pair" n'a pas de sens! Mieux vaut écrire " $f \circ g = g \circ f$ sur $2\mathbb{N}$ " ou bien " $f \circ g(n) = g \circ f(n)$ pour n pair".
- Evitez de parler de dérivée de f, puisque la fonction n'est pas définie sur \mathbb{R} mais sur \mathbb{N} !! Ou alors il faut parler de restriction de $x \mapsto 2x$ à \mathbb{N} , mais ça peut être délicat à écrire.
- On ne peut pas utiliser le Théorème des Valeurs Intermédiaires et la continuité pour des fonctions définies sur ℕ (ou alors parler de restriction comme au point précédent).
- Il ne fallait pas étudier l'injectivité et la surjectivité de $f \circ g$ et $g \circ f$. Restez bien dans le cadre des questions!
- Gardez la notation *E* pour la partie entière, sinon cela peut donner l'impression que vous avez recopié le résultat quelque part (IA générative ou autre). De manière générale, on s'attend à ce que seulement le vocabulaire du cours soit utilisé lors des évaluations.