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Les réponses doivent toutes être soigneusement justifiées, et la rédaction la plus précise possible.

Exercice 1 Questions de cours (1 + 3 = 4 points)

1. Enoncer le Théorème fondamental de l’Arithmétique (on ne demande pas la preuve !).
Correction. Soit n ≥ 2 un entier, alors il existe une unique écriture de n sous la forme

n =
k∏

i=1

pαi
i

où, pour tout i ∈ {1, ..., k}, pi est un nombre premier, αi ∈ N∗ et p1 < p2 < ... < pk.

2. Soient a et b deux entiers naturels non-nuls. Montrer qu’il existe (u, v) ∈ Z2 tels que

au+ bv = PGCD(a, b).

Correction. Raisonnons par récurrence forte et, pour tout b ∈ N∗, définissons la proposition

P (b) : ”∀a ∈ N∗,∃(u, v) ∈ Z2, au+ bv = PGCD(a, b)”.

Initialisation : Si b = 1, alors, pour tout a ∈ N∗, il est clair que PGCD(a, b) = PGCD(a, 1) = 1 =

a× 0 + b× 1, donc le couple (u, v) = (0, 1) convient. Ainsi, P (1) est vraie.
Hérédité (alternative à la version du CM) : Soit b ∈ N∗. Supposons que P (k) est vraie pour tout
k ∈ {1, ..., b}. Montrons que P (b + 1) est vraie. Soit a ∈ N∗, alors la division euclidienne de b + 1

par a donne : b+ 1 = aq + r avec 0 ⩽ r < a. Comme P (r) est vraie, alors il existe (u, v) ∈ Z2 tels
que au+ rv = PGCD(a, r). Or PGCD(a, r) = PGCD(a, b) et on obtient ainsi

PGCD(a, b) = au+ rv = au+ (b+ 1− aq)v = a(u− qv) + (b+ 1)v

et donc P (b+ 1) est vraie.
Conclusion : On en déduit donc que, ∀b ∈ N∗, ∀a ∈ N∗, ∃(u, v) ∈ Z2, au+ bv = PGCD(a, b).

Exercice 2 Equations complexes (2 + 2 = 4 points)

1. Déterminer les racines carrées de 9 + 40i.
Correction. Soit z = x+ iy, (x, y) ∈ R2, on cherche à résoudre z2 = 9 + 40i. On a donc :

z2 = (x+ iy)2 = x2 − y2 + 2ixy = 9 + 40i,

|z|2 = x2 + y2 = |9 + 40i| =
√
92 + 402 =

√
1681 = 41.

On obtient donc


x2 − y2 = 9
x2 + y2 = 41
2xy = 40

, et ainsi 2x2 = 41+9 = 50, d’où x ∈ {−5, 5} et 2y2 = 41−9 = 32

d’où y ∈ {−4, 4}. Comme xy = 20 > 0, alors x et y ont même signe, donc les racines de 9 + 40i

sont −5− 4i et 5 + 4i.



2. Résoudre dans C l’équation iz2 + (1− 5i)z − 2 + 6i = 0.
Correction. Le discriminant de ce polynôme du second degré est

∆ = (1− 5i)2 − 4i(−2 + 6i) = 1− 25− 10i+ 8i+ 24 = −2i.

Comme −2i = 2e−iπ
2 , les racines carrées de ∆ sont donc δ et −δ avec

δ =
√
2e−iπ

4 =
√
2
(
cos
(
−π

4

)
+ i sin

(
−π

4

))
=

√
2

(√
2

2
− i

√
2

2

)
= 1− i.

Les solutions de l’équation sont donc

z1 =
−(1− 5i) + (1− i)

2i
=

4i

2i
= 2 et z2 =

−(1− 5i)− (1− i)

2i
=

−2 + 6i

2i
= −1

i
+ 3 = 3 + i.

Exercice 3 Polynômes (1.5 + 0.5 + 1 + 1 = 4 points)

Pour tout n ∈ N∗, on définit le polynôme Pn = (X + 1)n − nX − 1 et on note Zn l’ensemble des racines
de Pn dans C, sans prendre en compte leurs multiplicités.

1. Factoriser P2, P3 et P4 dans R[X] et déterminer Z2, Z3 et Z4.
Correction. On calcule et on factorise :

P2 = (X + 1)2 − 2X − 1 = X2,

P3 = (X + 1)3 − 3X − 1 = X3 + 3X2 = X2(X + 3)

P4 = (X + 1)4 − 4X − 1 = X4 + 4X3 + 6X2 = X2(X2 + 4X + 6).

P2 et P3 sont bien factorisés avec des polynômes irréductibles de R[X]. Quant à P4, on remarque
que le discriminant de X2 +4X +6 vaut ∆ = 16− 24 = −8 < 0 donc ce polynôme est irréductible
et P4 est bien factorisé dans R[X]. Les racines complexes de P4 sont donc

X1 =
−4 + i

√
8

2
= −2 + i

√
2 et X2 =

−4− i
√
8

2
= −2− i

√
2.

On trouve alors

Z2 = {0}, Z3 = {0,−3} et Z4 = {0,−2 + i
√
2,−2− i

√
2}.

2. Montrer que, pour tout n ∈ N∗, X2 divise Pn.
Correction. Soit n ∈ N∗. Il suffit de remarquer que X2 divise Pn si et seulement si 0 est racine
de Pn de multiplicité au moins 2. On calcule :

Pn(0) = 1n − 1 = 0,

et comme P ′
n = n(X + 1)n−1 − n, on a

P ′
n(0) = n× 1n−1 − n = 0,

donc 0 est bien racine de Pn de multiplicité au moins 2, donc X2 divise Pn.



3. Déterminer le PGCD de P4 et P3 en utilisant les factorisations de la question 1, puis avec l’algo-
rithme d’Euclide.
Correction. On rappelle que

P3 = X2(X + 3) et P4 = X2(X2 + 4X + 6).

Comme la seule racine de X+3 est −3 et que ce n’est pas une racine de X2+4X+6, on en déduit
que X2 est le PGCD de P3 et P4.
Avec l’algorithme d’Euclide :

X4 + 4X3 + 6X2 = (X + 1)(X3 + 3X2) + 3X2

X3 + 3X2 =

(
1

3
X + 1

)
(3X2).

On en déduit, en renormalisant, que le PGCD recherché est X2.

4. Soit n ∈ N∗. On note Rn le reste de la division euclidienne de Pn par X2 − 1.
Montrer que Rn(1) = 2n − n− 1 et Rn(−1) = n− 1, puis en déduire l’expression de Rn.
Correction. Soit n ∈ N∗. On sait qu’il existe deux polynômes Qn et Rn tels que

Pn(X) = (X2 − 1)Qn(X) +Rn(X), d◦R ⩽ 1.

Donc Rn(X) = anX + bn avec (an, bn) ∈ R2. On évalue cette équation en X = 1 et X = −1 et on
trouve :

Pn(1) = 2n − n− 1 = Rn(1) et Pn(−1) = n− 1 = Rn(−1),

d’où le système
{

2n − n− 1 = an + bn
n− 1 = −an + bn

, ce qui permet de trouver 2bn = 2n − 2 et donc bn =

2n−1 − 1 ce qui donne an = bn − n+ 1 = 2n−1 − n. Le reste recherché est donc

Rn =
(
2n−1 − n

)
X + 2n−1 − 1.

Exercice 4 Arithmétique (1 + 1 + 1 + 1 = 4 points)

Pour tout n ∈ N, on définit an = 2n + 3n.

1. En utilisant les congruences, montrer que, ∀n ∈ N, 5 | a2n+3.
Correction. Soit n ∈ N, alors on a

a2n+3 = 22n+3 + 32n+3 = 8× 4n + 27× 9n ≡ 3× 4n + 2× 4n [5] ≡ 5× 4n [5] ≡ 0 [5],

donc 5 | a2n+3.

2. En utilisant l’algorithme d’Euclide, déterminer le PGCD de 275 et 35.
Correction. Par l’algorithme d’Euclide, on a :

275 = 7× 35 + 30

35 = 30 + 5

30 = 5× 6 + 0,

donc PGCD(275, 35) = 5.



3. Résoudre dans Z2 l’équation a3x+ a5y = 3. Résoudre de même l’équation a3x+ a5y = 10.
Correction. On cherche à résoudre :
— 35x+275y = 3. Comme PGCD(275, 35) = 5 ne divise pas 3, l’équation n’admet pas de solution

dans Z2.
— 35x + 275y = 10. Cette fois-ci, PGCD(275, 35) = 5 divise 10, donc l’équation admet des

solutions. Cherchons une solution particulière de l’équation en déterminant les coefficients de
Bézout de 275 et 35. On remonte l’algorithme d’Euclide et on trouve

5 = 35− 30 = 35− (275− 7× 35) = 8× 35− 275.

Donc, en multipliant par 2, on trouve

35× (16) + 275× (−2) = 10,

donc (16,−2) est une solution particulière de cette équation, qui est équivalente à 7x+55y = 2

où 7 et 55 sont donc premiers entre eux. L’ensemble des solutions de l’équation est donc

S = {(16 + 55k,−2− 7k) : k ∈ Z}.

4. Montrer que pour tout n ∈ N, an et an+1 sont premiers entre eux.
Indication : Calculer an+1 − 3an et an+1 − 2an.
Correction. Pour tout n ∈ N, on a

an+1 − 3an = 2n+1 + 3n+1 − 3(2n + 3n) = 2n+1 − 3× 2n = 2n(2− 3) = −2n.

Le PGCD de an+1 et an divise donc 2n, c’est donc une puissance de 2. De même, on a, pour tout
n ∈ N,

an+1 − 2an = 2n+1 + 3n+1 − 2(2n + 3n) = 3n+1 − 2× 3n = 3n(3− 2) = 3n.

Le PGCD de an+1 et an divise donc 3n, c’est donc une puissance de 3. On en déduit donc que la
seule possibilité est que PGCD(an, an+1) = 1, donc ces deux nombres sont premiers entre eux.

Exercice 5 Entiers de Gauss (0.5 + 1 + 1 + 1.5 = 4 points)

On considère l’ensemble Z[i] = {z = a + ib : (a, b) ∈ Z2} ainsi que l’application N : Z[i] → R, z 7→ zz,
appelé stathme de Z[i].

1. Montrer que pour tout z ∈ Z[i], N(z) ∈ N.
Correction. Soit z ∈ Z[i], alors z = a+ ib avec (a, b) ∈ Z2. Ainsi, N(z) = |z|2 = a2 + b2 ∈ N.

2. Montrer que pour tout (z, z′) ∈ Z[i]2, zz′ ∈ Z[i] et N(zz′) = N(z)N(z′).
Correction. Soit z = a+ ib, (a, b) ∈ Z2 et z′ = m+ in, (m,n) ∈ Z2, alors

zz′ = (a+ ib)(m+ in) = am− bn+ i(bm+ an).

Comme am− bn ∈ Z et bm+ an ∈ Z, zz′ ∈ Z[i]. De plus, on a

N(zz′) = |zz′|2 = |z|2|z′|2 = N(z)N(z′).



3. Soit z ∈ Z[i]\{0} tel que z−1 ∈ Z[i]. Montrer que N(z) = 1.
Correction. Soit z ∈ Z[i]\{0} tel que z−1 ∈ Z[i], alors, comme zz−1 = 1 et

1 = N(1) = N(zz−1) = N(z)N(z−1).

Mais comme N(z) ∈ N et N(z−1) ∈ N et ont pour produit 1, ils sont donc égaux à 1 tous les deux,
et donc en particulier N(z) = 1.

4. En déduire {z ∈ Z[i]\{0} : z−1 ∈ Z[i]}.
Correction. Soit z ∈ Z[i]\{0} tel que z−1 ∈ Z[i], alors, en notant z = a + ib, (a, b) ∈ Z2, on
obtient

N(z) = a2 + b2 = 1.

Comme a et b sont des entiers relatifs, alors a > 1 ou b > 1 implique que a2 + b2 > 1, donc les
seules possibilités sont :

• a = 1 et b = 0, et on trouve z = 1,

• a = −1 et b = 0, et on trouve z = −1,

• a = 0 et b = 1, et on trouve z = i,

• a = 0 et b = −1, et on trouve z = −i.

Ainsi, {z ∈ Z[i]\{0} : z−1 ∈ Z[i]} = {1,−1, i,−i}.


