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CORRECTION

Aucun document ou dispositif électronique n’est autorisé pendant 1’épreuve.

Les réponses doivent toutes étre soigneusement justifiées, et la rédaction la plus précise possible.

Exercice 1 Questions de cours (1 + 3 = 4 points)

1. Enoncer le Théoréme fondamental de I’Arithmétique (on ne demande pas la preuve!).

Correction. Soit n > 2 un entier, alors il existe une unique écriture de n sous la forme

k
n= szo”
i=1
ou, pour tout i € {1,...,k}, p; est un nombre premier, o; € N* et p; < pa < ... < pg.
2. Soient a et b deux entiers naturels non-nuls. Montrer qu'il existe (u,v) € Z? tels que
au + bv = PGCD(a, b).
Correction. Raisonnons par récurrence forte et, pour tout b € N*, définissons la proposition
P(b) : "Va € N*,3(u,v) € Z%, au + bv = PGCD(a,b)”.

Initialisation : Si b = 1, alors, pour tout a € N*| il est clair que PGCD(a,b) = PGCD(a,1) =1 =
a x 0+ b x 1, donc le couple (u,v) = (0,1) convient. Ainsi, P(1) est vraie.

Hérédité (alternative a la version du CM) : Soit b € N*. Supposons que P(k) est vraie pour tout
k € {1,...,b}. Montrons que P(b+ 1) est vraie. Soit a € N*, alors la division euclidienne de b+ 1

par a donne : b+ 1 = aq +r avec 0 < r < a. Comme P(r) est vraie, alors il existe (u,v) € Z? tels
que au + rv = PGCD(a,r). Or PGCD(a,r) = PGCD(a, b) et on obtient ainsi

PGCD(a,b) =au+rv=au+ (b+1—aq)v=a(u—quv)+ (b+1)v
et donc P(b+ 1) est vraie.

Conclusion : On en déduit donc que, Vb € N*, Va € N*, J(u,v) € Z2, au + bv = PGCD(a, b).

Exercice 2 Equations complexes (2 + 2 = 4 points)

1. Déterminer les racines carrées de 9 + 40s.

Correction. Soit z = z + iy, (z,y) € R?, on cherche a résoudre z? = 9 + 40i. On a donc :

22 = (x +iy)? = 2% — y* + 2ixy = 9 + 40,

|2|2 :;p2—|-y2 = |9—|—401,| =1/92 4402 = V1681 = 41.

2_ .2
¢t —y* =9
On obtient donc { 2 4+ 4% = 41 , et ainsi 222 = 41+9 = 50, d’'ott x € {—5,5} et 2y? = 419 = 32
2zy = 40

d'otu y € {—4,4}. Comme zy = 20 > 0, alors x et y ont méme signe, donc les racines de 9 + 40:
sont —5 — 47 et 5+ 41.



2. Résoudre dans C I'équation i22 + (1 — 5i)z — 2 + 6i = 0.

Correction. Le discriminant de ce polyndéme du second degré est

A= (1—5i)% —4i(=2+6i) =1 — 25— 10i + 8 + 24 = —2i.

. T N .
Comme —2¢ = 2e™ "2, les racines carrées de A sont donc § et —d avec

§ = 2e7iT = \/§<cos (—%) +isin (—%)) -2 (‘/5 —i\/i> — 14

Les solutions de I’équation sont donc

B e ) B PP € k10 Rk )

—24 62 1
21 21 21 21

Exercice 3 Polynémes (1.5 + 0.5 + 1 4+ 1 = 4 points)
Pour tout n € N* on définit le polynéme P, = (X + 1) —nX — 1 et on note Z,, 'ensemble des racines

de P, dans C, sans prendre en compte leurs multiplicités.

1. Factoriser Py, P3 et Py dans R[X] et déterminer Zs, Z3 et Zy.

Correction. On calcule et on factorise :

Py=(X+1)72-2X -1= X2,
Py=(X+1P2-3X-1=X>+3X2=X%X +3)
Pi=(X+1)*—4X —1=X*+4X> +6X? = X*(X? +4X +6).

P, et P53 sont bien factorisés avec des polynémes irréductibles de R[X]. Quant a Py, on remarque
que le discriminant de X2 44X + 6 vaut A = 16 — 24 = —8 < 0 donc ce polyndme est irréductible

et Py est bien factorisé dans R[X]. Les racines complexes de P, sont donc

—4 4+ i\/8 —4 —1v/8
Xl:z“f:_wri\/i et ng;\[:—?—i\/i.

On trouve alors

Zo={0}, Z3=1{0,-3} et Z;={0,-2+1iV2, -2 —iV2}.

2. Montrer que, pour tout n € N*, X? divise P,.
Correction. Soit n € N*. II suffit de remarquer que X? divise P, si et seulement si 0 est racine

de P, de multiplicité au moins 2. On calcule :
P,(0)=1"-1=0,
et comme P, =n(X +1)"! —n, ona
P(0)=nx1"1—n=0,

donc 0 est bien racine de P, de multiplicité au moins 2, donc X? divise P,.



3. Déterminer le PGCD de Py et P3 en utilisant les factorisations de la question 1, puis avec ’algo-
rithme d’Euclide.

Correction. On rappelle que
Py=X*(X+3) et Pp=X*X?+4X+6).

Comme la seule racine de X +3 est —3 et que ce n’est pas une racine de X2 44X +6, on en déduit
que X2 est le PGCD de P; et Py.
Avec l'algorithme d’Euclide :

X4 4X3 +6X%= (X +1)(X®43X?) 4+ 3X2

1
X? 4+ 3X? = <3X + 1) (3X2).

On en déduit, en renormalisant, que le PGCD recherché est X?2.
4. Soit n € N*. On note R, le reste de la division euclidienne de P, par X2 — 1.
Montrer que R,(1) =2" —n —1 et R,(—1) =n — 1, puis en déduire 'expression de R,,.

Correction. Soit n € N*. On sait qu’il existe deux polynoémes @,, et R,, tels que
Py(X) = (X% - 1)Qu(X)+ R,(X), d°R<1.

Donc R, (X) = a,X + b, avec (an,b,) € R?. On évalue cette équation en X =1 et X = —1 et on
trouve :
P,(1)=2"—-n—-1=R,(1) et Py(—-1)=n—-1=R,(-1),

2—n—-1=a,+by
n—1=—ay+ by
271 _ 1 ce qui donne a,, = b, —n+1=2""1 —n. Le reste recherché est donc

d’ou le systéme { , ce qui permet de trouver 2b, = 2" — 2 et donc b, =

Ry=02"1-n)X+2" -1

Exercice 4 Arithmétique (1 + 1 + 1 + 1 = 4 points)
Pour tout n € N, on définit a,, = 2™ + 3™.

1. En utilisant les congruences, montrer que, Vn € N, 5 | ag,13.

Correction. Soit n € N, alors on a
Qgnyz = 22713 1328 — 8 4" 1 2T x 9" =3 x 4" +2x 4" [5] =5 x 4" [5] = 0 [5],

donc 5 | a2n+3-

2. En utilisant l'algorithme d’Euclide, déterminer le PGCD de 275 et 35.

Correction. Par I'algorithme d’Euclide, on a :

275 = 7 x 35+ 30
35=30+5
30 =5 x 6+0,

done PGCD(275,35) = 5.



3. Résoudre dans Z? 'équation azx + asy = 3. Résoudre de méme 1'équation azx + asy = 10.
Correction. On cherche & résoudre :
— 3524275y = 3. Comme PGCD(275,35) = 5 ne divise pas 3, I’équation n’admet pas de solution
dans Z2.
— 35z + 275y = 10. Cette fois-ci, PGCD(275,35) = 5 divise 10, donc 'équation admet des
solutions. Cherchons une solution particuliére de I’équation en déterminant les coefficients de

Bézout de 275 et 35. On remonte ’algorithme d’Euclide et on trouve
5=35—-30=35—(275—7 x 35) =8 x 35 — 275.
Donc, en multipliant par 2, on trouve
35 x (16) + 275 x (—2) = 10,

donc (16, —2) est une solution particuliére de cette équation, qui est équivalente a 7x + 55y = 2

oll 7 et 55 sont donc premiers entre eux. L’ensemble des solutions de 1’équation est donc
S ={(16 + 55k, —2 — Tk) : k € Z}.

4. Montrer que pour tout n € N, a, et a,41 sont premiers entre eux.
Indication : Calculer any1 — 3ay, et ant1 — 2ay,.

Correction. Pour tout n € N, on a
Uny1 — 3a, = 2" 4301 327 4 37) = 2"t 3 2" = 27(2 — 3) = —2™.

Le PGCD de an41 et a, divise donc 2", ¢’est donc une puissance de 2. De méme, on a, pour tout
n €N,
An+1 — 2an — 2n+1 + 3n+1 - 2(2n + 3n) _ 3n+1 9% 3" = 3n(3 - 2) — 3"

Le PGCD de an+1 et a, divise donc 3™, c¢’est donc une puissance de 3. On en déduit donc que la

seule possibilité est que PGCD(ay,, an+1) = 1, donc ces deux nombres sont premiers entre eux.

Exercice 5 Entiers de Gauss (0.5 +1 + 1 + 1.5 = 4 points)
On considére I'ensemble Z[i] = {z = a +ib : (a,b) € Z?} ainsi que application N : Z[i] — R, z — Zz,
appelé stathme de Z]i].

1. Montrer que pour tout z € Z[i], N(z) € N.
Correction. Soit z € Z[i], alors z = a + ib avec (a,b) € Z*. Ainsi, N(z) = |z|> = a®> + b* € N.

2. Montrer que pour tout (z,2') € Z[i]?, 22’ € Z[i] et N(22') = N(2)N(2).

Correction. Soit z = a + b, (a,b) € Z? et 2/ = m +in, (m,n) € Z?, alors
22" = (a+ib)(m +in) = am — bn + i(bm + an).
Comme am — bn € Z et bm + an € Z, zz' € Z[i]. De plus, on a

N(zZ) = |22|? = |z]}|¢'|* = N(2)N(2).



3. Soit z € Z[i]\{0} tel que 2~ € Z[i]. Montrer que N(z) = 1.

Correction. Soit z € Z[i]\{0} tel que z~! € Z[i], alors, comme zz~' =1 et
1=N(1)=N(zz"!)= NZ)N(=1).

Mais comme N(z) € Net N(2~!) € N et ont pour produit 1, ils sont donc égaux & 1 tous les deux,
et donc en particulier N(z) = 1.
4. En déduire {z € Z[i]\{0} : 27! € Z[i]}.
Correction. Soit z € Z[i]\{0} tel que 2z~ € Z[i], alors, en notant z = a + ib, (a,b) € Z>, on
obtient
N(z)=a*+b* =1.

Comme a et b sont des entiers relatifs, alors a > 1 ou b > 1 implique que a® + b?> > 1, donc les
seules possibilités sont :

e g=1et b=0, et on trouve z =1,

e a=—1etb=0, et on trouve z = —1,

e a=0et b=1, et on trouve z = 1,

e a=0et b=—1, et on trouve z = —i.

Ainsi, {z € Z[i]\{0} : 2=t € Z[i]} = {1, 1,4, —i}.



