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CORRECTION

Aucun document ou dispositif électronique n’est autorisé pendant ’épreuve.

Les réponses doivent toutes étre soigneusement justifiées, et la rédaction la plus précise possible.

Exercice 1 Questions de cours (1 + 1 + 2 = 4 points)

1. Enoncer la formule de Moivre (on ne demande pas la preuve).
Correction. (1 point) Vn € Z, V0 € R, (cosf + isinf)™ = cos(nf) + isin(nd), c’est-a-dire
(eiﬂ)n _ ei’nﬂ_

2. Soient P, @ € C[X], que peut-on dire de deg(P + @) (on ne demande pas la preuve) ?
Correction. (1 point) Soient P, Q € C[X], alors deg(P + Q) < max(deg(P), deg(Q)).

3. Enoncer et démontrer le Lemme de Gauss.
Correction. (2 points)
— (1 point) Enoncé : Soient a,b,c € Z* tels que a et b sont premiers entre eux et albc. Alors alc.
— (0.25 point) Preuve : En effet, comme a et b sont premiers entre eux, il existe d’apres le Théo-
réme de Bézout (u,v) € Z? tels que au + bv = 1.
— (0.25 point) On a donc auc + bev = c.
— (0.25 point) Comme albe, alors albev.

— (0.25 point) De plus, alauc, donc finalement alc.

Exercice 2 Polynémes (0.5 + 1 + 1.5 + 1 = 4 points)
Soit P € R[X] défini par P = X%+ 4X° + 8X* + 10X3 + aX? +4X + 1 ot —1 est une racine de P.
1. Montrer que o = 8.
Correction. (0.5 point)
— (0.25 point) Comme —1 est racine de P, P(—1) =0,
— (0.25 point) et on a donc

P(-1)=1-448-10+a—4+1=0,

et on obtient @« — 8 =0, donc a = 8.

2. Montrer que —1 est une racine double de P.
Correction. (1 point)

— (0.5 point) Les deux premiers polynémes dérivées de P sont
P =6X°4+20X"* + 32X +30X% 4+ 16X +4 et P”=30X"+80X3+96X? +60X + 16.

— (0.25 point) Comme P(—1) = P'(—1) =0 et
— (0.25 point) P”(—1) =2 # 0, alors —1 est racine double de P.



3. Montrer que j = %" est racine de multiplicité au moins de 2 de P en utilisant le fait que j est
racine du polynéme X2 + X + 1.
Correction.(1.5 point)
— (0.75 point) On calcule

) 2ir \ 6 2ix \ D 2ir \ 4 2ir \ 3 2ir \ 2 2ir
P(]):<e3> +4<e3> +8<63> +10<63) +8(e3> +4e s +1
dim 10¢m 8ir 2im dir 2ix

=™ +4e 3 +8 3 +10e”" +8e 3 +4e 3 +1
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=0.

— (0.75 point) et, de méme
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= 0.

Ainsi, j est racine au moins double de P.
4. En déduire une autre racine double de P et factoriser P dans C[X], puis dans R[X].
Correction. (1 point)
— (0.5 point) Comme P € R[X] et que j est racine au moins double de P, alors j est aussi racine
au moins double de P. On peut donc factoriser P par (X + 1)? par la question 2., puis par
(X — j)? d’aprés la question 3. et donc par (X — j)2. Ainsi, comme son coefficient dominant

est 1 et son degré 6, on obtient
P=(X+1)*(X —j)*(X —j)%

ce qui est la factorisation de P dans C[X].
— (0.5 point) De plus, comme j et j sont tous les deux des racines de X2 + X + 1 € R[X], on
obtient (X — j)(X —j) = X%+ X + 1 et ainsi

P=(X+1*X%+X+1)72

ce qui est la factorisation de P dans R[X], puisque X + 1 et X2+ X + 1 (qui a deux racines

complexes) sont irréductibles.



Exercice 3 Nombres complexes et polyndmes du second degrés (2 + 1 + 1 = 4 points)

1. Déterminer les racines carrées de —15 — &i.

Correction. (2 points)
— (0.25 point) Soit z = x + iy, (z,y) € R?, alors on souhaite résoudre 'équation z? = —15 — 8i.

On a donc 2% — 32 + 2izy = —15 — 8i,

— (0.25 point) et, de plus, |2]? = 22 + 3% = | — 15 — 8i| = V152 + 82 = 17. On a donc le systéme
x? — y2 = —15
2?4+ =17
20y = —8

— (0.5 point) On obtient ainsi 222 = —15 + 17 = 2, donc = € {—1,1}
— (0.5 point) et de méme 2y? = 17+ 15 = 32 donc y € {—4,4}.
— (0.25 point) Comme zy = —4 < 0, x et y sont de signes opposés
— (0.25 point) donc les racines carrées de —15 — 8¢ sont donc 1 — 44 et —1 + 4i.
2. En déduire les solutions dans C de I'équation 22 — (3 + 2i)z + 5 + 5i = 0.
Correction. (1 point)
— (0.25 point) Le discriminant de ce polynoéme du second degré est A = (3 +2i)% —4(1)(5+5i) =
—15 — 8.
— (0.25 point) Ses racines carrées sont donc, d’aprés la question précédentes, 1 — 4i et —1 + 441,
— (0.5 point) et les solutions de I’équations sont donc

3+20+1—4i 3+2i—1+4i
:wzg_i ot Zz—wzl_{_gi.

“ 2 - 2
3. Soit P = X2 —(3+2i)X +5+5i € C[X]. Donner un exemple, en justifiant, de polynéme Q € C[X]
de degré 2 qui soit premier avec P.

Correction. (1 point)
— (0.5 point) I suffit de choisir (par exemple) @1 = X2, ou bien (par exemple) Qo = P + 1.

— (0.5 point) Comme @1 n’admet que 0 comme racine qui n’est pas racine de P, ces deux poly-

ndémes sont premiers entre eux.

Pour l'autre exemple, en effectuant la division euclidienne de Q)2 par P, on obtient évidemment

Q2 =P+1,puis P=1x P+ 0, donc PGCD(Q2, P) = 1.

Exercice 4 Arithmétique (1.5 + 1 + 1.5 = 4 points)
Pour tout n € N, on définit a,, = 42" + 22" + 1.
1. Soit n € N. Montrer que a2 — 2 (82n +42" + 22") = any1 et en déduire que a,,1 = a2 — 2ay, [7].
Correction. (1.5 point)
— (0.75 point) Soit n € N, alors on a

a2 —2(8% +42" 127" = (42" +2%" +1)" — 2 (87" +42" 4+ 27")
— (47) 4 (27) 14247 4222 £ 24727 — 2 (8% 442" 427
+27 1247 1227 287 2 (8 447 +27)

_42n+1
_ 42n+1 + 22n+1 + 1
= Qp+1-

— (0.5 point) Ainsi, comme 8 =1 [7], on obtient

8% 447" 427" =1 447" 1+ 27" [7) = a, [7),



— (0.25 point) d’olt apq1 = a2 — 2 (82" +4%" +22") = a2 — 2a, [7).
2. En utilisant la question précédente, montrer par récurrence que ¥n € N, 7 | ay,.
Correction. (1 point)

— (0.25 point) Pour tout n € N, on définit la proposition
P(n):"7] ay”.

— (0.25 point) Initialisation : Pour n = 0, on a ag = 4! + 2! + 1 = 7 qui est bien divisible par 7.
Donc P(0) est vraie.

— (0.25 point) Hérédité : Soit n € N. Supposons que P(n) est vraie et montrons que P(n + 1) est
vraie. Comme on a a, 1 = a2 — 2ay, [7] et que 7 | a,, alors a,+1 = 0% —2 x 0[7] = 0 [7], donc
an+1 est divisible par 7 et ainsi P(n + 1) est vraie.

— (0.25 point) Conclusion : On a donc montré par récurrence que pour tout n € N, 7| ay,.

3. Résoudre dans Z? 'équation 273z + 49y = 14.

Correction. (1.5 point)

— (0.5 point) Par I’algorithme d’Euclide, on a :

273 =5x49 4 28

49 = 28 + 21
28 =21+7
21=3x7+0,

donc PGCD(273,49) = 7, qui divise 14, donc I’équation admet des solutions.
— (0.5 point) En remontant 'algorithme d’Euclide, on obtient

7=928—21=28— (49 —28) = 2 x 28 — 49 = 2(273 — 5 x 49) — 49 = 273(2) + 49(—11),

donc, en multipliant par 2, (4, —22) est solution de 'équation 273z + 49y = 14.
— (0.5 point) En divisant 273 et 49 par leur PGCD, on obtient 39 et 7 (qui sont donc premiers

entre eux), et ’ensemble des solution de ’équation est donc

S ={(4+ Tk, —22—39k): k € Z}.

Exercice 5 Polynémes cyclotomiques (1 + 1.5 + 1.5 = 4 points)
n

-2k
Pour tout entier n € N*, on note &, = H (X — e’T> le n-iéme polynéme cyclotomique, ot on

k=1
PGCD(k,n)=1
-2k

multiplie donc tous les polynomes de la forme X —e' = pour 1 < k < n et tels que PGCD(k,n) = 1.

1. Soit n € N*. Déterminer ’ensemble des racines n-iémes de 1.
Correction. (1 point)
— (0.5 point) Soit n € N*. Les racines n-ieme de 1 sont les solutions de I'équation 2" = 1 = 107,
— (0.5 point) donc il s’agit de 1’ensemble U,, = {ei¥ ck e [0,n—1]}.



2. Calculer et développer @1, ®3 et ®4 (on cherchera & obtenir des polynémes de R[X]).
Correction. (1.5 point) On a
1

2km

— (0.25 point) ®; = H (X — eiT> =X — e =X — 1, car PGCD(1,1) =1,

k=1
PGCD(k,1)=1

2
— (0.5 point) @y = H (X—eiT) = X — €™ = X + 1, car PGCD(1,2) = 1 et

PGC]I;(:kl,Q):l
PGCD(2,2) = 2 # 1,
4
— (0.75point) By =[] (X . e%) - (X - e%) (X - e‘?T”) = (X —i)(X+i) = X2+1,

k=1
PGCD(k,4)=1

car PGCD(1,4) = 1, PGCD(2,4) = 2 # 1, PGCD(3,4) = 1 et PGCD(4,4) =4 # 1.
p—1
3. Soit p est un nombre premier. Montrer que ®, = ZXj .
j=0
Correction. (1.5 point)
— (0.25 point) Si p est un nombre premier, alors {k: 1 < k < p, PGCD(k,p) =1} =[1,p — 1],

— (0.5 point) donc, comme les racines de XP — 1 sont les racines n-iémes de 1'unité, on obtient

p—1 p—1
Xp—lz]i[(X—eZ%) et XP—1=(X-1)> X
k=0 =0
— (0.75 point) on obtient
p—1
- 2k
X—elT)
= 2k kl_[o< XP—1 p—1 — j
<1>p:H<X—ep): T Sy XX =X



