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CORRECTION

Aucun document ou dispositif électronique n’est autorisé pendant l’épreuve.
Les réponses doivent toutes être soigneusement justifiées, et la rédaction la plus précise possible.

Exercice 1 Questions de cours (1 + 1 + 2 = 4 points)

1. Enoncer la formule de Moivre (on ne demande pas la preuve).
Correction. (1 point) ∀n ∈ Z, ∀θ ∈ R, (cos θ + i sin θ)n = cos(nθ) + i sin(nθ), c’est-à-dire(
eiθ

)n
= einθ.

2. Soient P,Q ∈ C[X], que peut-on dire de deg(P +Q) (on ne demande pas la preuve) ?
Correction. (1 point) Soient P,Q ∈ C[X], alors deg(P +Q) ⩽ max(deg(P ), deg(Q)).

3. Enoncer et démontrer le Lemme de Gauss.
Correction. (2 points)

— (1 point) Enoncé : Soient a, b, c ∈ Z∗ tels que a et b sont premiers entre eux et a|bc. Alors a|c.
— (0.25 point) Preuve : En effet, comme a et b sont premiers entre eux, il existe d’après le Théo-

rème de Bézout (u, v) ∈ Z2 tels que au+ bv = 1.
— (0.25 point) On a donc auc+ bcv = c.
— (0.25 point) Comme a|bc, alors a|bcv.
— (0.25 point) De plus, a|auc, donc finalement a|c.

Exercice 2 Polynômes (0.5 + 1 + 1.5 + 1 = 4 points)

Soit P ∈ R[X] défini par P = X6 + 4X5 + 8X4 + 10X3 + αX2 + 4X + 1 où −1 est une racine de P .

1. Montrer que α = 8.
Correction. (0.5 point)

— (0.25 point) Comme −1 est racine de P , P (−1) = 0,
— (0.25 point) et on a donc

P (−1) = 1− 4 + 8− 10 + α− 4 + 1 = 0,

et on obtient α− 8 = 0, donc α = 8.

2. Montrer que −1 est une racine double de P .
Correction. (1 point)

— (0.5 point) Les deux premiers polynômes dérivées de P sont

P ′ = 6X5 + 20X4 + 32X3 + 30X2 + 16X + 4 et P ′′ = 30X4 + 80X3 + 96X2 + 60X + 16.

— (0.25 point) Comme P (−1) = P ′(−1) = 0 et
— (0.25 point) P ′′(−1) = 2 ̸= 0, alors −1 est racine double de P .



3. Montrer que j = e
2iπ
3 est racine de multiplicité au moins de 2 de P en utilisant le fait que j est

racine du polynôme X2 +X + 1.
Correction.(1.5 point)

— (0.75 point) On calcule

P (j) =
(
e

2iπ
3

)6
+ 4

(
e

2iπ
3

)5
+ 8

(
e

2iπ
3

)4
+ 10

(
e

2iπ
3

)3
+ 8

(
e

2iπ
3

)2
+ 4e

2iπ
3 + 1

= e4iπ + 4e
10iπ
3 + 8e

8iπ
3 + 10e2iπ + 8e

4iπ
3 + 4e

2iπ
3 + 1

= 1 + 4e
4iπ
3 + 8e

2iπ
3 + 10 + 8e

4iπ
3 + 4e

2iπ
3 + 1

= 12 + 12e
2iπ
3 + 8e

4iπ
3

= 12(1 + j + j2)

= 0.

— (0.75 point) et, de même

P ′(j) = 6
(
e

2iπ
3

)5
+ 20

(
e

2iπ
3

)4
+ 32

(
e

2iπ
3

)3
+ 30

(
e

2iπ
3

)2
+ 16e

2iπ
3 + 4

= 6e
10iπ
3 + 20e

8iπ
3 + 32e2iπ + 30e

4iπ
3 + 16e

2iπ
3 + 4

= 6e
4iπ
3 + 20e

2iπ
3 + 32 + 30e

4iπ
3 + 16e

2iπ
3 + 4

= 36(1 + j + j2)

= 0.

Ainsi, j est racine au moins double de P .

4. En déduire une autre racine double de P et factoriser P dans C[X], puis dans R[X].
Correction. (1 point)

— (0.5 point) Comme P ∈ R[X] et que j est racine au moins double de P , alors j est aussi racine
au moins double de P . On peut donc factoriser P par (X + 1)2 par la question 2., puis par
(X − j)2 d’après la question 3. et donc par (X − j)2. Ainsi, comme son coefficient dominant
est 1 et son degré 6, on obtient

P = (X + 1)2(X − j)2(X − j)2,

ce qui est la factorisation de P dans C[X].
— (0.5 point) De plus, comme j et j sont tous les deux des racines de X2 + X + 1 ∈ R[X], on

obtient (X − j)(X − j) = X2 +X + 1 et ainsi

P = (X + 1)2(X2 +X + 1)2,

ce qui est la factorisation de P dans R[X], puisque X + 1 et X2 +X + 1 (qui a deux racines
complexes) sont irréductibles.



Exercice 3 Nombres complexes et polynômes du second degrés (2 + 1 + 1 = 4 points)

1. Déterminer les racines carrées de −15− 8i.
Correction. (2 points)
— (0.25 point) Soit z = x+ iy, (x, y) ∈ R2, alors on souhaite résoudre l’équation z2 = −15− 8i.

On a donc x2 − y2 + 2ixy = −15− 8i,
— (0.25 point) et, de plus, |z|2 = x2 + y2 = | − 15− 8i| =

√
152 + 82 = 17. On a donc le système

x2 − y2 = −15
x2 + y2 = 17
2xy = −8.

— (0.5 point) On obtient ainsi 2x2 = −15 + 17 = 2, donc x ∈ {−1, 1}
— (0.5 point) et de même 2y2 = 17 + 15 = 32 donc y ∈ {−4, 4}.
— (0.25 point) Comme xy = −4 < 0, x et y sont de signes opposés
— (0.25 point) donc les racines carrées de −15− 8i sont donc 1− 4i et −1 + 4i.

2. En déduire les solutions dans C de l’équation z2 − (3 + 2i)z + 5 + 5i = 0.
Correction. (1 point)
— (0.25 point) Le discriminant de ce polynôme du second degré est ∆ = (3+2i)2−4(1)(5+5i) =

−15− 8i.
— (0.25 point) Ses racines carrées sont donc, d’après la question précédentes, 1− 4i et −1 + 4i,
— (0.5 point) et les solutions de l’équations sont donc

z1 =
3 + 2i+ 1− 4i

2
= 2− i et z2 =

3 + 2i− 1 + 4i

2
= 1 + 3i.

3. Soit P = X2− (3+2i)X+5+5i ∈ C[X]. Donner un exemple, en justifiant, de polynôme Q ∈ C[X]

de degré 2 qui soit premier avec P .
Correction. (1 point)
— (0.5 point) Il suffit de choisir (par exemple) Q1 = X2, ou bien (par exemple) Q2 = P + 1.
— (0.5 point) Comme Q1 n’admet que 0 comme racine qui n’est pas racine de P , ces deux poly-

nômes sont premiers entre eux.
Pour l’autre exemple, en effectuant la division euclidienne de Q2 par P , on obtient évidemment
Q2 = P + 1, puis P = 1× P + 0, donc PGCD(Q2, P ) = 1.

Exercice 4 Arithmétique (1.5 + 1 + 1.5 = 4 points)

Pour tout n ∈ N, on définit an = 42
n
+ 22

n
+ 1.

1. Soit n ∈ N. Montrer que a2n − 2
(
82

n
+ 42

n
+ 22

n)
= an+1 et en déduire que an+1 ≡ a2n − 2an [7].

Correction. (1.5 point)
— (0.75 point) Soit n ∈ N, alors on a

a2n − 2
(
82

n
+ 42

n
+ 22

n)
=

(
42

n
+ 22

n
+ 1

)2 − 2
(
82

n
+ 42

n
+ 22

n)
=

(
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n)2
+
(
22

n)2
+ 1 + 2.42

n
+ 2.22

n
+ 2.42

n
.22

n − 2
(
82

n
+ 42

n
+ 22

n)
= 42

n+1
+ 22

n+1
+ 1 + 2.42

n
+ 2.22

n
+ 2.82

n − 2
(
82

n
+ 42

n
+ 22

n)
= 42

n+1
+ 22

n+1
+ 1

= an+1.

— (0.5 point) Ainsi, comme 8 ≡ 1 [7], on obtient

82
n
+ 42

n
+ 22

n ≡ 12
n
+ 42

n
+ 22

n
[7] ≡ an [7],



— (0.25 point) d’où an+1 = a2n − 2
(
82

n
+ 42

n
+ 22

n) ≡ a2n − 2an [7].

2. En utilisant la question précédente, montrer par récurrence que ∀n ∈ N, 7 | an.
Correction. (1 point)

— (0.25 point) Pour tout n ∈ N, on définit la proposition

P (n) : ”7 | an”.

— (0.25 point) Initialisation : Pour n = 0, on a a0 = 41 + 21 + 1 = 7 qui est bien divisible par 7.
Donc P (0) est vraie.

— (0.25 point) Hérédité : Soit n ∈ N. Supposons que P (n) est vraie et montrons que P (n+1) est
vraie. Comme on a an+1 ≡ a2n − 2an [7] et que 7 | an, alors an+1 ≡ 02 − 2× 0 [7] ≡ 0 [7], donc
an+1 est divisible par 7 et ainsi P (n+ 1) est vraie.

— (0.25 point) Conclusion : On a donc montré par récurrence que pour tout n ∈ N, 7 | an.

3. Résoudre dans Z2 l’équation 273x+ 49y = 14.
Correction. (1.5 point)

— (0.5 point) Par l’algorithme d’Euclide, on a :

273 = 5× 49 + 28

49 = 28 + 21

28 = 21 + 7

21 = 3× 7 + 0,

donc PGCD(273, 49) = 7, qui divise 14, donc l’équation admet des solutions.
— (0.5 point) En remontant l’algorithme d’Euclide, on obtient

7 = 28− 21 = 28− (49− 28) = 2× 28− 49 = 2(273− 5× 49)− 49 = 273(2) + 49(−11),

donc, en multipliant par 2, (4,−22) est solution de l’équation 273x+ 49y = 14.
— (0.5 point) En divisant 273 et 49 par leur PGCD, on obtient 39 et 7 (qui sont donc premiers

entre eux), et l’ensemble des solution de l’équation est donc

S = {(4 + 7k,−22− 39k) : k ∈ Z}.

Exercice 5 Polynômes cyclotomiques (1 + 1.5 + 1.5 = 4 points)

Pour tout entier n ∈ N∗, on note Φn =
n∏

k=1
PGCD(k,n)=1

(
X − ei

2kπ
n

)
le n-ième polynôme cyclotomique, où on

multiplie donc tous les polynômes de la forme X − ei
2kπ
n pour 1 ⩽ k ⩽ n et tels que PGCD(k, n) = 1.

1. Soit n ∈ N∗. Déterminer l’ensemble des racines n-ièmes de 1.
Correction. (1 point)

— (0.5 point) Soit n ∈ N∗. Les racines n-ième de 1 sont les solutions de l’équation zn = 1 = 1ei0π,
— (0.5 point) donc il s’agit de l’ensemble Un = {ei

2πk
n : k ∈ J0, n− 1K}.



2. Calculer et développer Φ1, Φ2 et Φ4 (on cherchera à obtenir des polynômes de R[X]).
Correction. (1.5 point) On a

— (0.25 point) Φ1 =
1∏

k=1
PGCD(k,1)=1

(
X − ei

2kπ
1

)
= X − e2iπ = X − 1, car PGCD(1, 1) = 1,

— (0.5 point) Φ2 =
2∏

k=1
PGCD(k,2)=1

(
X − ei

2kπ
2

)
= X − eiπ = X + 1, car PGCD(1, 2) = 1 et

PGCD(2, 2) = 2 ̸= 1,

— (0.75 point) Φ4 =

4∏
k=1

PGCD(k,4)=1

(
X − ei

2kπ
4

)
=

(
X − e

2iπ
4

)(
X − e

6iπ
4

)
= (X−i)(X+i) = X2+1,

car PGCD(1, 4) = 1, PGCD(2, 4) = 2 ̸= 1, PGCD(3, 4) = 1 et PGCD(4, 4) = 4 ̸= 1.

3. Soit p est un nombre premier. Montrer que Φp =

p−1∑
j=0

Xj .

Correction. (1.5 point)

— (0.25 point) Si p est un nombre premier, alors {k : 1 ⩽ k ⩽ p,PGCD(k, p) = 1} = J1, p− 1K,
— (0.5 point) donc, comme les racines de Xp − 1 sont les racines n-ièmes de l’unité, on obtient

Xp − 1 =

p−1∏
k=0

(
X − e

i 2kπ
p

)
et Xp − 1 = (X − 1)

p−1∑
j=0

Xj

— (0.75 point) on obtient

Φp =

p−1∏
k=1

(
X − e

i 2kπ
p

)
=

p−1∏
k=0

(
X − e

i 2kπ
p

)
X − 1

=
Xp − 1

X − 1
= 1 +X + ...+Xp−1 =

p−1∑
j=0

Xj .


