Sujet blanc pour préparer le Contrôle Partiel du 10/11/25CORRECTION

Aucun document ou dispositif électronique n'est autorisé pendant l'épreuve.

Les réponses doivent toutes être soigneusement justifiées, et la rédaction la plus précise possible.

Exercice 1 Questions de cours (1 + 3 = 4 points)

Soit E et F deux ensembles, et $f: E \to F$ une application.

1. Donner la définition de f injective, avec les quantificateurs.

Correction. $\forall (x, x') \in E^2, f(x) = f(x') \Longrightarrow x = x'.$

2. Montrer que $\forall A, B \in \mathcal{P}(E)$, $A \subset B \Longrightarrow f(A) \subset f(B)$.

Correction. Soient A et B deux parties de E. On suppose que $A \subset B$.

Soit $y \in f(A)$, alors $\exists x \in A, y = f(x)$. Or $A \subset B$ donc $x \in B$ et donc $y = f(x) \in f(B)$.

On a donc montré que $\forall y \in F, y \in f(A) \implies y \in f(B)$, c'est-à-dire que $f(A) \subset f(B)$.

Exercice 2 Sommes (1 + 1 + 2 = 4 points)

Soit $n \in \mathbb{N}^*$. Calculer les trois sommes suivantes en fonction de n:

$$S_1(n) = \sum_{k=0}^n \binom{n}{k} (-1)^k$$
, $S_2(n) = \sum_{k=0}^n 2^k 7^{n-k}$, et $S_3(n) = 2 \sum_{k=1}^n \frac{1}{k(k+2)}$.

Correction. Soit $n \in \mathbb{N}^*$, alors on a

- $S_1(n) = \sum_{k=0}^{n} \binom{n}{k} (-1)^k 1^{n-k} = (1-1)^n = 0^n = 0$ d'après la formule du binôme de Newton.
- $S_2(n) = \sum_{k=0}^n 2^k 7^{n-k} = 7^n \sum_{k=0}^n \left(\frac{2}{7}\right)^k = 7^n \frac{1 \left(\frac{2}{7}\right)^{n+1}}{1 \frac{2}{7}} = 7^n \frac{1 \left(\frac{2}{7}\right)^{n+1}}{\frac{5}{7}} = \frac{7^{n+1} 2^{n+1}}{5}.$
- $S_3(n) = 2\sum_{k=1}^n \frac{1}{k(k+2)} = \sum_{k=1}^n \left(\frac{1}{k} \frac{1}{k+2}\right) = \sum_{k=1}^n \frac{1}{k} \sum_{j=3}^{n+2} \frac{1}{j} = 1 + \frac{1}{2} \frac{1}{n+1} \frac{1}{n+2}$, où on a posé j = k+2 dans la deuxième somme.

Exercice 3 Récurrence (4 points)

Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Correction. Pour tout $n \in \mathbb{N}$, on pose P(n): " $\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$ ".

Initialisation : pour n=0, on a bien $\sum_{k=0}^{0} k^3 = 0^3 = 0$ et $\left(\frac{0(0+1)}{2}\right)^2 = 0$. L'égalité est vérifiée et donc P(0) est vraie.

Hérédité : soit $n \in \mathbb{N}$. Supposons que P(n) est vraie et montrons que P(n+1) est vraie. On a

$$\sum_{k=0}^{n+1} k^3 = \sum_{k=0}^{n} k^3 + (n+1)^3 = \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 = (n+1)^2 \left(\frac{n^2}{4} + (n+1)\right)$$

$$= \frac{(n+1)^2 (n^2 + 4n + 4)}{4}$$

$$= \frac{(n+1)^2 (n+2)^2}{4}$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^2,$$

donc P(n+1) est vraie.

On a donc montré que : $\forall n \in \mathbb{N}, (P(n) \implies P(n+1))$ est vraie.

Conclusion : on a montré par récurrence que, pour tout $n \in \mathbb{N}$, P(n) est vraie.

Exercice 4 Raisonnements (1 + 1 + 1 + 1 = 4 points)

Les propositions suivantes sont-elles vraies ou fausse? Justifier.

1. $\exists (x,y) \in \mathbb{D}^2, xy \notin \mathbb{D}$.

Correction. FAUX. Soient $(x,y) \in \mathbb{D}^2$, alors il existe $(m,n) \in \mathbb{Z}^2$ et $(p,q) \in \mathbb{N}^2$ tels que $x = \frac{n}{10^p}$ et $y = \frac{m}{10^q}$, et donc $xy = \frac{mn}{10^{p+q}} \in \mathbb{D}$ car $mn \in \mathbb{Z}$ et $p+q \in \mathbb{N}$. On a donc $\forall (x,y) \in \mathbb{D}^2$, $xy \in \mathbb{D}$.

2. On a l'inclusion suivante : $\{(\cos t, \sin t) \in \mathbb{R}^2 : t \in \mathbb{R}\} \subset \{(x, y) \in \mathbb{R}^2 : 4x^2y^2 + (2x^2 - 1)^2 = 1\}$. Correction. VRAI. Notons A le premier ensemble et B le deuxième. Soit $(x, y) \in A$, alors il existe $t \in \mathbb{R}$ tel que $x = \cos t$ et $y = \sin t$. On a donc

$$4x^2y^2 + (2x^2 - 1)^2 = (2\cos t\sin t)^2 + (2\cos^2 t - 1) = \sin^2(2t) + \cos^2(2t) = 1,$$

et donc $(x, y) \in B$, ce qui prouve que $A \subset B$.

3. Soit $x \in \mathbb{R}$. Alors on a $(\forall \varepsilon > 0, |x| < \varepsilon) \Longrightarrow x = 0$.

Correction. VRAI. Soit $x \in \mathbb{R}$. On raisonne par contraposée. Si $x \neq 0$, alors en posant $\varepsilon = \left| \frac{x}{2} \right|$, on a $|x| \geq \left| \frac{x}{2} \right| = \varepsilon$ car $1 \geq \frac{1}{2}$. On a donc montré que $x \neq 0 \Longrightarrow (\exists \varepsilon > 0, |x| \geq \varepsilon)$ qui est la contraposée de la proposition étudiée, celle-ci étant donc vraie.

4. L'application $f: \mathbb{N} \to \mathbb{N}$, définie par $f(n) = \frac{n}{2}$ si n est pair et f(n) = 0 si n est impair, est bijective.

Correction. FAUX. L'application n'est pas injective car f(1) = f(3) = 0 et $1 \neq 3$. Elle ne peut donc pas être bijective.

Par contre, l'application est surjective : soit $n \in \mathbb{N}$, alors f(2n) = n, $2n \in \mathbb{N}$, donc n admet toujours un antécédent par f dans \mathbb{N} .

Exercice 5 Applications (2 + 2 = 4 points)

Soit E un ensemble non-vide, $(A, B) \in \mathcal{P}(E)^2$ et $f : \mathcal{P}(E) \to \mathcal{P}(E) \times \mathcal{P}(E)$ définie par

$$\forall X \in \mathcal{P}(E), \quad f(X) = (X \cup A, X \cup B).$$

1. Montrer que f n'est pas surjective.

<u>Indication</u>: considérer les couples (\emptyset, \emptyset) et (E, \emptyset) .

Correction. Raisonnons par l'absure et supposons que f soit surjective, alors (\emptyset, \emptyset) admet un antécédent par f.

Or, soit $X \in \mathcal{P}(E)$ tel que $X \cup A = \emptyset$ et $X \cup B = \emptyset$, alors $A = B = X = \emptyset$. Dans ce cas, pour tout $X \in \mathcal{P}(E)$, f(X) = (X, X). Ainsi, il est clair que (E, \emptyset) n'admet pas d'antécédent par f, ce qui contredit la surjectivité de f. Ainsi, f n'est pas surjective.

2. Montrer que f est injective si et seulement si $A \cap B = \emptyset$.

<u>Indication</u>: pour une des implications, on pourra calculer $f(A \cap B)$ et $f(\emptyset)$.

Correction. Si f est injective, on a

$$f(\emptyset) = (A \cup \emptyset, B \cup \emptyset) = (A, B), \quad \text{et} \quad f(A \cap B) = ((A \cap B) \cup A, (A \cap B) \cup B) = (A, B)$$

donc, comme $f(\emptyset) = f(A \cap B)$ et que f est injective, on obtient $A \cap B = \emptyset$. Réciproquement, supposons que $A \cap B = \emptyset$. Soit $X, X' \in \mathcal{P}(E)$, alors

$$f(X) = f(X')$$

$$\Rightarrow \begin{cases} X \cup A = X' \cup A \\ X \cup B = X' \cup B \end{cases}$$

$$\Rightarrow (X \cup A) \cap (X \cup B) = (X' \cup A) \cap (X' \cup B)$$

$$\Rightarrow X \cup (A \cap B) = X' \cup (A \cap B)$$

$$\Rightarrow X \cup \emptyset = X' \cup \emptyset$$

$$\Rightarrow X = X'.$$

et donc f est injective.