4 Nombres complexes

4.1 Construction de C :I'idée de Hamilton (hors programme)

Comme celle de n'importe quel concept mathématique, I'histoire des nombres complexes est longue et tor-
tueuse (résolution d’équations de degré 3 par Cardan en 1545 — volée a Tartaglia qui la tenait de del Ferro en
1515 —, regles de calcul par Bombelli en 1572, extraction de racines n-iémes par de Moivre en 1706, lien avec
I'exponentielle et notation i par Euler vers 1740, Théoréme fondamental de 1’Algebre par Gauss en 1799). Le
mathématicien irlandais Hamilton (1805-1965) eut I'idée de définir deux opérations & et ® sur R?, de maniere
a créer 'ensemble (C, &, ®) des nombres complexes :

* Y(a,b),(d,b)eR? (a,b)® (a',b)=(a+d,b+D);

* Y(a,b),(d,b)eR? (a,b)®(a,b) = (ad' — bb',ab’ + a'b).
Il est facile de montrer que

e ces opérations sont commutatives et associatives;

* ® est distributive par rapporta &;

e pour &, I’élément neutre est (0,0) et 'opposé (I'inverse pour @) de (a, b) est (—a,—b);

b
at+ b2’ a’+p?)’

* pour ®, I’élément neutre est (1,0) et 'inverse de (a, b) est

* (R, +, x) peut étre identifié 2 A = {(a,0) € R? : a € R} muni des opérations & et ®;
e ennotanti=(0,1),onai’=i®i=(0,1)®(0,1) = (-=1,0) qui peut étre donc identifié a —1;
* de plus, pour tout a, b€ R, (b,0) ® (0,1) = (0, b) peut-étre vu comme ib et (a, b) = (a,0) @ (0, b) peut donc
étrenoté a+ib.
4.2 Définitions et premiéres propriétés

Définition 4.1 (Nombres complexes). On définit l'ensemble des nombres complexes parC :={a+ib: (a, b) € R?}
avec i* = —1 défini par la regle ci-dessus. Siz=a+ibe C avecacR et b€ R, alors

* a est appelée la partie réelle de z, notée Re(z) = a,
* b est appelée la partie imaginaire de z, notéeIm(z) = b.
Sia=0etbeR*, ondit que z = ib est imaginaire pur et on note iR ['ensemble de ces nombres.
Définition 4.2 (Opérations). On a les opérations suivantes, pour z= a+ibetz' = a'+ib’, avec (a,b,a’,b’) e R* :
e z+Z =a+ad +i(b+b);
e zZ/=ad -bb' +i(ab +a'b);

220, al 1 1 a—1ib
e siz#0, alors — = — =
z a+ib a’+b?

Définition 4.3 (Conjugué). Le conjugué d’un nombre complexez=a+ib, (a,b) e R?, estZ=a—ib.

Proposition 4.4 (Propriétés de la conjugaison). Ona:
1. Vz,Z€C,z+2 :z+ 72,27 =zZ2.
_ _ 4. VzeC,z=-z < z€iR.
z+z z—-z
2. VzeC,Re(z) = 5 etIm(z) =

SN

Z/
5. Vz, 7 e C*, (—) =
3. VzeC,z=7Z < z€R. Z
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4.3 Interprétation géométrique, module, argument et forme trigonométrique

Définition 4.5 (Repére d’Argand, affixe, coordonnées polaires et cartésiennes, module et argument). On
munit R? du repeére orthonormé direct (O; 1, V). Alors tout nombre complexe z = a+ ib, (a, b) € R?, peut étre
représenté par le point M(a, b) oit les réels a et b sont appelés coordonnées cartésiennes de M. Quand on veut
rester dans le vocabulaire des nombres complexes, on dit que M est le point d’affixe z et on le note M(z). Cela
définit le plan complexe, aussi appelé plan d’Argand (ou Argand-Cauchy/Gauss). Les axes (O; U) et (0; V) sont
appelés respectivement axes des réels et des imaginaires.

Le point M peut étre égalenlen__fﬁpéré par la donnée de la distance r = OM et une mesure 0 € [0,2n[ de l'angle

orienté dans le sens direct (TZ, O—]\;I) Ce sont les coordonnées polaires de M, notées M(r,0). Dans le langage des
nombres complexes, on définit :
e lemoduledez=a+ibeC lenombre|zl=r=0M=Va?+ b2 Siz=acR, alors|z| = |a| correspond a la
valeur absolue de a.

* unargument® dez=a+ibe C*, noté arg(z), en remarquant que pour tout k € Z, 0 + 2kn est aussi un
argument de z.

Proposition 4.6 (Symétries). Pour toutzeC :

* M(z) et M'(z) sont symétriques par rapport a l'axe des réels.

* M(z) et M" (—z) sont symétriques par rapport a l'origine O du repere.
Proposition 4.7 (Propriétés du module). On a les propriétés suivantes :

1. Vz€eC, [z €Ry; 4. YzeC* etz €C,

2| 2]
z| z|’
2. V¥zel,|z|=0 < z=0; 5. VZEC,|E|:|Z|,'

/ I — /| .
8. Vz,z G, |zz] =lzllz]; 6. Vz,Z €C, |z+ Z'| < |zl +12'|, avec égalité si et seule-

mentsidleR*, z' = Az.
Proposition 4.8 (Lien entre module et arguments). Soit z = a+ib € C, (a,b) € R?, r = |z| sont module et
0 = arg(z) un argument de z, alors
a=rcos, b=rsind.

Définition 4.9 (Formes trigonométrique et exponentielles). Pour tout z = a+ ib € C, (a,b) € R?, l'écriture
z=rcosf+irsinf, avecr = |z| et = arg(z) un argument de z, s'appelle la forme trigonométrique de z.
On note e'% := cos6 + i sinf l'exponentielle complexe et U'écriture z = re'? est appelée forme exponentielle de z.

Proposition 4.10 (Propriétés de I'exponentielle complexe et de 'argument). On a :
1. YOER, |e?|=1;

2. V0,0 R, e = e — IkeZ,0=0"+2kn;

, , . . . 1
3 VOe R, el(0+2n) — elH, el(6+n) — _619, e—l@ — 6“9 — — ;
e
1]
. L . et
4. V0,0’ € R, ez(9+6’) — 616819’, ez(@—@') — T@’;
e

5. Vz,z' € C, arg(zz') = arg(z) + arg(z'), et siz #0, arg(il) =arg(z) —arg(z');
z

04 =i i _ p=i0
etsin@ = ———;
21

7. (Formule de Moivre) Y nec 7Z,¥0 € R, (cosO + isinf)" = cos(nB) + i sin(nh), c’est-a-dire (eie)n = el

6. (Formules d’Euler) V0 € R, cosO = ¢

Proposition 4.11 (Angle, alignement et orthogonalité). Soient A(z4), B(zg) et C(z¢) trois points du plan com-

_— zZc—2
plexe, alorsBAC:arg( < A) et:
ZB —ZA
. ZCc—ZA ZC—ZA _ .
1. A,BetC alignés < eR. 2. (AB)L(AC) < e iR.
ZB —ZA ZB —ZA
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4.4 Applications en trigonométrie

Les formule précédentes permettent de retrouver facilement les identités trigonométriques suivantes :
e Va,beR, cos(a+b) = cosacosb—sinasinb (partie réelle de e!(¢*D);

* Va,beR,sin(a+ b) = sin(a) cos(b) + sin(b) cos(a) (partie imaginaire de e!(**?),

On peut appliquer les formules d’Euler et Moivre aux deux procédés suivants :

1. Lalinéarisation : on transforme des produits du type f(cos x,sinx) en sommes de cos kx et sin¢x. Par
exemple, Vx € R,

) ) (eix—e‘ix) (e"x+e""c)2 31X _ p73Ix 4 olX _ p=iX  9igin(3x)+2isinx  sin(3x) + sin(x)
sinxcos” x = - = . = _ = .
21 2 8i 8i 4
On utilise donc la formule d’Euler (dans les deux sens) et celle du bindme de Newton.

2. La polynomialisation : on transforme des expressions du type g(cosk;x,...cos k,x,sin¢; x, ...,sin ¢ ,, x)
en polyndmes a base de cos x et sin x. Par exemple, Vx € R,

3

cos(4x) = Re (e’“) =Re((cosx + isinx)4) =Re(8 cos* x —8cos® x + 8isin xcos® x — 4isin xcos x + 1)

4

=8cos*x—8cos’x+1.

On utilise donc la formule de Moivre et celle du bindme de Newton.

4.5 Racines n-iémes, racines carrées et équation de degré 2

Proposition 4.12 (Racines n-iémes d'un complexe). Soit n = 2 un entier et w € C un nombre complexe. Alors
w admet exactement n racines n-iemes, solutions {z, ..., z,—1} de l'équation z" = w, et données par la formule

,(arg(w) +2k7r)
|
Vke0,...n—1}, zc=lwlre n

On parle de racine n-ieme de l'unité pour les n solutions de l'équation z"" = 1.

Proposition 4.13 (Racine carrée par les formes algébriques). Soit w € C, alors pour déterminer les deux ra-
cines carrées de w, c'est-a-dire résoudre I'équation z°> = w, en notant z= x+1iy et w = a+ ib, on résout :

¥-y*=a
x>+ y*=vVa?+b?
2xy=b.

Proposition 4.14 (Equation du 2nd degré a coefficients complexes). Soient a, b et c trois nombres complexes
tels que a # 0 et A = b> — 4ac. On note § et —§ les deux racines carrées de A. Alors U'équation az® + bz +c =0
admet dansC :

ine doubl = —£ A = Scri 2.0 — .02,
e uneracine double zy = 2 siA =0, eton peut écrire az”+bz+c = a(z— zp)*;
a

-b+6 -b-90
etzy =

e deux racines distinctes z; = siA #0, et on peut écrire az’+bz+c=alz-2z))(z-2).

De plus, si a, b et ¢ sont réelles, I'équation az’ + bz + ¢ = 0 admet :

* dans C, deux racines (une double ou deux distinctes), données par les formules précédentes, en remar-
quant que siA <0, alors 6 = ivVI|Al;

* dans R, une racine double zy = ~a si A = 0, aucune racine si A < 0 et deux racines distinctes zi,2
a

données par les formules précédentes avec 5 = /A si A > 0.
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Théoreme 4.15 (Théoréme fondamental de ’Algebre). Soitn =1 un entier, {ay, ..., an} des nombres complexes
avec a, # 0. Toute équation polynomiale d'inconnue z de la forme

Anz"+ ..+ b +ajz+ag=0

admet exactement n solutions dans C comptées avec leur multiplicité. Il existe ainsi n nombres complexes
n

z1,..., 2y (dont certains sont éventuellement confondus) tels que a,z" + ...+ a1z + ap = ay H (z—zp).
k=1

4.6 Ensembles de points et transformations du plan

Définition 4.16 (Affixe et longueur d’un vecteur). Soient z4,zp € C, A(z,4) et B(zp), alors l'affixe du vecteur

AB est ZB — Z4, et on note E(ZB —z4). De plus, la longueur du vecteur AB est AB = |zg — z 4| et le milieu du
ZAa+ ZB

2

segments [AB] a pour affixe

Proposition 4.17 (Linéarité et droite). Soient z,,z, € C, 1 (z,) et V (z,) deux vecteurs, alors U+ vz, + zy).
Pour tout A € R, le vecteur Au a pour affixe Az,.

Soit A(z4) avec zy € C. La droite passant par A et de vecteur directeur u est donnée par les affixes {za + Az, : L € R}.
En particulier, si B(zg) avec zg € C, l'ensemble des affixes des points de la droite (AB) est{zas+A(zp—z4) : A € R}.
Soit (xg, yo) € R%. La droite horizontale (resp. verticale) d’ordonnée y, (resp. d’abscisse x) est donnée par l'en-
semble des nombres complexes {z € C : Im(z) = yo} (resp. {z € C : Re(z) = xp}). Ces droites partagent le plan en
demi-plans.

Proposition 4.18 (Translation). Soit U (z,), alors la translation t7; : R> — R*, M — t;(M) = M telle que

MM’ = U est donnée par Uapplication complexe T :C — C, z— T(z) = z+ z,,.

Proposition 4.19 (Homothétie et symétrie centrale). Soit k € R* et Q(zq), zq € C, alors 'homothétie de centre

Q et de rapport k ho, i : R2 — R%, M — hq (M) = M’ telle que QM' = kQM est donnée par lapplication com-
plexe H:C — C, z — H(z) = k(z — zq) + zq. Son unique point fixe, c’est-a-dire vérifiant H(z) = z, est z = zq. Si
k = -1, il Sagit d’'une symétrie de centre .

Proposition 4.20 (Cercle et disque). Soit R >0 et Q(zq), zq € C, alors :
1. {zeC:|z—zql| < R} est l'ensemble des affixes des points du disque centré en Q) et de rayon R.
2. {z€ C:|z— zq| = R} est 'ensemble des affixes des points du cercle centré en Q et de rayon R.
3. {ze€ C:|z—zql < R} est l'ensemble des affixes des points de l'intérieur du disque centré en Q) et de rayon R.
4. {z€ C:|z—zq| > R} est 'ensemble des affixes des points de l'extérieur du disque centré en Q) et de rayon R.

Proposition 4.21 (Rotation et multiplication par I'exponentielle complexe). Soit Q(zq), zq € C, et a € R.
Alors la rotation de centre Q et d’angle a, donnée par rq,q : R> — R?, M — rq (M) = M’ telle que QM = QM'’

et ((W, (W) = a est donnée par Uapplication R : C — C, z — R(z) = e!%(z — zq) + zq. Son unique point fixe,
c'est-a-dire vérifiant R(z) = z, est zq.

En particulier, multiplier un nombre complexe z, affixe d’'un point M, par e'®, c'est obtenir l'image de M par la
rotation centrée en 0 et d'angle a.
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