
4 Nombres complexes

4.1 Construction de C : l’idée de Hamilton (hors programme)

Comme celle de n’importe quel concept mathématique, l’histoire des nombres complexes est longue et tor-
tueuse (résolution d’équations de degré 3 par Cardan en 1545 – volée à Tartaglia qui la tenait de del Ferro en
1515 –, règles de calcul par Bombelli en 1572, extraction de racines n-ièmes par de Moivre en 1706, lien avec
l’exponentielle et notation i par Euler vers 1740, Théorème fondamental de l’Algèbre par Gauss en 1799). Le
mathématicien irlandais Hamilton (1805-1965) eut l’idée de définir deux opérations → et ↑ sur R2, de manière
à créer l’ensemble (C,→,↑) des nombres complexes :

• ↓(a,b), (a↔,b↔) ↗R2, (a,b)→ (a↔,b↔) = (a +a↔,b +b↔) ;

• ↓(a,b), (a↔,b↔) ↗R2, (a,b)↑ (a↔,b↔) = (aa↔ ↘bb↔, ab↔+a↔b).

Il est facile de montrer que

• ces opérations sont commutatives et associatives ;

• ↑ est distributive par rapport à → ;

• pour →, l’élément neutre est (0,0) et l’opposé (l’inverse pour →) de (a,b) est (↘a,↘b) ;

• pour ↑, l’élément neutre est (1,0) et l’inverse de (a,b) est
(

a
a2 +b2 ,↘ b

a2 +b2

)
;

• (R,+,≃) peut être identifié à A = {(a,0) ↗R2 : a ↗R} muni des opérations → et ↑ ;

• en notant i = (0,1), on a i 2 = i ↑ i = (0,1)↑ (0,1) = (↘1,0) qui peut être donc identifié à ↘1 ;

• de plus, pour tout a,b ↗R, (b,0)↑ (0,1) = (0,b) peut-être vu comme i b et (a,b) = (a,0)→ (0,b) peut donc
être noté a + i b.

4.2 Définitions et premières propriétés

Définition 4.1 (Nombres complexes). On définit l’ensemble des nombres complexes parC := {a+i b : (a,b) ↗R2}
avec i 2 =↘1 défini par la règle ci-dessus. Si z = a + i b ↗C avec a ↗R et b ↗R, alors

• a est appelée la partie réelle de z, notée Re(z) = a,

• b est appelée la partie imaginaire de z, notée Im(z) = b.

Si a = 0 et b ↗R⇐, on dit que z = i b est imaginaire pur et on note iR l’ensemble de ces nombres.

Définition 4.2 (Opérations). On a les opérations suivantes, pour z = a+i b et z ↔ = a↔+i b↔, avec (a,b, a↔,b↔) ↗R4 :

• z + z ↔ = a +a↔+ i (b +b↔) ;

• zz ↔ = aa↔ ↘bb↔+ i (ab↔+a↔b) ;

• si z ⇒= 0, alors
1
z
= 1

a + i b
= a ↘ i b

a2 +b2

Définition 4.3 (Conjugué). Le conjugué d’un nombre complexe z = a + i b, (a,b) ↗R2, est z = a ↘ i b.

Proposition 4.4 (Propriétés de la conjugaison). On a :
1. ↓z, z ↔ ↗C, z + z ↔ : z + z ↔, zz ↔ = zz ↔.

2. ↓z ↗C, Re(z) = z + z
2

et Im(z) = z ↘ z
2i

.

3. ↓z ↗C, z = z ⇑⇓ z ↗R.

4. ↓z ↗C, z =↘z ⇑⇓ z ↗ iR.

5. ↓z, z ↔ ↗C⇐,
(

z ↔

z

)
= z ↔

z
.
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4.3 Interprétation géométrique, module, argument et forme trigonométrique

Définition 4.5 (Repère d’Argand, affixe, coordonnées polaires et cartésiennes, module et argument). On
munit R2 du repère orthonormé direct (O;↘⇔u ,↘⇔v ). Alors tout nombre complexe z = a + i b, (a,b) ↗ R2, peut être
représenté par le point M(a,b) où les réels a et b sont appelés coordonnées cartésiennes de M. Quand on veut
rester dans le vocabulaire des nombres complexes, on dit que M est le point d’affixe z et on le note M(z). Cela
définit le plan complexe, aussi appelé plan d’Argand (ou Argand-Cauchy/Gauss). Les axes (O;↘⇔u ) et (O;↘⇔v ) sont
appelés respectivement axes des réels et des imaginaires.
Le point M peut être également repéré par la donnée de la distance r = OM et une mesure ω ↗ [0,2ε[ de l’angle

orienté dans le sens direct
#(↘⇔u ,

↘↘⇔
OM

)
. Ce sont les coordonnées polaires de M, notées M(r,ω). Dans le langage des

nombres complexes, on définit :

• le module de z = a + i b ↗C le nombre |z| = r =OM =
↖

a2 +b2. Si z = a ↗R, alors |z| = |a| correspond à la
valeur absolue de a.

• un argument ω de z = a + i b ↗ C⇐, noté arg(z), en remarquant que pour tout k ↗ Z, ω+2kε est aussi un
argument de z.

Proposition 4.6 (Symétries). Pour tout z ↗C :

• M(z) et M ↔(z) sont symétriques par rapport à l’axe des réels.

• M(z) et M ↔↔(↘z) sont symétriques par rapport à l’origine O du repère.

Proposition 4.7 (Propriétés du module). On a les propriétés suivantes :
1. ↓z ↗C, |z| ↗R+ ;

2. ↓z ↗C, |z| = 0 ⇑⇓ z = 0 ;

3. ↓z, z ↔ ↗C, |zz ↔| = |z||z ↔| ;

4. ↓z ↗C⇐ et z ↔ ↗C ,
∣∣∣∣

z ↔

z

∣∣∣∣=
|z ↔|
|z| ;

5. ↓z ↗C, |z| = |z| ;

6. ↓z, z ↔ ↗C, |z + z ↔|↙ |z|+ |z ↔|, avec égalité si et seule-
ment si ∝ϑ ↗R⇐, z ↔ =ϑz.

Proposition 4.8 (Lien entre module et arguments). Soit z = a + i b ↗ C, (a,b) ↗ R2, r = |z| sont module et
ω = arg(z) un argument de z, alors

a = r cosω, b = r sinω.

Définition 4.9 (Formes trigonométrique et exponentielles). Pour tout z = a + i b ↗ C, (a,b) ↗ R2, l’écriture
z = r cosω+ i r sinω, avec r = |z| et ω = arg(z) un argument de z, s’appelle la forme trigonométrique de z.
On note eiω := cosω+ i sinω l’exponentielle complexe et l’écriture z = r eiω est appelée forme exponentielle de z.

Proposition 4.10 (Propriétés de l’exponentielle complexe et de l’argument). On a :

1. ↓ω ↗R,
∣∣eiω

∣∣= 1 ;

2. ↓ω,ω↔ ↗R, eiω = eiω↔ ⇑⇓ ∝k ↗Z,ω = ω↔+2kε ;

3. ↓ω ↗R, ei (ω+2ε) = eiω, ei (ω+ε) =↘eiω, e↘iω = eiω = 1

eiω
;

4. ↓ω,ω↔ ↗R, ei (ω+ω↔) = eiωeiω↔ , ei (ω↘ω↔) = eiω

eiω↔
;

5. ↓z, z ↔ ↗C, arg(zz ↔) = arg(z)+arg(z ↔), et si z ↔ ⇒= 0, arg
( z

z ↔

)
= arg(z)↘arg(z ↔) ;

6. (Formules d’Euler) ↓ω ↗R, cosω = eiω+e↘iω

2
et sinω = eiω↘e↘iω

2i
;

7. (Formule de Moivre) ↓n ↗Z, ↓ω ↗R, (cosω+ i sinω)n = cos(nω)+ i sin(nω), c’est-à-dire
(
eiω)n = ei nω.

Proposition 4.11 (Angle, alignement et orthogonalité). Soient A(zA), B(zB ) et C (zC ) trois points du plan com-

plexe, alors )B AC = arg
(

zC ↘ zA

zB ↘ zA

)
et :

1. A,B et C alignés ⇑⇓ zC ↘ zA

zB ↘ zA
↗R. 2. (AB)′(AC ) ⇑⇓ zC ↘ zA

zB ↘ zA
↗ iR.
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4.4 Applications en trigonométrie

Les formule précédentes permettent de retrouver facilement les identités trigonométriques suivantes :

• ↓a,b ↗R, cos(a +b) = cos a cosb ↘ sin a sinb (partie réelle de ei (a+b)) ;

• ↓a,b ↗R, sin(a +b) = sin(a)cos(b)+ sin(b)cos(a) (partie imaginaire de ei (a+b)).

On peut appliquer les formules d’Euler et Moivre aux deux procédés suivants :

1. La linéarisation : on transforme des produits du type f (cos x, sin x) en sommes de coskx et sinϖx. Par
exemple, ↓x ↗R,

sin x cos2 x =
(

ei x ↘e↘i x

2i

)(
ei x +e↘i x

2

)2

= e3i x ↘e↘3i x +ei x ↘e↘i x

8i
= 2i sin(3x)+2i sin x

8i
= sin(3x)+ sin(x)

4
.

On utilise donc la formule d’Euler (dans les deux sens) et celle du binôme de Newton.

2. La polynomialisation : on transforme des expressions du type g (cosk1x, ...coskn x, sinϖ1x, ..., sinϖm x)
en polynômes à base de cos x et sin x. Par exemple, ↓x ↗R,

cos(4x) = Re
(
ei 4x

)
= Re

(
(cos x + i sin x)4)= Re

(
8cos4 x ↘8cos2 x +8i sin x cos3 x ↘4i sin x cos x +1

)

= 8cos4 x ↘8cos2 x +1.

On utilise donc la formule de Moivre et celle du binôme de Newton.

4.5 Racines n-ièmes, racines carrées et équation de degré 2

Proposition 4.12 (Racines n-ièmes d’un complexe). Soit n ∞ 2 un entier et w ↗ C un nombre complexe. Alors
w admet exactement n racines n-ièmes, solutions {z0, ..., zn↘1} de l’équation zn = w, et données par la formule

↓k ↗ {0, ...,n ↘1}, zk = |w |
1
n e

i
(

arg(w)+2kε
n

)

On parle de racine n-ième de l’unité pour les n solutions de l’équation zn = 1.

Proposition 4.13 (Racine carrée par les formes algébriques). Soit w ↗ C, alors pour déterminer les deux ra-
cines carrées de w, c’est-à-dire résoudre l’équation z2 = w, en notant z = x + i y et w = a + i b, on résout :





x2 ↘ y2 = a
x2 + y2 =

↖
a2 +b2

2x y = b.

Proposition 4.14 (Equation du 2nd degré à coefficients complexes). Soient a,b et c trois nombres complexes
tels que a ⇒= 0 et ω = b2 ↘4ac. On note ϱ et ↘ϱ les deux racines carrées de ω. Alors l’équation az2 +bz + c = 0
admet dans C :

• une racine double z0 =↘ b
2a

si ω= 0, et on peut écrire az2 +bz + c = a(z ↘ z0)2 ;

• deux racines distinctes z1 =
↘b +ϱ

2a
et z2 =

↘b ↘ϱ
2a

siω ⇒= 0, et on peut écrire az2+bz+c = a(z↘z1)(z↘z2).

De plus, si a, b et c sont réelles, l’équation az2 +bz + c = 0 admet :

• dans C, deux racines (une double ou deux distinctes), données par les formules précédentes, en remar-
quant que si ω< 0, alors ϱ= i

↖
|ω| ;

• dans R, une racine double z0 = ↘ b
2a

si ω = 0, aucune racine si ω < 0 et deux racines distinctes z1, z2

données par les formules précédentes avec ϱ=
↖
ω si ω> 0.
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Théorème 4.15 (Théorème fondamental de l’Algèbre). Soit n ∞ 1 un entier, {a0, ..., an} des nombres complexes
avec an ⇒= 0. Toute équation polynomiale d’inconnue z de la forme

an zn + ...+a2z2 +a1z +a0 = 0

admet exactement n solutions dans C comptées avec leur multiplicité. Il existe ainsi n nombres complexes

z1, ..., zn (dont certains sont éventuellement confondus) tels que an zn + ...+a1z1 +a0 = an

n∏

k=1
(z ↘ zk ).

4.6 Ensembles de points et transformations du plan

Définition 4.16 (Affixe et longueur d’un vecteur). Soient zA, zB ↗ C, A(zA) et B(zB ), alors l’affixe du vecteur↘⇔
AB est zB ↘ zA, et on note

↘⇔
AB(zB ↘ zA). De plus, la longueur du vecteur

↘⇔
AB est AB = |zB ↘ zA| et le milieu du

segments [AB ] a pour affixe
zA + zB

2
.

Proposition 4.17 (Linéarité et droite). Soient zu , zv ↗ C, ↘⇔u (zu) et ↘⇔v (zv ) deux vecteurs, alors ↘↘↘⇔u + v(zu + zv ).
Pour tout ϑ ↗R, le vecteur ϑu a pour affixe ϑzu.
Soit A(zA) avec zA ↗C. La droite passant par A et de vecteur directeur u est donnée par les affixes {zA +ϑzu :ϑ ↗R}.
En particulier, si B(zB ) avec zB ↗C, l’ensemble des affixes des points de la droite (AB) est {zA+ϑ(zB ↘zA) :ϑ ↗R}.
Soit (x0, y0) ↗ R2. La droite horizontale (resp. verticale) d’ordonnée y0 (resp. d’abscisse x0) est donnée par l’en-
semble des nombres complexes {z ↗ C : Im(z) = y0} (resp. {z ↗ C : Re(z) = x0}). Ces droites partagent le plan en
demi-plans.

Proposition 4.18 (Translation). Soit ↘⇔u (zu), alors la translation t↘⇔u : R2 ⇔ R2, M ∈⇔ t↘⇔u (M) = M ↔ telle que
↘↘↘⇔
M M ↔ =↘⇔u est donnée par l’application complexe T :C⇔C, z ∈⇔ T (z) = z + zu.

Proposition 4.19 (Homothétie et symétrie centrale). Soit k ↗R⇐ etε(zε), zε ↗C, alors l’homothétie de centre

ε et de rapport k hε,k : R2 ⇔ R2, M ∈⇔ hε,k (M) = M ↔ telle que
↘↘↘⇔
εM ↔ = k

↘↘⇔
εM est donnée par l’application com-

plexe H : C⇔ C, z ∈⇔ H(z) = k(z ↘ zε)+ zε. Son unique point fixe, c’est-à-dire vérifiant H(z) = z, est z = zε. Si
k =↘1, il s’agit d’une symétrie de centreε.

Proposition 4.20 (Cercle et disque). Soit R > 0 etε(zε), zε ↗C, alors :

1. {z ↗C : |z ↘ zε|↙ R} est l’ensemble des affixes des points du disque centré enε et de rayon R.

2. {z ↗C : |z ↘ zε| = R} est l’ensemble des affixes des points du cercle centré enε et de rayon R.

3. {z ↗C : |z ↘ zε| < R} est l’ensemble des affixes des points de l’intérieur du disque centré enε et de rayon R.

4. {z ↗C : |z ↘ zε| > R} est l’ensemble des affixes des points de l’extérieur du disque centré enε et de rayon R.

Proposition 4.21 (Rotation et multiplication par l’exponentielle complexe). Soit ε(zε), zε ↗ C, et ς ↗ R.
Alors la rotation de centre ε et d’angle ς, donnée par rε,ς : R2 ⇔ R2, M ∈⇔ rε,ς(M) = M ↔ telle que εM =εM ↔

et
#

(
↘↘⇔
εM ,

↘↘↘⇔
εM ↔) = ς est donnée par l’application R : C⇔ C, z ∈⇔ R(z) = eiς(z ↘ zε)+ zε. Son unique point fixe,

c’est-à-dire vérifiant R(z) = z, est zε.
En particulier, multiplier un nombre complexe z, affixe d’un point M, par eiς, c’est obtenir l’image de M par la
rotation centrée en 0 et d’angle ς.
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