Fiche méthodologique: injection, surjection, bijection

Laurent Bétermin

Le but de ce document est d'expliquer comment étudier l'injectivité, la surjectivité et la bijectivité d'une application à travers des exemples simples. *(les parties en bleu sont des commentaires)*.

Enoncé 1 : Montrer que $f : \mathbb{N} \to \mathbb{Z}$, $n \mapsto n-1$, est injective.

Soient $(n, n') \in \mathbb{N}^2$, alors on a

$$f(n) = f(n') \Longrightarrow n - 1 = n' - 1 \Longrightarrow n = n',$$

donc f est injective.

On rappelle que $f: E \to F$ est injective si et seulement si, $\forall (x, x') \in E^2$, $f(x) = f(x') \Longrightarrow x = x'$, c'est-à-dire que si deux éléments de E ont même image par f, alors ils sont égaux. On doit donc commencer par prendre deux éléments de E, x et x', et supposer que f(x) = f(x'), puis faire une chaîne d'implications (de raisonnements logiques) qui se termine par x = x'.

Enoncé 2 : Montrer que $f : \mathbb{Z} \to \mathbb{N}$, $n \mapsto n^2$ n'est pas injective.

Comme f(-1) = f(1) = 1, que $(-1,1) \in \mathbb{Z}^2$ et que $1 \neq -1$, on en déduit donc que f n'est pas injective.

Pour montrer qu'une application $f: E \to F$ n'est pas injective, on cherche deux éléments de E différents et qui ont même image, c'est-à-dire $x \in E$ et $x' \in E$ tels que $x \neq x'$ et f(x) = f(x'). Un tel contre-exemple suffit!

Enoncé 3 : Montrer que $g : \mathbb{Z} \to \mathbb{N}$, $n \mapsto |n|$, est surjective.

Soit $y \in \mathbb{N}$ et $n \in \mathbb{Z}$, alors on a $y = |n| \iff n = -y$ ou n = y. Ainsi, y a toujours au moins un antécédent par g (y ou -y), donc g est surjective.

On rappelle que $g: E \to F$ est surjective si et seulement si $\forall y \in F, \exists x \in E, y = g(x)$, c'est-à-dire si tout élément de F admet au moins un antécédent dans E par g. On commence donc par choisir $y \in F$, $x \in E$ et trouver une condition sur x tel que ce soit un antécédent de y. En fait, on résout l'équation y = g(x), c'est-à-dire que l'on essaye de déterminer x en fonction de y pour montrer que cette équation admet au moins une solution, et on vérifie toujours que l'on a bien $x \in E$.

Enoncé 4 : Montrer que $g : \mathbb{N} \to \mathbb{Z}$, $n \mapsto n-2$ n'est pas surjective.

On considère $-4 \in \mathbb{Z}$ et $n \in \mathbb{N}$, alors on a $-4 = g(n) \iff -4 = n - 2 \iff n = -2 \notin \mathbb{N}$. Donc -4 n'admet pas d'antécédent dans \mathbb{N} par g, donc g n'est pas surjective.

Pour montrer qu'une application $g: E \to F$ n'est pas surjective, on cherche un élément $y \in F$ qui n'admet pas d'antécédent par g, c'est-à-dire tel que l'équation y = g(x) n'admet aucune solution x dans l'ensemble E. Un tel contre-exemple suffit!

Enoncé 5 : Montrer que $h: \mathbb{Z} \to \mathbb{Z}$, $n \mapsto n+2$ est bijective et préciser sa bijection réciproque.

Soit $y \in \mathbb{Z}$ et $n \in \mathbb{Z}$, alors on a $y = h(n) \iff y = n + 2 \iff n = y - 2 \in \mathbb{Z}$. Ainsi, cette équation admet une unique solution, donc h est bijective.

De plus, sa réciproque est $h^{-1}: \mathbb{Z} \to \mathbb{Z}$, $y \mapsto y - 2$.

On rappelle que $h: E \to F$ est bijective si et seulement si $\forall y \in F$, $\exists ! x \in E$, y = h(x), c'est-à-dire que chaque élément y de F admet un unique antécédent dans E par f. Cela revient au même de dire que h est injective et surjective. On commence donc par choisir $y \in F$ quelconque, $x \in E$ et on montre que l'équation y = h(x) admet une et une seule solution dans E (il faut bien vérifier que cette solution est bien dans l'ensemble de départ). On cherche donc à exprimer x en fonction de y de manière unique. Une fois cela fait, on exprime aisément l'application réciproque en utilisant la formule trouvée lors de la résolution de l'équation.

Enoncé 6 : Montrer que $h : \mathbb{R} \to \mathbb{N}$, $x \mapsto E(x)$ n'est pas bijective, où E est la fonction partie entière.

Comme h(1) = h(1.1) = 1, 1 et 1.1 sont des réels et $1 \neq 1.1$, h n'est donc pas injective, donc n'est pas bijective.

Pour montrer que $h: E \to F$ n'est pas bijective, il suffit de montrer qu'elle n'est pas injective ou qu'elle n'est pas surjective (cf. énoncés 2 et 4).