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Chapitre 1 : Calculs algébriques )
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Rappel sur I'ensemble des nombres réels

Comme abordé au Collége puis au Lycée, I'ensemble des nombres réels est
représenté en mathématique par le symbole R.
Il existe dans R un ordre naturel que I'on note "<" entre les nombres et
qui vérifie les trois propriétés fondamentales suivantes :
@ Pour tout x € R, x < x  (Réflexivité)
@ Pour tout x,y,z€R,six <yety<zalors x <z (Transitivité).
@ Pourtout x,y €R,six <yety <xalorsx=y. (Antisymétrie).

Avec cette relation d'ordre, il existe ce que I'on appelle I'ordre strict sur R,
noté "<" ol x < y si "x <y et x # y". Cette ordre strict n'est ni réflexif
ni antisymétrique.
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Intervalle de R

La relation d'ordre "<" dans R permet de définir les intervalles.

Definition

Soient a et b deux réels, tels que a < b. Un intervalle de R est un
ensemble de la forme suivante :

o [a,b] ={x€eR,a<x<b}

o [a,b[={x€eR,a<x < b}

e ]a,b] ={x €R,a< x < b}

e ]a,b[={x€R,a< x < b}

o] —o0,al={xeR,x<a}

]| —o0,a[={xeR,x < a}

@ |a,+oo[={x € R,x > a}

o [a,+oo[={x €R,x > a}
Les intervalles suivants [a, b]; [a, 400 et | — oo, b] sont dit fermés.
Les intervalles ]a, b[; ]a, +oo[ et | — oo, b[ sont dits ouverts.
Les intervalles [a, b[ et ]a, b] ne sont ni ouverts ni fermés.
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Intervalle de R

Soient x,y,z,t € R.
Q Six<zety<talorsx+y<z-+t.
Q Si0<x<yet0<z<talors0<xz<yt.

© On ax <y siet seulement si —x > —y.

Q Six<yetz<0 alors xz > yz.
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Valeur absolue

Soit x € R. On définit la valeur absolue de x, notée |x|, par :

Ix| = xsi x>0
)] —xsi x<0

|—1=1;10]=0;|x+1=x+1six>—-1let|x+1=—-—x—1si
x < —1.

Propriété

e Pour tout x € R, on a x| > 0.
Pour tout x € R, on a |x| = | — x|
|x| = 0 si et seulement si x = 0.
xy| = Ixlyl-

Pour tout x e R et a> 0, |x| < a équivaut a3 —a < x < a.
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Valeur absolue

Théoreme (Inégalités triangulaires)

a) [x+y[ < |x|+lyl
b)

x| — |y|j < x=y|.
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Notion de Majorant, Minorant, Maximum, Minimum

Definition (Majorant, Minorant)
Soit A une partie composée de nombres réels. On dit que A est :
@ majorée s'il existe un réel M tel que x < M pour tout x € A. On dit
que M est un majorant de A
@ minorée s'il existe un réel m tel que m < x pour tout x € A. On dit
que m est un minorant de A

@ bornée si A est a la fois majorée et minorée

L’intervalle |16, 17] est majoré par 17 et minoré par 10 par exemple.
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Notion de Majorant, Minorant, Maximum, Minimum

Remarque

e Une partie majorée (resp. minorée) n’admet pas un unique majorant
(resp. minorant). Elle en a une infinité.

o Les intervalles (sauf ] — oo, +oo[= R) sont des parties de R majorées
ou minorées.

Definition (Minimum, Maximum)

Soient A une parties de R et m et M deu nombres réels

@ si m € A et mest un minorant de A, on dit que m est le minimun de
A, noté min(A)

@ si M € A et M est un majorant de A, on dit que M est le maximun
de A, noté max(A).
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Notion de Majorant, Minorant, Maximum, Minimum

e l'intervalle | — 1,2] admet 2 comme maximum

o l'intervalle | — 1,2[ est borné mais n'admet ni maximum ni minimum.

Exercices d’application :
@ Est-ce que [—m, 7] admet un maximum ? un minimum ?
@ Donner I'ensemble des majorants des parties A =]0,2[ et B =] — 1, 2].

© Mettre sous forme d'intervalle les ensembles {x € R, |x — 1| < 2} et
{x €R, |3x — 4| <1}.

Q Mettre I'intervalle | — 7, 2[ sous forme d'un ensemble utilisant une
valeur absolue.
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L’ensemble des entiers naturels N

La construction de I'ensemble N des entiers naturels a été formalisée pour
la premiére fois au 19éme siécle par le mathématicien italien Giuseppe
Peano et le mathématiciens allemand Richard Dedekind. Cette
construction dépasse le cadre de ce cours de L1 ot nous nous contenterons
d’admettre |'existence de N et supposons qu'il vérifie les régles suivantes :

@ N est non vide.
@ N est totalement ordonné : pour tout i,j € N,onai<jouj </

© Toute partie non vide de N possede un plus petit élément : si A est
une partie de N non vide, alors il existe a appartenant a A tel que

pour tout /i appartenant a A, a < /.
@ Toute partie non vide et majorée de N posséde un plus grand élément.

11/184
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L’ensemble des entiers naturels N

Propriété

@ L’'ensemble N posséde un plus petit élément, noté Q.

o N\{0}, I'ensemble des entiers naturels privé de 0, posséde un plus
petit élément, noté 1.

On peut ainsi nommer les entiers successifs :
@ pour tout n € N, la partie {p € N, p > n} posséde un plus petit
élément, appelé successeur de n et noté n+ 1.
@ pour tout n € N, la partie {p € N, p < n} posséde un plus grand
élément, appelé prédécesseur de n et noté n— 1.
Ainsi N ={0,1,2,---} est I'ensemble des nombres entiers naturels.
A partir de I'ensemble N, on peut définir I'ensemble des entiers relatifs
noté Z, comme étant les entiers naturels et leurs opposés. Ainsi
zZ={--,-2,-101,2,---}.
En d'autres termes, un nombre est appelé entier relatif si c'est un entier
naturel ou si son opposé est un entier naturel.
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L’ensemble des entiers naturels N

Remarque

Un entier naturel est donc un entier relatif. On dit que N est inclus dans
Z, ce que I'on note N C Z.
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Opération d'addition et de multiplication sur N et Z

Pour tout a,b et c dans N ou Zon a:
o (a+b)+c=a+(b+c)
@ (axb)xc=ax(bxc)
Il s'agit de I'associativité de I'addition et de la multiplication
@a+0=0+4+a=a
@ axl=1xa=a

0 est I'élément neutre de I'addition et 1 celui de la multiplication.
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Opération d'addition et de multiplication sur N et Z

@at+b=b+a

@ axb=bxa
Il s'agit de la commutativité de I'addition et de la multiplication

o (a+b)xc=axc+bxc

@ ax(b+c)=axb+axc
Il s'agit de la distributivité de I'addition par rapport a la multiplication et
de la multiplication par rapport a I'addition.

@ Pour tout a € Z, il existe un unique ' € Z tel que a+a' = a' +a=0.

On note cet élément a’ par —a (symétrie ou opposé).

Automne 2025 15/184
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Rappel sur les fractions et les opérations sur les fractions

Definition

. 5 OR s a .
Une fraction est un nombre qui s'écrit sous la forme 5 oulac’ZetbeZ".
/

. . a z . .
On dit que deux fractions 5 et o sont égaux si et seulement si ab’ = a’b.

Propriété (Simplification)

R am
Pour tout a € Z, b et m appartenant a Z* alors ——
m
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Opérations sur les fractions

@ Pour deux fractions — et — on définit la somme par la formule
a ¢ ad+cb
+=-=—
b d bd
a ¢ . .
@ Pour deux fractions 5 et 4 on définit le produit par la formule
a c_ac
b d bd

Definition

L'ensemble des fractions, c'est-a-dire des nombres pouvant s'écrire sous la
a . 1
forme 5 avec a € Z et b € Z*, constitue |'ensemble des nombres

rationnels, noté Q en mathématique.
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Regles sur les puissances

Definition
Soient a un nombre réel non nul et m un entier strictement positif. On
définit a” =axaxax---xa pris m—fois

Propriété
Pour deux entiers strictement positifs m et n on a :

0 3a"xa"=axax---xaxaxax---xa=amtn

m—fois n—fois

o (aM)'"=ax---xax--xXxax---xa=ax---xa=am
—_——

m—fois m—fois mn— fois

n—fois
0 %=1
@ Pour m € N, on peut définir a—™, pour tout réel a non nul, par
1

am’

v
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Regles sur les puissances

Ainsi, on peut généraliser les formules précédentes dans le cas ou m et n
sont dans Z.

Pour deux nombres réels a et b non nuls et m € Z, on a aussi
(ax b)™=a"x b".
Généralisation :

@ Soient a # 0 un nombre réel, m un entier relatif et n un entier
strictement positif. Si a > 0 on définit an = va™.

@ Pour a et b deux réels strictement positifs et pour tous x,y € Q on
a:a%ay =, (a¥) = a¥; (ab)* = a¥b*.
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Définitions et propriétés élémentaires

Definition (Symbole > et [])

Soit / un ensemble fini non vide et (a;);c/ une famille de nombres réels. On
note :

° Za; la somme des éléments de la famille (a;);¢;.

iel
° Ha,- le produit des éléments de la famille (a;);e/-
iel
Remarque
Par convention, si | = () : Z aj=0 et H aj=1.
iel icl

A\

Cas fondamental : Si | = [m, n] avec m, n E Zetm<n:

Za,—am+am+1+am+z+ ta, et Ha;:amxam+1><~-><an-

i=m i=m
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Définitions et propriétés élémentaires

Remarque

ll n

L ‘indice ne sert qu'a compter c'est la raison pour laquelle

Z3:+2_Z3k+2_23s+2
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Définitions et propriétés élémentaires

Q SoitneN*; Y} 128=28+28+---+28 =28n

n—fois

n
Q@ > 28=28+28+---+28=28(n+1)
k=0 (n+1)—fois
© somme des n premiers naturels :
L n(n+1)
Y k=14+243+ - +n=—7"
2
k=1
© somme des carrés des n premiers entiers :
n

SRR 2t gly .y e oo DD
k=1

6

© somme géométrique : pour q réel et q # 1 on a
n

K 2 1— gt
k=0 1-¢q
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Définitions et propriétés élémentaires

Plus généralement, si m,n€ Z avec m< non a

n _
1_qn+1 m

qu:qm( T )

k=m aq

La preuve de ce résultat découle du raisonnement suivant : On note par
Sm,n cette somme. Ainsi on écrit d'une part

Smn=q"+ g™+ g g
qXSm,n: m+1_’_qm+2+”.+qn+qn+1

En faisant la différence des deux lignes précédentes on trouve :

m

Sm,n —gx 5m,n =q — qn+1 — Sm,n(l - q) = qm - qn—|—1
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Définitions et propriétés élémentaires

Propriété (Linéarité de la somme)

Soit 1, un ensemble fini, (a;)ics et (b;)ic; deux familles de nombres. On a :
(1) Z(ai+bi)zzai+zbi
icl icl icl
@ Pour tout réel A, Y Aai =\ a.
icl icl
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Définitions et propriétés élémentaires

Soit n > 5 un entier et x,y deux réels. Nommer et calculer la somme :

o ) (3k—2x) Z3k sz—32k (n+1)2x =
k=0

(1) (30— ax)

n(n+1)
2

. Z x(s+y) —XZ s—l—y)_st—i—ny_

3 —(n—|—1)2x: 2

- 2 (”2+1)”2 2 X 2 2
st—i—(n —i—l)xy:xf—i—(n +1)xy = E(n +1)(n“+2y).

.Z(z'+3 Z2’+Z3—Z2’—|—3(n— =
4 n
2411_22 +3(n_4):2
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Définitions et propriétés élémentaires

Propriété (Pour le produit)

@ Pour tout \ réel, H A = \" ou n est le nombre d'élements de |.
i€l
@ [[aibi=(Ja)(]#)
iel iel icl
(s H)\a,- = )\”(H a;) avec n le nombre d’'éléments de |.
iel icl

Propriété (Exponentielle d’'une somme)

La propriété TP = eeb se généralise 3 une famille de réels

a1,d2,d3, " ,dp - eXp(Z?:l 3,‘) = H?:l exp(a,-).

Propriété (Logarithme d'un produit)
Pour b15b27b3a"' 7bn € Rj— ; In(H?:l bl) = 7:1|n(bf)'
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Sommes et produits télescopiques

n
Partons de la somme suivante Z(k +1)% — k3. Si on déroule cette
k=1
somme on a pour différentes valeurs de k :

k=1ona23-13
k=2ona33-23
k=3ona43-33

k=n—1lonan®—(n-1)3

k=nona(n+1)3—nd

En faisant la somme on remarque que beaucoup de termes se télescopent
n

et on obtient (n+1)3 — 13 Ainsi > (k + 1)® — k3 est une somme
k=1

n
télescopique qui vaut aprés simplification Z(k +1P -k =(n+1)>3-1.
k=1
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Sommes et produits télescopiques

Definition

n
Si (Uk)ke[m,n] est une famille de nombres, la somme Z (Ug+1 — ug) est

k=m
n

dite somme télescopique. Cette somme vaut Z (Uk+1 — Uk) = Up+1 — Um.

k=m

Léon Matar Tine Algébre 1 Info (MAT1074L) L1 Maths-Info 2( Automne 2025 28 /184



Sommes et produits télescopiques

Exemple
N G2(k+1) 2k o2k

e
———— — — =7?. En posant u, = — alors on reconnait la somme
Pt (k+1)2 k2 k2

de termes télescopiques d’ou

N Q2(k+1) o2k e2(n+1) )
s =~ = Upy] — I = ———— — €.
2 2 n+1 1 2
P (k+1) k (n+1)
n o e(k+1)?
De méme, partons du produit H 7 =7. Pour ce produit, en posant
s k=1
ux = eX°, le produit précédent s'écrit
n
Ukt1 u u3 u Upy1 .. . e
11 KL 22 B x — x “™L et ainsi par simplification on a
—1 Uk up U2 Up—1 Un
n 1 2
H Uk+1  Unpt1 elr+1)
K1 Uy uq (S

C'est ca qu’on appelle un produit télescopique.

<
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Sommes et produits télescopiques

Definition (Produit télescopique)

n
On dit qu'un produit H ay est télescopique si pour tout k € {0,1,--- , n},
k=0
br41

on peut écrire de facon simple a, sous la forme a, = b

n n
b b b
Soit |] “1 un produit télescopique. Alors 11 k1 _ Zndl
izo P o bk bo
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Sommes et produits télescopiques

Exercice
Soit n > 1 un entier et soit y € R. Calculer

n
o Up:=> In(j+1)—In(2))
Jj=3
Indication : On commence par remarquer que In(2j) = In(2) + In(j)
puis on remarque une somme télescopique.

n
2y(k +1)3
o Vi(y):=]1 B
k=1
Indication : ici 2y ne dépend pas de k donc en le sortant du produit,

le reste devient un produit télescopique.
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Application des sommes télescopiques

factorisation de 3" — b" par a— b

n—1
Pour tout a,b € R et pour tout n € N*, a" — b" = (a — b) Z akpmik,
k=0

Preuve de la formule :

n—1 n—1 n—1
(a o b) Z akbn—l—k _ Z(a N b)akbn—l—k _ Z ak-‘rlbn—l—k _akbn—k
k=0 k=0

k=0 k+1pn—(k+1)
ainsi on remarque une somme télescopique. Ce qui donne

n—1
(a—b) Z akpm Ik = a"p0 — Op" = 2" — b,
k=0

Remarque

e Pourn=2,a’>— b?>=(a—b)(a+b)

n—1
e Pourb=1eta#]1, a"—lz(a—l)Zak
k=0
Léon Matar Tine
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Changement d'indice

Soit la somme Z ag, ou am, -+ ,a, sont des nombres. L'intervalle des
. k=m
indices de la somme est

[m,n] = {k,k € [m, n]]} _{l+3/€[[m 3,n—3]}.

Ainsi on a I'égalité : Z ay = Z aj43-

k=m i=m—3

Exemple

On veut faire les changements d’indices i = k + 2 et j = k — n a la somme
2k+

S= Zk nk\/ﬁ

2n+2 e2i—3
e Pouri=k+2 alorsk=i—2doncS = Z

i—n+2 (i=2)Vi+1

e2U+n)+1

PVETES

e Pour j=k — n alors k = j+ n donc S = Z(j+

v
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Regroupement de termes

2n
Partons de I'exemple de la somme suivante : S, = Z min(k,n), n>1.
- k:0 .
Ici on peut décomposer la somme en deux termes en écrivant

S, = mekn)—l— Z min(k, n)

k=n-+1

:Zk—i-Zn

k=n+1

= 7’7(”4_ D) + n(n)
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Regroupement de termes

Regardons également I'exemple suivant : soit n > 1, calculer
Sn=22",(—1)¥k?? ici on remarque que :

k=0 (-1)°=1 ;k=1 (-1)l=-1 k=2 (-1)°=1
donc le terme (—1)* fait alterner le signe de S,. Ainsi,

Sn=-1+22-32442... —(2n—1)2 4 (2n)2. En écrivant la somme
Sh=224+42+... 4+ (202 -(1+4+3%+---+(2n—-1)?).On a
termes pairs termes impairs
2n n n—1
Sno= D (1K= (-1)*(2p)* + D (-1 (2p + 1)
k=0 p=0 p=0
k=2p k=2p+1

n n—1 n n—1 n—1 n—1
= Z4p2— Z4p2+4p+1 = Z4p2— Z4p2— Z4p— Zl
p=0 p=0 p=0 p=0 p=0 p=0

S S Glnlt))

> —n=4n>—-2n*+2n—n=2n+n

Léon Matar Tine Algébre 1 Info (MAT1074L) L1 Maths-Info 2( Automne 2025 35/184



Factorielle

Soit n € N, on appelle factorielle n I'entier noté n! défini par
n

n!:Hk:1x2><3--~><(n—1)><n
k=1

o (n+1)!=n'x(n+1)
@ 0! est un produit vide, donc 0! =1

e 11=1;21=2,31=6

\
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Factorielle

@ Si on veut calculer le produit des n premiers entiers pairs :
2x4x6x---x2(n—1)x2n7?
Attention, ce produit ne vaut pas (2n)!.
Ecrivons le produit :

2x4x---x2(n—1)x2n
= 2X1Xx2x2x---x2x(n—1)x2xn
2"x (1x2x%x3---x(n—1)xn)

= 2" xnl
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Factorielle

e Pour le produit des entiers impairs entre 1 et (2n+1) :
1x3x5---x(2n—1)x (2n+1).
Attention, de méme ici ce produit de vaut pas (2n+ 1)!.
Ecrivons le produit comme suit

1x3x5---x(2n—1)x(2n+1)

1x2x3---x(2n—1)x2nx (2n+1)
2x4x6x---x2(n—1)x2n

(2n+1)!

2" x n!
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Coefficients binomiaux

Soit n € N et p € [0, n]. On définit le coefficient binomial (Z)

n!
pl(n—p)!’

”
Remarque

e pourpeZetp¢]|0,n], (Z) =0.

() () ()

1 by H n H n n
c’est-a-dire "p parmi n" par < ) =
p
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Coefficients binomiaux

. 6\ 6! _5><6_15_ 7\ 7x6x5
2] 21(6-2)! 1x2 77 \3) 1x2x3

12 12x 11 x10x9
[ ) =
4 1x2x3x4

4

n n
Pour tout n € N, pour tout p € Z on a = .
p n—p

\

Preuve

En effet si p € [0, n] on a

n n! n! n
n—p)  (n—pl(n—(n—p))l  (n—p)ip! <p>'
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Coefficients binomiaux

Remarque

(=)= (1) - () - (.2)- () -2

Tout ceci par symétrie.

Théoreme
(Formule de Pascal) Pour tout n € N*, pour tout p € Z

Gy (5)=6)

La preuve est donnée ci-dessous.

| A\
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Coefficients binomiaux

Preuve

Soit n € N*, p € Z avec p € [0, n]
. Sip:nona(2:1)+(”;1):l+0 et (=1

n

e Sipe[0,n—1], on écrit

n—1 n—1) (n—1)! (n—1)!
(p—1>+< p ) T (-Din—p)l  plln—1-p)

1
= (n—-1)! IF .
( )((pfl)!(nfp)! p!(nfpfl)!)
, 1 .. 1
Ol ke (plfl)! - p(piJ o — 5 a/nsi (p—D)I(n—p)! — p!(nlip)!'
D’autre part, =) = (= p), ainsi ==y = ("n_Pp)! d’oll

n—1 n—1 (n—1)! B n! _(n
(p—1>+<p> p(n— )(p+( p))_p!(n—p)!_<p>'
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Coefficients binomiaux

Le corollaire (conséquence) de ce théoréme est le triangle de Pascal

mp|O0[1]|2|3]|4|5]|6
0O [1|0|0]|]O0O|0|0OfO
1 (1/1/0]0|0]0]|O
2 |12 1|0]0|0]0O
3 1|33 |1|01]0|0
4 |1/4]/6 |4 |1]0|0
5 |1]5[{10|10| 5 |1|0
6 |[1]6|15|20|15(6 |1

Ainsi I'élément a la ligne n et a la colonne p s'obtient en sommant celle a
la ligne n — 1 et colonne p — 1 et celle de la ligne n — 1 et colone p.
Dans ce tableau, la premiére colonne vaut 1 car (g) = 1. La diagonale du
tableau vaut 1 car (7) = 1. La surdiagonale vaut 0 car p > n.

Remarque

La formule de Pascal permet de voir que (g) est un entier.
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Le bindme de Newton

Le binbme de Newton est une méthode pour calculer la puissance entiére
d'une somme. Les formules de développement connues par coeur sont
(a+b)°=1;(a+b) =a+b;(atb)?=a%+2ab+ b?;

(a+ b)® = a% +3a2%b +3ab? + b3;

(a+ b)* = a* + 4a%b + 6a%b? + 4ab> + b*.

Le bindbme de Newton permet de généraliser ce développement au cas
(a+ b)".

Théoreme

Pour tout a, b réels et pour tout n € N

(a+b)"= EH: <Z> a"PhP = EH: (Z) 2P NP

p=0 p=0
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Le bindme de Newton

(1 + x)5 pour tout réel x

5 ° 5— ° 5 5—
(1+x) Z SR T (P R

p=0 p=0 P

_ () () 1+©X2+...+®X5

= x% 4 5x 4+ 10x% 4 10x3 + 5x* 4 x> par le triange de Pascal.

Soit n € N* et x € R, on veut calculer A, = >"7_q (}). Ici c’est le binéme
de Newton avec a = b = 1. En effet
n

oo e E) - £

n

k=0 k=0 k=0
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Le bindme de Newton

Soit a calculer S, = Y27, (;)2" ?

On a Z (;) 2P — Z (”) 2P1"P = (24 1)" = 3"
p=0

p=0 p

Exemple
Soit S, = Y27, (2,.")(—1)i? Elle ressemble a un binéme de Newton.

™ (2n 2n—i i o (2n i
En effet (1+ (—1))>" =" ( ; >1 (-1 =>" ( _ )(—1) ainsi

i=2 i=2 !

02" = (20n> (-1)° + (21,7) (=1)* —i—i <2in> (—1)". En d'autres termes
2n 2 ) = 2n 2 )

0=1+2n(-1)+> ( I_ )(—1)'. Dot —1+2n=") ( I_ )(—1)'.
i=2 i=2
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Sommes doubles

a) Somme double indexée par un rectangle
Soit (ai)ic[m,n]je[p,q] UNe famille de nombres indexée par les entiers i et
j. La somme de tous ces nombres est notée Z ajj. Pour cette
m<i<n,p<j<q

q n
somme, en notant par L,‘ = Z a,-j avec | € [[m, n]] et par C/ = Z a,‘j avec
j=p i=m

n q
Jj € [p,q]. Alors Z a,-j:ZL,-:ZCj.
i=m Jj=p

m<i<n,p<j<q
En particulier, on a I'égalité des deux écritures

iiaUZiiagrz Z ajj.

i=m j=p Jj=pi=m m<i<n,p<j<q
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Sommes doubles

Soit n € N, calculons S, = Z 2f

0<i,j<n
e D’une part
n n n n
X320 = > (n+1)2 =(n+1)) 2
i=0 j=0 i=0 i=0
1— 2n+1
= (n+1)—7— = (n+1)(2"1 -1)

e D’autre part

1-2mt1 &
222’—2—= 2l _1=(n4+1)(2"1-1)
j=0 i=0 Jj=0 2 j=0
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Sommes doubles

b) Somme double indexée par un triangle
Soit (ajj)m<i<j<n une famille de nombres indexée par les entiers i et j
appartenant a [m, n], mais seulement pour les couples (i, /) tel que i <.
n

Pour calculer la somme Z ajj on peut poser L; = Z ajj et

m<i<j<n j>i
n

G = Z ajj. Ainsi on pourra avoir deux facons d'expliciter la somme

i<j
n n
Z ajj soit en sommant ligne par ligne c'est-a-dire Z Za,-j ou bien
m<i<j<n i=m j=i
nJ
en sommant colonne par colonne c'est-a-dire Z Z aj;.
j=mi=m

En résumé, la somme double indexée par un triangle s'écrit :

> BJZZZQJZZZJ:‘?J

m<i<j<n i=m j=i j=mi=m
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Sommes doubles

n n -
. oz ! .
Soit n € N*, calculons la quantité D, = Z Z -. Ici on remarque que les
i=1 j=i
indices ont une contrainte triangulaire 1 < i < j < n.

i S M1 1_/_/+1) j+1
o= X I-$Soss S S
j j i

1<i<y i 1-/ j= 1-/

. 1/, & 1/n(n+1) 2n n(n+3
j=1  j=1
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Produit de deux sommes finies

Soient (aj)icq1,n] €t (bj)jeq1,n) deux familles de nombres réels. Comment
développer le produit suivant

7= (L) ()

Attention : Il faut pas commettre I'erreur en disant que P = Y }_; axbx.
C'est Faux.

Pour calculer formellement un tel produit il faut commencer par changer le
nom d'un des indices. Puis développer le produit en utilisant la

"distributivité" P = (Z ) (Z bk) = Z<aj Z bk) = Z Z ajby.

= j=1 j=1 k=1
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Les ensembles )
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Les ensembles

Definition

Un ensemble est une collection bien définie d'objets qu’on appelle
éléments.

soit S, I'ensemble de tous les résultats en faisant la somme de 2 dés. Alors
Q=1{2,3,4,5,6,7,8,9,10,11,12} et les nombres
2,3,4,5,6,7,8,9,10,11, 12 sont les éléments de 2.

Les ensembles qu'on a fréquemment I'habitude d'employer sont

N ={0,1,2,3,4---} des entiers naturels.
Z={--,—4,-3,-2,-1,0,1,2,3,4---} des entiers relatifs.

Q I'ensemble des nombres rationnels c’est-a-dire s'écrivant sous la forme
d'une fraction ol a€ Z et b € Z*.

R I'ensemble formé par tous les nombres réels.
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Les ensembles

Il existe un ensemble ne contenant aucun élément, qu'on appelle
I'’ensemble vide et qui est noté par ().

Definition

(Il s'agit d’un rappel)
Le symbole € indique qu'un élément appartient 3 un ensemble. A I'inverse
le symbole ¢ indique qu'un élément n’appartient pas a un ensemble.

1
Exemple : a € {a,e,i,0,u}; k¢ {a,e,i,o,u};2€N; §¢N
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Les sous-ensembles (notion d'inclusion)

Definition
Soit  un ensemble. On dit que A est un sous-ensemble de 2 si et
seulement si tous les éléments de A sont aussi des éléments de Q. Ainsi

['ensemble A est inclus dans I'ensemble 2. La notation A C  est utilisée
pour symboliser I'inclusion de A dans Q.

Remarque

Le symbole ¢ indique qu’'un ensemble n’est pas inclus dans un autre. Ainsi

A ¢ B exprime donc qu’au moins un élément de A n'est pas un élément de
B.
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Les sous-ensembles (notion d'inclusion)

En revenant sur I'ensemble 2 comme étant la somme de deux dés
c'est-a-dire Q = {2,3,4,5,6,7,8,9,10,11,12}. On peut citer les
quelques sous-ensembles suivants :

Q1 ={2,4,6,8,10,12} : ensemble des résultats pairs

Q2 ={2,3,4,5,6} : ensemble des résultats inférieurs ou égaux a 6.
Q3 = () : ensemble des résultats supérieurs a 12

Q4 = {11} : ensemble des résultats divisible par 11.

NCZCQCR
Z¢N;{0,1,2,3,5,6} ¢ {1,3,5,7,9,11}
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Opérations sur les ensembles

Nous présentons ici les opérations ensembliste les plus importantes.
a) Complément d’un ensemble

Soit 2 un ensemble. On définit le complément d’une partie A de €, noté
A, I'ensemble de tous les éléments qui ne sont pas dans A.
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Opérations sur les ensembles

b) Intersection d’ensembles

Soient A et B deux ensembles. On appelle intersection de A et B, notée
AN B, I'ensemble de tous les éléments appartenant a la fois a Aet a B.

A B
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Opérations sur les ensembles

c) Union de deux ensembles

Soient A et B deux ensembles. On appelle union des deux ensembles A et

B, I'ensemble noté AU B, représentant tous les éléments appartenant soit
aAouaB.
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Opérations sur les ensembles

d) Différence de deux ensembles

Soient A et B deux ensembles. On appelle différence de A et B, notée
A\ B, I'ensemble de tous les éléments de A qui n'appartiennent pas a B.
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Opérations sur les ensembles

Remarque

(Différence symétrique) Soient A et B deux ensembles, on appelle
différence symétrique de A et B, notée AAB (lire A delta B), I'ensemble
constitué par la réunion des éléments de A qui ne sont pas dans B, et des
éléments de B qui ne sont pas dans A.

AAB = (A\B)U(B\A)=(AUB)\(ANB)=(ANB)U(BNA).

V.

Exercice (a faire)
Reprenons I'ensemble € concernant les dés. Soient les sous-ensembles de
Q: Qq, Q, Q3, Q4 précédemment définis.
e Ecrire les éléments des sous-ensembles obtenus par les opérations
suivantes : complémentaire ; intersection ; union ; différence.
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Produit cartésien de 2 ensembles

Definition

On appelle produit cartésien de deux ensembles E et F, |'ensemble noté
E x F des couples (a, b) ol a est un élément de E et b un élément de F.
Par exemple, si E = {1,2} et F = {a, b, c}, alors

Ex F={(1,a);(1,b);(1,¢);(2,a);(2,b);(2,¢)}

Ce produit n'est pas commutatif, c'est-a-dire E x F peut étre différent de
F x E.

Le plan, R2, est le produit cartésien R x R.

Remarque

Lorsque E et F sont deux ensembles finis, alors le nombre d'éléments de
E x F est le produit du nombre d’éléments de E et du nombre d’éléments
de F.
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Produit cartésien d'ensembles

Soit E un ensemble qui possede un nombre fini d'éléments. On appelle
cardinal de E, le nombre d'éléments de E et on le note card E

Soient Eq, E>, E3,--- , E,, p ensembles finis, alors

card(Ey x Ep x --- x Ep) = card(Ey) x card(Ep) x - -+ x card(Ep).
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Ensemble des parties d’'un ensemble (recouvrement,

partition)

Si A est un ensemble, I'ensemble des parties de A est I'ensemble constitué
de tous les sous-ensembles de A. Il est noté P(A).

Si A={1,2,3}, les parties de A sont
0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.
On a donc P(A) = {0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.

Propriété

e Si A contient n éléments, P(A) contient exactement 2" éléments.
e Si A est infini, P(A) I'est aussi.
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Recouvrement, partition

a) Recouvrement : Soit X un ensemble, A une partie de X. Un
recouvrement de A est une famille de parties de X dont la réunion
contient A. En d’autres termes, il existe une famille (U;);c; de parties
de X telles que A C U U;. Ce recouvrement est dit fini si / est fini.

iel
En particulier, un recouvrement de X vérifie X = U U;.
iel

b) Partition : Un recouvrement (U;);c; est appelé partition si les U; sont
disjoints deux a deux c’est-a-dire i # j, Ui U; = 0.

Si E est le rectangle ci-dessous, alors les petits rectangles coloriés F, G, H
constitituent une partition de E.

F G H
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Manipulation des ensembles a I'aide des quantificateurs

Pour exprimer avec précision les propriétés des ensembles et des éléments
qui les composent, on utilise souvent les quantificateurs. Il en existe deux :

@ La locution "pour tout" ou "quelque soit", appelée quantificateur
universel et notée V.

@ La locution "il existe", appelée quantificateur existentiel et notée .

ENE

Vx € E, P(x) se lit " pour tout x appartenant a I'ensemnle E, la proriété
P est vraie". Ici le symbole "V" signifie donc que la propriété P est vérifiée
pour tout x de I'ensemble E.

Exemple

| A

dx € E, P(x) se lit " il existe x appartenant a I'ensemnle E, tel que la
proriété P est vraie". Ici le symbole " 3 " signifie donc qu'il existe (au
moins) un x de I'ensemble E vérifiant la propriété P.
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Manipulation des ensembles a I'aide des quantificateurs

Remarque

a) Attention, la locution "il existe" ne signifie pas "il existe un et un
seul", mais bien "il existe au moins un". Autrement dit, cette locution
assure qu'il existe au moins un élément, et donc éventuellement
plusieurs, vérifiant une propriété donnée, mais n’assure pas que cet
élément soit unique. Pour 'expression "il existe un et un seul " ou "il
existe un unique " se note J!.
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Manipulation des ensembles a I'aide des quantificateurs

Remarque

b) Attention I'ordre d'utilisation des quantificateurs a une importance.
En effet dire : ¥ n € Z,3dk € Z, k > n se lit "pour tout entier n, il
existe un entier k tel que k est plus grand que n" ou encore " tout
entier relatif n admet un plus grand entier relatif k". Cette
proposition est vraie puisque n+ 1 est toujours plus grand que n, quel
que soit I'entier n.

En revanche, dire : An€ Z Y k € Z, k > n se lit "il existe un entier n
tel que pour tout entier k, k est plus grand que n" ou encore "il existe
un entier n qui est plus petit que tout entier k". Bien évidemment
cette proposition est fausse (en effet il suffit de choisir k =n—1).

Léon Matar Tine Algébre 1 Info (MAT1074L) L1 Maths-Info 2( Automne 2025 68 /184



Les bases de logique J
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Origines de la logiqu

L'objectif ici est de bien définir le vocabulaire, les notations et le propriétés
que nous utiliserons non seulement dans ce chapitre, mais également dans
toutes les preuves de résultats que nous développerons que ce soit en cours
ou en travaux dirigés. A partir de ce chapitre, il faudra donc construire les
démonstrations de la facon la plus rigoureuse possible, en utilisant les bons
quantificateurs, dans le bon ordre, mais également des stratégies de
preuves (absurde, contraposée, récurrence par exemple).

Definition (Assertion)

Une assertion est un énoncé mathématique auquel on peut attribuer une
valeur de vérité

vrai (V) ou Faux (F),

mais jamais les deux a la fois. C'est le principe du tiers-exclu.
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Assertions et prédicats

@ L’énoncé “Paris est la capitale de la France”, est vrai (V).
@ L'énoncé “24 est un multiple de 2", est vrai (V).
@ L'énoncé “19 est un multiple de 2", est faux (F).

Definition (Prédicat )
Un prédicat est un énoncé mathématique contenant des lettres appelées

“variables” tel que, quand on remplace chacune des lettres par un élément
donné d'un ensemble, on obtient une assertion.
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Assertions et prédicats

@ L’énoncé : P(n) ="n n'est pas un multiple de 2", est un prédicat, car
il devient une assertion quand on donne une valeur a n. Par exemple,
P(10)="10 est un multiple de 2" est une assertion vraie.

P(11)="11 est un multiple de 2" est une assertion fausse.

@ L'énoncé P(x,A)="x € A", est un prédicat a deux variables. Il
devient une assertion quand on donne une valeur aux deux variables.
Par exemple,

P(1,N) est une assertion vraie,
P(v/2,Q) est une assertion fausse.

Remarque

Une assertion peut s'interpréter comme un prédicat sans variable,
c'est-a-dire comme un prédicat toujours vrai ou toujours faux.
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Les connecteurs logiques

Definition (Négation d'un prédicat)
Soit P un prédicat, la négation de P est le prédicat non(P), qui est
faux lorsque P est vrai; vrai lorsque P est faux.

On résume en général ceci dans une table de vérité, comme suit

P | nonP
V F
F V

Table de vérité pour non (P)

@ P="24 est un multiple de 2" est une assertion vraie (V),
non (P)="24 n'est pas un multiple de 2" est une assertion fausse (F).

@ A partir du prédicat “x € A", nous pouvons définir le prédicat
non(x € A) qui est “x ¢ A”.
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Les connecteurs logiques

Definition (Conjonction)

Soient P et @ deux prédicats. Le prédicat “P et Q" est appelé
conjonction de P et Q. C'est un prédicat qui est :

e vrai lorsque P et @ sont vrais simultanément,

e faux dans tous les autres cas.

Nous pouvons résumer cela dans une table de vérité :

PetQ
Vv
F
F
F
pour la conjonction

mn<| <o

DN <| <O

Table de vérit

D~

Notation (a retenir)

Nous écrivons parfois P\ Q pour “P et Q.
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Les connecteurs logiques

@ Soient P le prédicat “x € [0,4]" et Q le prédicat “x € [2,8]",
le prédicat P A\ Q est “x € [2,4]"

@ Soient P le prédicat “x € A” et Q le prédicat “x € B”,
le prédicat PN\ Q est “x € ANB”".

Definition (Disjonction)

Soient P et @ deux prédicats. Le prédicat “P ou Q" est appelé
disjonction de P et Q. C'est un prédicat qui est :

@ vrai lorsque I'un au moins des deux prédicats est vrai,

@ faux lorsque les deux prédicats sont faux simultanément.

\
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Les connecteurs logiques

Nous pouvons résumer cela dans une table de vérité :

PIQ|PouQ
V|V Vv
VI|F V
F |V V
F|F F

Table de vérité pour la disjonction

Notation (a retenir)

Nous écrivons parfois PV Q pour “P ou Q"

Exemple
@ Soient P le prédicat “x € [0,4]" et Q le prédicat “x € [2,8]",
le prédicat PV Q est “x € [0,8]"
@ Soient P le prédicat “x € A” et Q le prédicat “x € B”,
le prédicat PV Q est “x € A|JB".
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Les connecteurs logiques

Definition (Implication)

Soient P et @ deux prédicats. Le prédicat “P = Q" est appelé
implication de P et Q. C'est un prédicat qui est :

-faux lorsque P est vrai et @ est faux,

-vrai dans tous les autres cas.

Nous pouvons résumer cela dans une table de vérité :

PIQIP=Q
VIV V
VI|F F
F |V V
FIF v

Table de vérité pour I'implication
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Les connecteurs logiques

Remarques

@ Nous disons que P est une condition suffisante pour Q.

@ Q = P s'appelle I'implication réciproque de P = Q.
© si P est faux et Q est vrai, le prédicat P = Q peut paraitre curieux.

v

Definition (Equivalence)

Soient P et @ deux prédicats. Le prédicat “P < Q" est appelé
équivalence de P et Q. C'est un prédicat qui est :

@ vrai lorsque P et @ sont simultanément vrais ou faux,

@ faux dans tous les autres cas.
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Les connecteurs logiques

Nous pouvons résumer cela dans une table de vérité :

PIQ|P&Q
V|V V
VIF|[ F
FIV] F
FIF| Vv

Table de vérité pour I'équivalence.

Remarques

QO (P=Q)et(Q= P)senote P= Q= R,
Q@ (P Q) et(QRe R)senote P& Q< R.
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Definition (Logiquement équivalents)

Soient Py et P, deux prédicats.Si

- P; est vrai lorsque P est vrai,

- P, est faux lorsque P, est faux,

on dit que P; et P, ont la méme table de vérité, ou qu’elles sont
logiquement équivalentes, et on note

P = Ps.
Dans le cas contraire, on note

P # P>

EE
@ Soit P un prédicat, non(non(P)) = P
@ Soient P et Q deux prédicats, (P et (P ou Q)) =P

4
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Propriétés
Considérons maintenant un prédicat P, qui peut prendre la valeur de vérité
vrai ou faux. Considérons ensuite le prédicat composé

R ="P ou nonP".

Ce prédicat est toujours vrai indépendamment du choix de P. En effet,
avec la table de vérité, nous avons,

P | non (P) | P ou non(P)
\Y F \Y
F Vv \Y
Table de vérité pour une tautologie

Ce prédicat R est appelé tautologie.

Definition (Tautologie)

Un prédicat composé R qui est vrai quelles que soient les valeurs de vérité
qui le composent, est appelé une tautologie.
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Propriétés
D'un autre c6té, sinon nous considérons le prédicat composé

Q ="P et non(P)".

Ce prédicat est toujours faux. En effet, avec la table de vérité, nous avons,

P | non (P) | P et non(P)
\Y F F
F \Y F
Table de vérité pour une incompatibilité

Nous disons que les prédicats P et nonP sont incompatibles.

Definition (Incompatibilité)

On dit que deux prédicats P et nonP sont incompatibles si leur
conjonction est fausse quelles que soient les valeurs de vérité des prédicats
qui les composent.
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Propriétés

Proposition (Lois de De Morgan)

Soient P et Q deux prédicats. Nous avons les équivalences logiques
suivantes

non (P ou Q) = (nonP et non Q)
non (P et Q) = (nonP ou non Q)

Ce sont les lois de De Morgan pour les prédicats.

Proposition (Equivalences logiques avec trois prédicats)

Soient P, Q et R trois prédicats. Nous avons les équivalences logiques
suivantes

(Pou(Q e R) = (PouQ) e (P ou R)
(P et (Q ou R) (P et Q) ou (P et R)
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Proposition (Equivalences logiques avec trois prédicats)

Soient P et @ deux prédicats. Nous avons les équivalences logiques
suivantes

P= Q= (nonP ou Q),

nous disons que @ est une condition nécessaire pour P.

non(P = Q) = (P et non Q)
(P& Q) = non(P) = non(Q)
(P& Q) = (P=Q) et (Q=P))

Notons que non(P) = nonQ) est la contraposée de P = Q.
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Quantificateurs mathématiques

A partir d'un prédicat P(x) défini sur un ensemble E, nous construisons de
nouvelles assertions, que I'on appelle assertions quantifiées, en utilisant les
quantificateurs “quel que soit” et “il existe”.

Definition (Quantificateur V)

Le quantificateur “quel que soit” noté V permet de définir |'assertion
quantifiée “Vx € E, P(x),"

qui est vraie pour tous les éléments x appartenant a E, le prédicat P(x)
est vraie.

| \

Exemple

Q@ “Vxe[-3,1], x*?+2x—3<0 "est vraie,
@ “VneN, (n—3)n>0 " est fausse,
© “VneN, (n? pair = n pair) " est vraie.
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Quantificateurs mathématiques

Definition (Quantificateur 3)

Le quantificateur “il existe” noté 3 permet de définir |'assertion quantifiée
“Ix e E, P(x)”

qui est vraie si I'on peut trouver au moins un élément x appartenant a E,
tel que le prédicat P(x) soit vraie.

Remarque

S'il existe un et un seul élément, on peut écrire 3! x € E, P(x).
Nous dirons alors qu'il existe un unique élément x de E vérifiant P(x).

Exemple

@ L’assertion quantifiée ‘I x € R, x> = 4" est vraie.

@ L’assertion quantifiée "3 x € R, In(x) = 1" est vraie.
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Quantificateurs mathématiques

Remarque

Notons que si vV x € E, P(x)" est vraie, alors “I x € E, P(x)" est vraie.

@ Attention :

il faudra manipuler avec précaution les assertions de la forme
“J1x € E, P(x)" pour lesquelles la notation 3 ! n'est pas un
quantificateur bien qu'il en ait I'air!

En effet, si nous posons

Ry ="dx € E, P(x)" (c'est I'existence)

et
Ry ="V xeE, Vx €E, (P(x) et P(x"))= (x=x"))"(cest
I'unicité),
nous avons alors
(I!'x e E,P(x))=(R1 et Rp).
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Quantificateurs mathématiques

Proposition (Equivalences logiques et quantificateurs)
nous avons les équivalences topologiques

Soit P(x), un prédicat,
suivantes :
non(¥ x € E, P(x)

) (3 x € E, non(P(x)))
non(3 x € E, P(x)) )

P
(V x € E, non(P(x))

Soient P(x) et Q(x) deux prédicats sur E. Nous avons,
non(V x € E, (P(x) = Q(x)) =3 x € E, (P(x) et non(Q(x)))
non(3! x € E, P(x)) = (Vx € Enon(P(x)) ou (Ix #y, P(x) A P(y)))
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Quantificateurs mathématiques

Definition (Prédicats a deux variables)

Soit P(x,y) un prédicat a deux variables, x € E et y € F.
L'assertion quantifiée

VxeE, VyeF, P(x,y),

est vraie lorsque tous les éléments x € E et tous les éléments y € F,
vérifient P(x, y).
L'assertion quantifiée

dxeE, JyeF, P(x,y),

est vraie lorsqu'il existe au moins un élément x € E et qu'il existe au
moins un élément y € F qui vérifient P(x,y).

Léon Matar Tine Algébre 1 Info (MAT1074L) L1 Maths-Info 2( Automne 2025 89 /184



Quantificateurs mathématiques

Remarque
Nous pouvons combiner des quantificateurs de natures différentes. Mais
attention, il faut respecter les régles suivantes :
(Vx€eE, VyeF, P(xy)) = (VyeF, VxeE, P(xy)),
(3xeE dyefF, P(xy) = (ByeF, IxeE, Pxy)).

@ Attention :

il ne faut pas permuter des quantificateurs différents!
(VxeE,dyeF, P(x,y)) # (ByeF,VxeE, P(x,y)).
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Raisonnement par hypothese auxiliaire

Pour montrer qu'un énoncé @ est vrai, nous nous appuyons sur la
tautologie suivante (P et (P = Q)) = Q. Clest bien une tautologie,
comme le montre la table de vérité suivante

P|Q|P=Q | Pet(P=Q) | (Pet(P=Q)=Q
\% \% \% \% \%
V| F F F v
F \% \% F \%
FlF v F v
Table de vérité pour la tautologie (P et (P = Q)) = Q

© Nous montrons que P est vrai (en pratique il s'agit d'un énoncé
évident),

@ puis nous montrons que P = Q est vrai,

© nous nous retrouvons sur la premiére ligne de la table de vérité, ce qui
montre que @ est vrai.
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Raisonnement par I'absurde

Pour montrer qu'un énoncé P est vrai, nous nous appuyons sur
I'équivalence logique ((non(P) = Q) et (non(P) = non(Q))) = P.
Vérifions cela dans la table de vérité ci-dessous

P | Q| non(P) | non(Q) | non(P) = Q | non(P) = non(Q) | (non(P)= Q) et (non(P) = non(Q))
v | v F F v v v
vV | F F v v v v
F |V % F v F F
F|F v v F v F

Table de vérité pour la tautologie ( non(P) = Q) et (non(P) = non(Q))

Il parafit clair que la premiére et la derniere colonne sont identiques. Nous
supposons alors que non(P) est vrai (lignes 3 et 4 du tableau ci-dessus), et
nous cherchons alors @, qui sous cette hypothése serait a la fois vrai ou
faux. Nous disons alors que I'on a obtenu une contradiction ou que
I'hypothése est contradictoire.
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Remarque

Dans la pratique, nous montrons que si nonP est vrai alors on aboutit a
une contradiction et on en déduit que P est vrai.
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Raisonnement par contraposée

Il faut montrer des résultats faisant apparaitre une implication P = Q. Ce
raisonnement s'appuie sur I'équivalence logique

(P=Q) = (non(Q) = non(P)). Pour montrer qu'un énoncé Q est
vrai, nous utilisons |'équivalence logique ci-dessus.
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Raisonnement par contre exemple

Ce raisonnement sert a montrer qu'un énoncé de la forme V x € E, P(x)
est faux. Pour cela, nous montrons que sa négation est vraie. Autrement
dit non(Vx € E, P(x)) = (3x€E, non(P(x))). Pour cela nous
montrons qu'il existe un élément x € E qui ne Vvérifie pas P(x).

Exemple

@ Montrons que Vx€R, Ye>0, (x| <e = x=0) estfaux.
La négation de cet énoncé est
dxeR, 3e>0, (x| <e et x#0). Nous rappelons en effet
que la négation de (P = Q) est (P et non(Q)).
Six =1 ete =2, nous avons |x| < ¢ et x # 0, la négation de
I"énoncé est vraie, donc I'énoncé est faux.

@ Attention, il ne faut pas confondre
VxeR, Ve>0, (Jx]<e = x=0) avec
VxeR, (Ve>0, |x|]<e) = x=0).
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Raisonnement par récurrence

Ce raisonnement sert a montrer qu'un énoncé du genre

“pour tout entier naturel n > ng, P(n)" est vrai.

Il'y a deux méthodes pour le prouver.

© La récurrence classique :

® Nous vérifions que |'assertion P(ng) est vraie.
@ Supposons que P(k) soit vraie pour un certain k > ng. Il faut montrer

P(k + 1) soit vraie.
@ La récurrence forte :

® Nous vérifions que |'assertion P(ng) est vraie.
® Nous supposons que la propriété est vraie pour tous les entiers entre ng

et k c’est-a-dire on suppose P(ng), P(ng + 1), P(no + 2),--- , P(k)

sont vraies.
© On démontre alors que cela implique que P(k + 1) est vraie :

(P(mo) AP(ng+1)A---AP(k)) = P(k+1)
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Les Applications d'un ensemble vers un autre ensemble J
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Applications

Soient E et F deux ensembles.
Une application f : E — F, est définie pour chaque élément x € E, un

unique élément de F noté f(x), ol E est I'ensemble de départ et F est
I'ensemble d'arrivée.

V.

f:R - R
x = f(x)=x f est une application.
2]
g:N — N

n — f(n)=n-1

g n'est pas une application.

v
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Applications

Remarque

Q Legraphedef: E — F estT¢={(x;y) € E x Ftel quey = f(x)}.

Q Soitf:E — F et g: G — H deux applications. f = g si et
seulement si E = G et F=H et Vx € E, f(x) = g(x).

© Soit f : E — F une application. Fixons y € F, tout élément x € E tel
que y = f(x) est un antécédent de y.

v

Notation
e On note F(E, F) I'ensemble de toutes les applications de E dans F.

@ On note id I'application identité

id: E — F
x = f(x)=x
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Image directe et image réciproque

Soient E et F deux ensembles.

Definition (Image directe)

Soit AC E et f: E— F, |I'image directe de A par f est I'ensemble :

f(A) = {f(x), tel que x € A} C F.

Definition (Image réciproque)

Soit BC F et f : E — F, I'image réciproque de A par f est |I'ensemble :

f~1(B) = {x € Etel quef(x) € B} C E.
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Image directe et image réciproque

Exemple

: £(x) :N2X i1 Soit A= {0,1,2}, alors
f(A) = {f(x) tel que x € A} = {f(0),7(1),f(2)} ={1,3,5}.

Soit B = {5}, alors

f1(B)y={x€ Etqf(x)eB}={x€Etqf(x)=5}={2}.

Soit I'application f :

Propriété
Soit f : E — F une application. Soient A1 et Ay deux parties de E. Alors,
Q f(A1UA2) = (A1) UF(A2).
Q@ (A1 A2) C (A1) N F(A2).
Q@ A C A= (A1) C f(A2).
Q A C FY(f(AL)).
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Image directe et image réciproque

Propriété

Soient By et B, deux parties de F.
Q FI(BUB) =fYB)UF(By).
Q FYBiNB) =f1B)NFB).
Q@ By C By = f1(Bl) C f(By).
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Definition

Soit f : E — F une application. On dit que f est injective (ou une
injection) si tout élément de F admet au plus un antécédent, c'est-a-dire,
Vx,x' € E: f(x)=f(x')= x=x".0Ou

dx,x' € E: x #x' = f(x) # f(xX').

a) l'application FiN =N est injective car :
PP —2n 41 / '
VnneE: f(ny=f(n)=—=2n+1=2""+1=2n=2"" —
n=n.
, . .. g&:R =R . ]
b) I'application x s Bx 43 est injective car :
Vx,x' € E: f(x)=f(xX')=5x+3=5x"4+43=5x =5x' =
/
x=x".
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Definition
Soit f : E — F une application. On dit que f est surjective (ou une
surjection) si tout élément de F admet un antécédent, c’est-a-dire,

VyeF,3xeE: f(x)=y.

Exemple

f:N —N
n —2n+1
qu'elle est surjective c'est-a-dire

—1
VyeN,dneN: f(n)=y=2n+1=y :>n:yT. Ce qui
est absurde car ce dernier n'est pas forcément entier.
g:R —R
X — 5x 4+ 3
-3
VyeR, IxeR:g(x)=y :>5x+3:y2x:y7€R.

f n'est pas surjective, en effet si on suppose

g est surjective car :
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Definition

Soitf : E — F une application. On dit que f est bijective (ou une
bijection) si f est a la fois surjective et injective, c'est-a-dire,
VyeF,3'xeE:f(x)=y.

En d'autre termes tout élément de F a un unique antécédent par f.

f: N—N
n—2n—+1

a)

b) L'application g précédemment définie est bijective.

f n'est pas bijective car elle n'est pas surjective.
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La composition d'application

Definition

Soient E, F, G trois ensembles et f, g deux applications telles que :
f:E—F g:F — G.On peut déduire une application de E dans G
notée g o f appelée application composée de f et g par

Vx € E, gof(x)=g(f(x)).

f: R>R,

. gof: R—=R
x—=x2+1 X = /X, x = Vx?+ 1.

g: Ry —R

Soit alors
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La composition d'application

Soit f : E — F et g: F — G deux applications.

@ La composée de deux injections est une injection, c'est-a-dire, (Si f et
g sont injectives, alors g o f est injective).

@ La composée de deux surjections est une surjection, c'est-a-dire, (Si f
et g sont surjectives, alors g o f est surjective).

@ La composée de deux bijections est une bijection, c'est-a-dire, (Si f et
g sont bijectives, g o f est bijective).

Q@ Sif et g sont bijectives. Alors (go )™t =flog™tl
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La composition d'application

Démonstration :

@ Supposons que f et g sont injectives, montrons que g o f est injective.
V x1, xo0 € E, (gof)(x1) =gof(x2) puisque g est injective on aura :
g(f(x1)) = g(f(x2)) = f(x1) = f(x2). Or f est injective ainsi on en
déduit I'implication : (g o f)(x1) = (g o f)(x2) = x1 = x2, ce qui
montre alors que g o f est injective.

@ (Exercice a faire)

© (Exercice a faire)

Q (Exercice a faire)
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La composition d'application

Proposition

© Sigof estinjective, alors f est injective.
@ Sigof estsurjective, alors f est surjective.

© Sigof est bijective, alors f est injective et g est surjective.

Remarque

Lorsqu’une application f est bijective cela veut dire que I'application
réciproque f~1 existe. De plus, f~' est aussi bijective de F sur E et
(FH1=f.

Proposition

Si f : E — F est une bijection, alors flof=IddeEetfof1=1Idde
F.
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Nombres complexes )
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Nombres complexes : forme algébrique

Definition (R? )

L'ensemble R? est I'ensemble des couples (a, b) de nombres réels.
Deux éléments (a, b) et (&', b') de R? sont égaux si et seulement si a = a’
et b="0.

Maintenant que nous avons défini R? essayons de mettre cet ensemble en
relation avec les complexes.

Definition (Nombres complexes )

L’ensemble des nombres complexes, noté C est I'ensemble R? muni d'une
addition et d'une multiplication définies pour tous (a, b) et (&', b') € R?
par

Q (a,b)+(d,b)=(a+4d,b+ 1),

Q (a,b)(d,b') = (aa’ — bb',ab’ + a'b).
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Nombres complexes : forme algébrique

Notation (Convention pour les réels )

@ Pour tout x € R, nous conviendrons d’identifier le nombre complexe
(x,0) et le réel x.

@ L’ensemble des réels est donc identifié a I'ensemble des nombres
complexes de la forme (x,0) ou x € R.

Notation (Imaginaire )

Le nombre complexe (0, 1) est noté i.
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Nombres complexes : forme algébrique

En conséquence, nous avons alors la possibilité d'écrire :
@ pour tout (a, b) € R?,
(a, b) = (a,0) + (0, b),
@ pour tout b € R,
i(b,0) = (0,1)(b,0) = (0, b),
© Et finalement nous pouvons écrire pour tout (a, b) € R?,
(a,b) =a+ib.
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Partie réelle, partie imaginaire et conjugué

Propriété (Egalité de deux complexes )

Soient a,a’, b, b’ des réels quelconques, nous avons les deux propriétés
suivantes

Q@ a+ib=0 équivaut aa=0et b=0,
Q@ at+ib=a +ib équivaut aa=a etb=1"b.

Definition (Partie réelle partie imaginaire )

Soit z € C un nombre complexe. |l existe un couple unique (a, b) € R? tel
que z = a+ ib.
© a -+ ib est appelée forme algébrique du complexe z,

@ a est appelée partie réelle de z, on la note Re(z),

© b est appelée partie imaginaire de z, on la note Im(z).
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Partie réelle, partie imaginaire et conjugué

Nous noterons I'ensemble des imaginaires purs iR.

Propriété (Réel et Imaginaire pur )

@ Un nombre complexe est réel lorsque sa partie imaginaire pure est
nulle, c’est a dire : z € R si et seulement si Im(z) = 0.

@ Un nombre complexe est imaginaire pur lorsque sa partie réelle est
nulle, c’est a dire z € iR si et seulement si Re(z) = 0.

Propriété (Addition et produit : forme algébrique)

Soient a,a’, b, b’ des réels quelconques, nous avons les deux propriétés
suivantes

@ Somme :(a+ib)+ (a+ib)=(a+a)+i(b+b),

@ Produit : (a+ ib)(a' + ib') = (aa’ — bb’) + i(ab’ + a'b),

© Carrédei :i® = —1. Le nombre i ne peut pas étre un réel (c’est un
nombre négatif égal a un carré).
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Definition (Conjugué )

Soit z € C un nombre complexe de notation algébrique z = a + ib, avec
a, b € R. Nous appelons conjugué de z le nombre complexe a — ib, que
nous noterons z.

Nous avons quelques propriétés pour les conjugués.

Propriété (Propriétés du conjugué)

Soit z € C,
Q e conjugué de Z est, (Z) = z,
1 1
Q Re(z) = E(z +Z) et Im(z) = 2—(2 -Z),
i
© z € R siet seulement si z = Z,

Q@ z < iR si et seulement si z = —Z.

Ainsi, deux nombres complexes z et z’ sont égaux si et seulement si
Re(z) = Re(Z’) et Im(z) = Im(Z').
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Calculs sur les complexes

Nous avons plusieurs propriétés supplémentaires sur I'addition et la
multiplication des complexes.

Propriété (Propriétés de |'addition)

Soient z,Z', z" € C, I'addition dans C est
@ Commutative : z+ 7z =7z + z,
@ Associative : z+ (2 +2") = (z+ 2) + 2,
© 0 est I'élément neutre : z+ 0 = z,

Q@ Symétrique : tout complexe z admet un symétrique dans C, c'est —z
(I'opposé de z), sous forme algébrique, si z = a+ ib, avec a,b € R,
alors —z = —a — ib.
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Calculs sur les complexes

Propriété (Propriétés de la multiplication)
Soient z, 7', 7" € C, la multiplication dans C est
@ Commutative : zz/ = 7'z,
@ Associative : z(Z'2") = (z2')Z",
© 1 est I'élément neutre : z X 1 = z,
Q Pour tout nombre complexe z # 0, il existe z/ € C, z/ # 0 tel que
zz' = 1. Nous notons ce nombre = ou encore z~1, et c'est I'inverse de

z
z. Sous forme algébrique, pour z = a+ ib # 0, alors
1 1 a—ib

z atib a@+b2
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Calculs sur les complexes

Propriété (Sommes et produits de conjugués)

Soient z, 7z € C,
Qz+zZ=z+7,

Q zZ=z7,

o

o

o

=

S

N\
N

o
I/~
N\| N
~

Il
NL| NI

Propriété (Sommes des n+ 1 premiéres puissances de z)

Soit z € C, avec z # 1, alors

1
14z4+224+...+2"=

\

119 /184
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Nombres complexes : forme géométrique

Dans toute cette section nous allons travailler dans un plan orienté. Nous
ne pouvons pas prendre (O, _/>,7>) étant donné que désormais, i est choisi
comme le nombre imaginaire pur dont le carré vaut —1. Par conséquent,
nous allons travailler dans le plan orthonormal direct (O, &, &), ol
0(0,0) est I'origine, et les vecteurs e et & sont orthogonaux et de norme
1.

Par conséquent, pour tous réels a et b, M(a, b) désignera le point M de

coordonnées (a, b).

Definition (Image et affixe )

@ Soit z € C, soient a,b € R, avec a = Re(z) et b = Im(z), le point
M(a, b) est appelé I'image de z.

@ Soit M(a, b) un point du plan, le nombre complexe z = a + ib est
appelé I'affixe de M. On pourra noter quelques fois aff(M) I'affixe du
point M.
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Nombres complexes : forme géométrique

Definition (Image et affixe )

@ Soit z € C, soient a, b € R, avec a = Re(z) et b = Im(z), le vecteur
ae; + be} est I'image vectorielle de z.
@ Soit 7 un vecteur du plan de coordonnées (a, b) dans la base

(e_1>7 ?5) Le nombre complexe a + ib est appelé I'affixe du vecteur .
On pourra également noter aff( ) I'affixe du vecteur u.

Par conséquent, pour tout point M du plan, aff(M):aff(O—l\}l).
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Interprétation géométrique

Commencons par la somme de deux complexes :

Propriété (Affixe de la somme de vecteurs)

Soient U et V deux vecteurs du plan. Alors

af{ 0 + V) =aff{ 0 )+ af{ V).

Propriété (Affixe et points)

Soient A et B deux points du plan. Alors I'affixe du vecteur /@ est donnée
par: af{ AB) —aff( B)-aff(A).

v

Propriété (Translation et somme)

Soit p € C un complexe. Soit U un vecteur d’affixe p. La translation de
vecteur U d'un point M du plan d’affixe z, est un point M’ du plan
d'affixe /. = z + p.
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Interprétation géométrique

Propriété (Réflexion et conjugué)

La réflexion d’axe (O, ?f) d’un point M du plan d’affixe z est le point M’
du plan d’affixe z.

En d’autres termes, |'image par la réflexion d’axe (O, ef) de M(a, b) est
M(a, —b).
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Module d'un nombre complexe

—
Soit z € C, d'image M. Le module de z, noté |z|, est la norme ||[OM||.

Propriété

© Soient z et Z € C deux complexes, d'images respectives M et M’
alors |z — Z'| = ||MM'||.

@ Pour tout complexe z = a+ ib, ol a et b sont réels,

z| =+va%+ b2.

Q |z|> =zZ ou encore |z| = VzZ; |z| = |Zz| = | - Z| = | — z|.
1 1 / /
Q |zZ/| = |z||Z/| etsiz#0 alors|=| = — et |Z—|:B.
z |z z |7
Q |z"|=|z|" oune€ N et méme Z si z # 0.

Q |z| =0 si et seulement si z = 0.
Q |Re(2)| < |z| et |Im(2)| < |z].
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Interprétation géométrique du module

Propriété (Inégalité triangulaire)

Soient z et Z' deux complexes, nous avons

2+ 2| < |z| +|Z].

Propriété (Cercles, disques)

Soit a un nombre complexe, soit r > 0 un réel. Notons A I'image de a
alors nous avons :

Q |z — a| = r décrit le cercle de centre A et de rayon r,

@ |z — a| < r le disque fermé (contenant le bord) de centre A et de
rayon r,

© |z — a| < r le disque ouvert (sans les bord) de centre A et de rayon r.

Remarquons que si a =0, alors A= O (l'origine) et me cercles et disques
sont centrés en O.
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Racines carrées et équations du second degré

Soit z € C, une racine carrée de z est un nombre complexe w tel que

w2:z.

Proposition (Racine carrée)

Soient z un nombre complexe quelconque, alors z admet deux racines
carrées complexes w et —w.

Attention : contrairement au cas réel, qui nous dit que si x € R4 est un
réel positif ou nul, nous avons deux racines de ce nombre qui sont /x et
—4/x, mais nous privilégions quand méme le fait de dire que /x est la
racine réelle de x.

Pour les complexes nous ne privilégions pas une racine par rapport a une
autre parce que z se trouve n'importe ol dans le plan. Parler de complexe
positif n'a pas de sens. Donc on ne privilégie pas de racine en particulier,
et on parle alors de w comme une racine de z.
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Equation du second degré coef. complexes

Proposition (Equation du second degré coef. complexes)

L 'équation du second degré az> + bz +c =0, avec a,b et c € C, et en
plus a # 0 posséde deux solutions complexes z et z» (qui peuvent étre
confondues).
Si I'on pose A = b?> — 4ac € C le discriminant, et § une racine carrée de
A\, alors les solutions sont

_ —b+9

ot —b—946
Z1=—— etz =——.
! 2a 2 2a

Si on s'autorisait a écrire § = v/A nous aurions le méme réultat que I'on
connait quand a, b et ¢ sont réels (voir ci-dessous). Mais on ne le fait pas.
Attention : La difficulté ici c'est le calcul de ¢ sachant qu'on a pas le
droit d'écrire “y/nombre complexe".
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Equation du second degré coef. complexes

Une méthode classique pour calculer la racine carrée d'un nombre
complexe, comme on souhaite le faire pour J, consiste a :
o Ecrire A sous la forme A = a+ ib
o Ecrire § sous la forme § = x + iy
@ Chercher § revient a résoudre d'une part 62 = A et d'autre part
|62| = |A| ce qui revient A faire (x + iy)2 = a+ ib et |§?] = |A|
c'est-a-dire poser le systeme

x2—y? = a
2xy = b

x> +y?= a2+ b2

Exemple (Prenons z = 3 + 4i)

|z| = V32 +42 =5 Alors x = /252 =2 et y = /253 = 1. D'oul les deux
racinesde z=3+4isontd =2+ietd=—-2—|
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Si par contre les coefficients du polynéme sont réels, nous avons

Proposition (Equation du second degré coef. réels)

L 'équation du second degré az> + bz + c =0, avec a, b et c € R, et en
plus a # 0. Alors le discriminant A = b? — 4ac est réel et nous avons trois
cas :

. . . —b
© si A =0, nous avons une racine double réelle qui vaut —,
a

—b+VA  —b—VA
et ,
2a 2a
si A < 0, nous avons deux solutions complexes (et non réelles)

—b+ivA —b—ivA
et ,
2a 2a

©

si A > 0, nous avons deux solutions réelles

©
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Théoreme fondamental de I'algebre

Theorem (d'Alembert-Gauss)

Soit P(z) = apz" + an_12""' + ... + a1z + ag un polynéme a coefficients
complexes et de degré n.

Alors I'équation P(z) = 0 admet exactement n solutions complexes
comptées avec leur multiplicité (racines doubles, racines triples, etc.
suivant les cas).

Ceci veut dire qu'il existe z1, zp, ... ,z,, N nombres complexes (parfois
confondus) tels que
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Argument et trigonométrie

Considérons le nombre complexe z = x + jy. Supposons que son module
|z| = 1, alors nous avons x? + y2 = 1. Et donc, comme vu précédemment,
le point M(x,y) est sur le cercle centré en O et de rayon 1. Nous appelons
ce cercle, le cercle unité.

Par définition du cosinus et du sinus, I'abscisse (ou partie réelle de z), x
est notée cos(f) et I'ordonnée (ou partie imaginaire de z), y est notée
sin(f), ou 6 est une mesure de I'angle entre I'axe des réels (abscisses) et le

—
vecteur OM.

Definition (Argument)

Pour tout complexe z € C non nul, un nombre 6 € R et tel que

z = |z|(cos(0) + isin(0)) est appelé argument de z et on le note

0 = arg(z).

Cet argument est défini modulo 27 (c'est a dire a 2km pres, k € Z).
Nous pouvons imposer quelques fois a cet argument d'étre unique si on
rajoute la condition 6 €] — 7, ].
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Argument et trigonométrie

En conséquence : deux nombres réels 6 et ' sont arguments d'un méme
complexe z si et seulement s'il existe un entier relatif k € Z tel que
0 = 0’ + 2km. On écrit cette derniére égalité

6’ =6 mod (27), que nous lisons "6’ est congru a 6 modulo 27"

D’autre part, nous avons la relation entre les arguments et les angles :
@ pour tout nombre z € C*, d'image M, I'argument de z est |'angle
= AN :
(ei, OM) que I'on note
=
arg(z) = (ef, OM).
@ D'autre part, étant donné z € C*, on considere M d’affixe z. Toute
mesure 6 de I'angle (e_1>, OM) est appelé argument de z et noté
arg(z).
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Argument et trigonométrie

Nous avons les propriétés suivantes

Propriété (Propriétés des arguments)

Soient z et z/ deux nombres complexes non nuls. Nous avons
Q arg(zZ') = arg(z) + arg(2’) (mod 2r),
@ arg(z") = narg(z) (mod 2m),

(s arg(%) = —arg(z) (mod 27),

o arg(z—/) = arg(z’) — arg(z) (mod 27) ,

Q arg(z) = —arg(z) (mod 2m).

V.

Une conséquence directe de la propriété 4 est que si I'on a deux complexes
/

. . Z /
non nuls z et z’ alors arg(z) = arg(z’) si et seulement si — est un réel

z
strictement positif. car les nombres complexes d’argument O sont les réels
strictement positifs.
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Formule de Moivre et notation exponentielle

Propriété (Formule de Moivre)

Pour tout réel 0 et tout entier n, nous avons

(cos(6)) + isin(8))" = cos(nB) + isin(nd).

Nous définissons alors la notation exponentielle

Definition (Notation exponentielle )

Nous définissons |'exponentielle complexe pour tout réel 6 par

e’ = cos(0) + isin(6).

En conséquence, tout nombre complexe s'écrit de la facon suivante
z = pe?,
ol p = |z| est le module de z et § = arg(z) est un argument de z. C'est ce

que I'on appelle la forme trigonométrique de z.
Remarquons que si |z| = 1, alors nous avons z = e/’
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Formule de Moivre et notation exponentielle

Propriété (Formule de Moivre)

Pour tout réel 0 et tout entier n, nous avons

(cos(6)) + isin(8))" = cos(nB) + isin(nd).

Nous définissons alors la notation exponentielle

Definition (Notation exponentielle)

Nous définissons |'exponentielle complexe pour tout réel 6 par

e’ = cos(0) + isin(6).

En conséquence, tout nombre complexe s'écrit de la facon suivante
z = pe?,
ol p = |z| est le module de z et § = arg(z) est un argument de z. C'est ce

que I'on appelle la forme trigonométrique de z.
Remarquons que si |z| = 1, alors nous avons z = e/’
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Formule de Moivre et notation exponentielle

Nous avons alors les propriétés suivantes

Propriété (Propriétés exponentielles de complexes)

Soient z = pe'? et 2 = p'e!? deux nombres complexes non nuls, nous
avons
Q z/ = pp/eieeie' _ pplei(ﬂ—i—ﬂ’)
Q "= (peiG)n _ pn(eiﬁ)n — pneinﬁl
z pe/9 p
Q z=pe ",
@ Formule de Moivre : (e9)" = e (le module est ici égal 4 1),

Q pe'? = p'e? siet seulement sip = p et § = 6’ (mod 2r).

7

En conséquence,

e =1 si et seulement s'il existe k € Z, tel que § = 2k.
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Formule de Moivre et notation exponentielle

Donnons maintenant quelques propriétés géométriques sur les arguments,
les angles et I'orthogonalité

Propriété (Angle formé par trois points)

Etant donnés trois points A, B et C dans le plan complexe d’affixe
respective a, b et ¢, avec A+ C et B # C, on a alors

(EZ, C?) = arg (C_b>

c—a

Propriété (Alignement)

Etant donnés trois points A, B et C dans le plan complexe d’affixe
respective a, b et ¢, avec A# C et B # C, on a alors :

. . [ C 2 i
“A, B et C sont alignés si et seulement si (> est réel”.
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Formule de Moivre et notation exponentielle

Propriété (Perpendiculaire)

Etant donnés trois points A, B et C dans le plan complexe d’affixe
respective a, b et ¢, avec A+# C et B # C, on a alors

“les droites (CA) et (CB) sont perpendiculaires si et seulement si

c— . . .
< est imaginaire pur .
c—a

Rappelons ici quelques angles connus

; s s T T
Mesure de I'angle | 0 5 2 3 5|7

Valeur du cosinus 1 ? \f % 0| -1

1 | V2] V3

Valeur du si 0| = — | — |1 0
aleur du sinus % > 5

Valeur de la tangente | 0 | — 1 V3 | x 0

¢ 3

Léon Matar Tine Algébre 1 Info (MAT1074L) L1 Maths-Info 2( Automne 2025 138 /184



Racines niémes d'un complexe

Nous avons vu un peu plus haut les racines carrées d'un nombre complexe.
Allons plus loin ici en étudiant les racines niemes.

Definition (Racine nieme )

Soient z € C un nombre complexe, et n € N\ {0, 1} (c'est a dire que
n # 0 et 1). Une racine niéme de z est un nombre complexe w tel que

= Z.

Propriété (Racines nieme d'un complexe)

Tout nombre complexe z € C non nul, qui s'écrit z = pe'’ admet
exactement n racines niémes, ce sont les nombres wy définis pour tout
k=0,...,n—1 par

Remarquons que si I'on pose wg = Weie/” et & = e2™/" alors wy = wodk.
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Racines niémes d'un complexe

Un cas particulier est la propriété suivante :

Propriété (Racines niéme de 1)

Les n racines niémes de 1 sont wy = e*k™/" k =10,...,n—1.
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Quelques applications trigonométriques

Rappelons les formules de I'addition de sinus et cosinus.

Propriété (Formules d'addition)

Pour tous réels a et b nous avons
cos(a+ b) = cos(a)cos(b) — sin(a)sin(b),
sin(a+ b) = sin(a)cos(b) + sin(b) cos(a),
cos(a— b) = cos(a)cos(b)+ sin(a)sin(b),
sin(a— b) = sin(a)cos(b) — sin(b) cos(a).

Pour la tangente nous avons

Propriété (Formule de la tangente)

Pour tous réels a #+ g mod(r), b # g mod(m) et a+ b # % mod(m) nous
avons

tan(a) + tan(b)

1 —tan(a)tan(b)’

tan(a+ b) =
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Formules de duplication de I'argument

Propriété (Formules de duplication)

Pour tous réels a nous avons

cos(2a) = cos?(a) —sin?(a) = 2cos?(a) — 1 =1 — 2sin?(a),
sin(2a) = 2sin(a)cos(a),
tan(2a) 12_:3;1(;()3), a# mmod (), et a# %mod (m/2)

\

Propriété (Formules d'Euler)

Pour tout réel 0, nous avons

eif 1 =it ol _ o—if
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Formules de duplication de I'argument

Il'y a quelques applications aux formules d'Euler et notamment les
formules de linéarisation

Propriété (Formules de linéarisation)

Pour tous réels a et b nous avons
cos(a) cos(b) = (cos(a-+ b)+ cos(a— b)) /2,
sin(a)sin(b) = (cos(a— b) —cos(a+ b)) /2,
sin(a)cos(b) = (sin(a+ b)+sin(a— b)) /2,
sin(a)cos(a) = sin(2a)/2,
cos2(3) _ 1+ czs(2a)7
i) 1 cos(2a) “2’5(2"”).
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Formules de duplication de I'argument

et si on pose p = a+ b et g = a — b, nous obtenons

Propriété (Formules de conversion de somme en produit)

Pour tous réels p et q nous avons

cos(p) + cos(q) = 2cos(p;— q)cos(p; q),
cos(p) —cos(q) = —2sin(p—;q)sin(p;q),
sin(p) +sin(q) = 2sin(p—£q)cos(p;q),
. . p—q pP+4q

sin(p) —sin(q) = 2cos( g ) cos( 5 )s
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Nombres complexes en géométrie

Nous considérons le plan rapporté au repére orthonormal (O, e_1>,?2>). Tout
point M de coordonnées (x, y) peut étre repéré par son affixe z = x + iy.

Propriété (Homothétie)

L’homothétie de centre A, tel que aff(A)= zy, et de rapport k € R\{0, 1}
est I'application du plan dans lui-méme qui a tout point M d’affixe z
associe le point M’ d’affixe z' tel que :

7/ — 7y = k(z — z9) ou aussi z/ = kz + (1 — k)z.

Propriété (Homothétie de rapport a)

L’application z — z' = az+ b ol a € R\{0,1}, b € C représente une
homothétie de rapport a.
Si a =1 nous avons une translation z +— z/ = z+ b, ol b = z.

Conséquence : la réciproque d'une homothétie h, représentée par
z — az + b est une homothétie de méme centre.
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Nombres complexes en géométrie

Propriété (Composée d'homothéties)

Soient f et g deux homothéties (ou translations) du plan, représentées
respectivement par

p:zraz+betvy:z— az+ b, avec ad' # 0.

La composée g o f est représentée par

pop:zw d(az+b)+ b =adz+ab+ b
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Rotation, interprétation de z +— az + b, avec |a| =1

Propriété (Rotation)

Etant donné un point A d’affixe zy, la rotation de centre A et d’angle «,
est I'application qui transforme un point M d’affixe z en M’ d’affixe z/
telle que

7 — 2= (z— z)e™

Conséquence : |'application z — az + b, avec |a| = 1 s'interpréte
géométriquement comme

© une rotation d'angle oo =arg(a), lorsque a # 1,
@ la translation de vecteur o/, avec b :aff(ﬁ) lorsque a =1

La réciproque d'une rotation de centre A et d'angle « est la rotation de
méme centre A et d'angle —a.
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Chapitre 6 :Arithmétique )
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Le but de ce chapitre est de formaliser ce que nous faisons (plus ou moins
naturellement) depuis I'école primaire sans trop vraiment se poser de
questions : que ce soient la manipulation des nombres premiers, les
divisions euclidiennes, le calcul des PPCM (Plus Petit Commun Multiple)
et des PGCD (Plus Grand Commun Diviseur), des calculs qui nous
semblent aussi vieux que le monde, et qui sont pourtant d'une grande

modernité.
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Nombres premiers

Commencons par les nombres premiers, qui conservent encore beaucoup de
secrets pour les chercheurs du monde entier et dont I'une des applications
dans la vie quotidienne est la cryptographie.

Definition (Multiple)

Nous disons qu'un nombre entier relatif a € Z est un multiple de b € Z
(ou que b est un diviseur de a) s'il existe k € Z tel que

a = kb.

© 6 est multiple de 3 car6 =2 x 3, k = 2.

@ 0 est multiple de tout entier n, car 0 = 0 x n, pour tout n € N, et
k=0.

© Tout nombre entier est un multiple de 1 et de lui-méme : n =1 X n,
pour tout n € N.
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Nombres premiers

Definition (Nombre premier)

Nous disons qu'un nombre entier naturel p > 2 est un nombre premier
lorsqu’il possede comme seuls diviseurs positifs 1 et lui-méme.

Théoreme (Entiers et nombres premiers)

Tout nombre entier n > 2 est le produit de nombres premiers.

Théoreme (Théoreme d'Euclide)

Il existe une infinité de nombres premiers.
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Nombres premiers

Remarque (Pour ceux qui sont intéressés)

Il existe plusieurs fagon de les trouver (avec plus ou moins d’efficacité) :
© /e crible d’Eratosthéne
@ e crible de Sundaram,

et plusieurs tests permettant de voir si un nombre donné est premier ou
non

© /e test probabiliste de primalité,

@ /e test de primalité de Fermat,

© /e test de primalité de Solovay-Strassen,
@ /e test de primalité de Miller-Rabin,

@ Le test de primalité AKS (Agrawal-Kayal-Saxena ou test cyclotomique
AKS)...

v
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Division Euclidienne

Théoreme (Division euclidienne)

Soient a € Z et b € N* (b entier > 1).Alors il existe un unique couple
(g,r) € Z x N tel que

a = bg+r,

0 < r<hb.

C'est ce que nous appelons la division euclidienne de a par b.

alb dividende | diviseur
ou encore -
r|q reste | quotient

Remarque

r = 0 est équivalent a dire que b divise a (ou que a est multiple de b).
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PGCD-PPCM

Definition (pgcd)

Soient a, b € Z deux entiers non tous les deux nuls.

Le plus grand entier qui divise a la fois a et b s'appelle le plus grand
commun diviseur de a et b et se note pged(a, b).

Exemple

| \

© Pour tous k et a € Z, pged(a, ka)= a.
@ Pour tout a € Z, pged(a,0)= a.
@ Pour tout a € Z, pged(a,1)=1.

Definition (ppcm)
Soient a, b € N*.

Le plus petit entier multiple a la fois de a et de b s’appelle le plus petit
commun multiple de a et b et se note ppcm(a, b)
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PGCD-PPCM

Théoreme (Existence et unicité du ppcm)

Soient a € N* et b € N* deux entiers, alors il existe un unique M € N* tel
que pour tous m € N¥,

m est multiple de a et de b < m est multiple de M.

Ce nombre M =ppcm(a, b).

Théoreme (Existence et unicité du pged)

Soient a € N* et b € N* deux entiers, alors il existe un unique D € N* tel
que pour tous d € N¥,

d est divise a et b < d divise M.

Ce nombre D =pgcd(a, b).
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Algorithme d'Euclide

Proposition (Egalité de pgcd)

Soient a, b € N*. Soient (q,r) € Z x N tels que a = bq + r, alors

pgcd(a, b)=pgcd(b, r).

Ceci nous permet de trouver le pged entre deux nombres entiers
strictement positifs, en utilisant I'algorithme d'Euclide.

Algorithme d’Euclide :

Nous souhaitons calculer le pged de a et b € N*.

Nous supposons que a > b (sinon nous faisons jouer le réle de b a a et
inversement).

Nous calculons les divisions euclidiennes successives.

Le pgcd sera le dernier reste non nul!
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Algorithme d'Euclide

Voici comment nous procédons.
© La division de a par b nous donne |'existence de g1 et r; tels que
a = bg1 + r1. Nous avons alors pged(a, b)=pgcd(b, ).
Nous avons alors deux sous cas.
® Sirp =0 alors pged(a, b)=b.
@ Sinon, on continue 3 I'étape suivante.
@ La division de b par r; nous donne |'existence de g, et r» tels que
b = rig2 + r2. Nous avons alors pged(b, r1)=pgcd(ri, ).
Nous avons alors deux sous cas.
@ Sir, =0 alors pged(b, rn)=nr.
@ Sinon, on continue a |'étape suivante.
© La division de r; par r» nous donne |'existence de g» et r3 tels que
ri = raqs + r3. Nous avons alors pged(r1, rn)=pgcd(r2, r3).

et nous continuons jusqu'a arriver au reste nul, c’'est a dire
@ La division de rx_j par ri nous donne |'existence de qx+1 et rx41 =0
tels que rg_1 = rkqe4+1 + 0.
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Algorithme d'Euclide

Nous avons alors

pgcd(a, b)=pgcd(rk—1, r«)=pgcd(rk,0)= ry.

Remarque

A chaque étape on sait que le reste est plus petit que le quotient, et donc
que pour tout i > 1, nous avons 0 < ri11 < ri. Nous sommes donc siirs

d’obtenir un reste nul un moment donné (fini, car r; € N* est un nombre
fini).
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Algorithme d'Euclide

183 =117 x 1 + 66
117 =66 x 1451
66 =51 x 1+ 15

51 =15x3+6
15=6x%x2+3
6=3%x2+0

Le dernier reste non nul est 3, donc :

PGCD(183,117) = 3
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Algorithme d'Euclide

Definition (Nombres premiers entre eux)

Deux nombres distincts a et b € N* sont premiers entre eux si et
seulement si

pgcd(a, b)=1.

Remarque

Si deux entier ne sont pas premiers entre eux, nous pouvons nous y
ramener en divisant par leur pgcd.
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Identité et théoréme de Bézout

Théoreme (Identité de Bézout)
Soient a et b € N. Alors il existe u et v € Z tels que

au + bv =pgcd(a, b).

Ces entiers relatifs u et v ne sont pas uniques. Ils sont appelés
coefficients de Bézout.

Remarque

Les coefficients de Bézout u et v s’obtiennent en remontant ['algorithme
d’Euclide.

Il faut pour cela isoler le dernier reste non nul de I'algorithme. Puis
remplacer a chaque fois la valeur du reste de |'étape précédente.
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Identité et théoréme de Bézout

Sia=600 et b =124. L’algorithme d’Euclide nous donne :

i— = 124 x 4 + 104,
ji— 124 = 104 x 1 + ,
jii— 104 = x 5 + 4
iv— = 4 x 5 4+ 0.

Donc pged(600,124 )= 4.

Ensuite nous remontons cet algorithme : en partant de

iii- 4 = 104 — 20 x 5.

Puis nous remplacons 20 par sa valeur trouvée en ['isolant dans ii- :

ii-4 = 104 — (124 — 104 x 1) x 5. Ce qui nous donne :

ii-4 = 104 x 6 + 124 x (-5).

Nous remplacons ensuite 104 par sa valeur trouvée en l'isolant dans i- :

i-4 = (600 — 124 x 4) x 6 + 124 x (—5). Ce qui au final nous donne :
4 = (600 x 6+ 124 x (—29)
et nous avons u =6 et v = —29.

Léon Matar Tine Algébre 1 Info (MAT1074L) L1 Maths-Info 2( Automne 2025 162 /184



Identité et théoréme de Bézout

Théoreme (Théoreme de Bézout)

Soient a et b € N. Ces entiers a et b sont premiers entre eux si et
seulement s'il existe u et v € Z tels que

au -+ bv =1.
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Théoreme de Gauss et décomposition en facteurs premiers

Théoreme (Théoreme de Gauss)

Soient a, b et ¢ € N*. Si a divise bc et si a et ¢ sont premiers entre eux,
alors a divise b.

Une des applications de ce théoreme est la résolution des équations
diophantiennes.

Proposition (Equations diophantiennes)

Soient a, b, et c € Z. Considérons I'équation
ax + by = c,

@ Cette équation posséde des solutions (x,y) € Z? si et seulement si le
pgcd(a, b) divise c.
@ Si pgcd(a, b) divise c, alors il existe une infinité de solutions entiéres

qui sont de la forme (xp + ak, yo + Bk) ol xp, yo, v et 5 € Z et k
parcourt Z.

Léon Matar Tine Algébre 1 Info (MAT1074L) L1 Maths-Info 2( Automne 2025 164 /184



Théoreme de Gauss et décomposition en facteurs premiers

Une application du théoréme de Gauss est la proposition suivante :

Proposition (Nombres premiers et coefficients binomiaux)

Pour tout nombre premier p et pour tout k € N tel que 1 < k < p — 1,

.. p\ p!
alors p divise ( I > = W

Théoreme (Théoreme fondamental de I'arithmétique)

Pour tout entier naturel n > 2, il existe un unique k-uplet (p1, p2, ..., px)de
nombres premiers vérifiant

p1 < p2 <..< Pk

et un unique k-uplet (a1, ag, ..., k) d’entier naturels non nuls tels que

— ™ a2 (07
n=p;t x py? X ..xpc*
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Théoreme de Gauss et décomposition en facteurs premiers

Remarque

Une des principales raisons pour laquelle nous choisissons de dire que 1
n'est pas un nombre premier est que sinon il n'y aurait pas unicité de cette
décomposition.

Nous aurions par exemple
24=23x3=1x28x3=12x23x3=13x23x3=..
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Congruence

Definition (Congruence)

Soient a et b € Z, et n € N*. Nous disons que a est congru a b modulo n
si @ — b est un multiple de n. On écrira

a = b [n] ou a = b(n).

Remarque

D’apres la définition, nous avons donc

a=b[n] & ilexiste k € Z tel que a= b+ kn.
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Congruence

Proposition (Propriétés des congruences)

Soient a, b, c € Z et n € N*. Alors nous avons les propriétés suivantes :
Q a=a|n| (= est réflexive),
@ sia= b |[n] alors b = a [n] (= est symétrique),

© sia=b[n] et b= c [n] alors a = c [n] (= est transitive).
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Congruence

Nous avons une autre proposition sur la somme et le produit :

Proposition (Congruence, somme et produit)

Soient a, b, c € Z et n € N*. Alors nous avons les propriétés suivantes :
Q@ a=b[n alorsa+c=b+c|n],

@ sia= b |[n] alors ac = bc [n] .

A\

Théoreme (Congruence et puissance)

Soient a, b, c € Z et n et p € N*. Nous avons :

si a = b [n] alors aP = bP [n]

v
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Bases

Théoreme (Numération en base b)

Soit b un entier, b > 2. Tout entier non nul x peut s'écrire de maniére
unique sous la forme

X =aph"+ ap_1b" 1+ ...+ a1b + ag,

ol n est un entier, ag, ai,..., a, sont des entier appartenant a [0, b — 1] et

&)y == 0.

Nous disons alors que x = 3pa1...an? est I'écriture de x en base b.
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Remarque

Quelques bases classiques :

systéme binaire (base 2) : {0, 1},

systéme quinaire (base 5) : {0,1,2,3,4},

systéme octal (base 8) : {0,1,2,3,4,5,6,7},
systéme décimal (base 10) : {0,1,2,3,4,5,6,7,8,9},

©0 00
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Bases

La numération usuelle est la numération décimale, en base 10. Plus

généralement, on peut représenter tout nombre dans une base b > 2. Les
chiffres autorisés sont :

0,1,2,...,b—1.
Représentation en base b
Un nombre écrit
(akak_l e alao)b
signifie :
akbk + ak_lbk_l + -+ a1b+ ag.

(231)5 =2-5°+3-5+ 1 = 66.
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Bases : Conversion base b vers base 10

On développe selon les puissances de b.

(10101); =1-2*+1-22 + 1 =21.
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Bases : Conversion base 10 vers base b

On utilise la méthode des divisions successives : divisions par b et
récupération des restes, lus de bas en haut.

35 = (100011)s.
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Bases : Fractions en base b

Un nombre
(ak ...dp.d—-1d-2... )b

correspond a :

ab 4+ +ataib ttansh 4. ..

(10.11), = 2.75.
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Bases : Addition en base b

On additionne chiffre par chiffre, avec retenues dés que la somme dépasse
b.

Exemple (en base 5.)

(243)5 = (132)5 = (430)5.
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Bases : Multiplication en base b

Méme principe qu'en base 10, en tenant compte de b.

(12)3 X (21)3 = (1022)3.
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© x = 101100110101° = 5465° = 2765,

Q x = 173'° — 701011012 = 255°.

Pour avoir la conversion en base 8, on constate que chaque chiffre en base
8 peut 'écrire a I'aide de 3 bits. Ainsi on regroupe 101100110101 par
paquet de 3 comme il y a 12 bits : 101 100 110 101. Chaque regroupement
se traduit en base 8 :
101, =5bg ; 100, =4g ; 110, =6g ; 101, = bg
Ainsi

101100110101 = 54653
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Petit théoreme de Fermat et Théoréme des restes chinois

Théoreme (Congruence et nombre premier)

Soit p un nombre premier. Pour tout a € Z,

aP = alp].
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Petit théoreme de Fermat et Théoréme des restes chinois

Théoreme (Petit théoréeme de Fermat)

Soit p un nombre premier. Pour tout a € Z, a n'étant pas un multiple de
p, nous avons

P~ = 1[p].

| \

Exemple

On veut calculer 21%°° modulo 7 7

Pour cela on remarque que 7 est un nombre premier. Le fait que 2 n’étant
pas un multiple de 7 (c'est-a-dire 2 n'est pas divisible par 7) alors par le
petit théoréme de Fermat on a 2% = 1[7]. Comme 1000 = 6 x 166 + 4, on
a 21000 — 26><166 X 24 — (26)166 % 16 = 1166 X Q= 2[7]

N,
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Petit théoreme de Fermat et Théoréme des restes chinois

Théoreme (Théoreme des restes chinois)

Soient my, mo,...,m, des entiers positifs deux a deux premiers entre eux.
Alors le systéeme

x = a [m],
X = ar [mz],
x = a [m]

posséde une unique solution x modulo M = my X my X ... X m,, et

x = aiMiy1 + aaMoys + ... + a M.y, [M],

M
avec M; = — et yiM; =1 [mj], pouri=1,..,r.

i
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Petit théoreme de Fermat et Théoréme des restes chinois

Exemple (application du théoréme du reste chinois)
Résoudre le systéme :

x=2 (mod 3),
x=3 (mod 5).

On pose : M =3 x 5 =15, My =5 My=3.
On cherche les inverses :

5e1=1 (mod3) = 2e1=1=¢ =2,

3=1 (mod5) = 3ea=1=e=2.

Alors une solution est : x = aiMie1 + aaMrey =2-5-2+3-3-2 = 38.
On réduit modulo 15 :  x =38 =8 (mod 15).

‘x =8 (mod 15) ‘
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Petit théoreme de Fermat et Théoréme des restes chinois

Exemple (application du théoréme du reste chinois)
Résoudre le systéme :

x=1 (mod 2),
x=2 (mod 3),
x =3 (mod 5).

On calcule : M =2 x 3 x 5 = 30, My =15, M, =10, M3 = 6.

Inverses :
15eg =1 (mod 2) = e =1,

10e=1 (mod3) = e =1,
6es=1 (mod5) = e3=1.

Solution : x=1-15-142-10-143-6-1=53.
Réduction modulo 30 : x =53 = 23 (mod 30).

x =23 (mod 30) |
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Petit théoreme de Fermat et Théoréme des restes chinois

Remarque

Pour I'histoire, ce théoréme porte le nom de théoréme des restes chinois
pour la raison suivante. Sa premiére apparait sous forme de probléme dans
le livre “Sunzi suanjing " de Sun Zi (mathématicien chinois du 3éme
siéclee), le Sunzi suanjing. Le mathématicien chinois Qin Jiushao en fait
mention dans son dans son “Traité mathématique en neuf chapitres” (le
Shushu Jiuzhang) publié en 1247. On |'associe souvent au probléeme
soulevé par le général Han Xin qui souhaitait compter son armée :
“combien I'armée de Han Xing comporte-t-elle de soldats si, rangés par 3
colonnes, il reste deux soldats, rangés par 5 colonnes, il reste trois soldats
et, rangés par 7 colonnes, il reste deux soldats 7"
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